
Progress In Electromagnetics Research C, Vol. 70, 165–173, 2016

Modal Analysis of Rectangular Waveguides with 2D Metamaterials
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Abstract—A new method to rapidly design 2D metamaterials for rectangular waveguides by rebuilding
their dispersion properties is proposed. The Modal Expansion Theory (MET) is revisited for theoretical
surfaces with fixed surface impedances ZS . Then, it is pursued for real dispersive anisotropic surfaces,
which have surface impedances that are dependent on the frequency and the incidence angle. An
algorithm which calculates the correct incidence angle of the guided electromagnetic mode at each
frequency is presented. By including this algorithm in the MET and by combining it with a code
based on the Finite Element Method (FEM) to calculate the surfaces impedances, dispersion diagrams
of waveguides with real 2D anisotropic walls are correctly rebuilt. This is validated by comparing
the results for two different metamaterials, corrugation- and T-structure, with those obtained using a
commercial software.

1. INTRODUCTION

There are different possibilities to design metamaterials by describing their properties analytically. One
is to define the volume by its relative permittivity εr and permeability μr. This has been used for
the design of a metamaterial loaded waveguide with the aim to reduce the cutoff frequency [1–4] or
to reduce the cross section as it was shown for miniaturized circular-waveguide probes [5]. Results are
obtained here by homogenization (εr) of the metamaterial volume with consideration of the polarization
anisotropy of the metamaterial. Another possibility is to describe metamaterials by their surface
impedances at the height of the volume, as done in [6]. The latter characterization of the metamaterials
is used in this paper. Thereby, the metamaterials can be optimised by means of a surface impedance
condition. Placing the optimised metamaterials on the inner wall of horn antennas [7–9] permits the
achievement of hard and soft horns.

In previous work [10], the development of the modal theory for propagation in structures with
constant anisotropic surface impedances as boundary conditions has been developed for cylindrical
waveguides and rectangular waveguides with vertical anisotropic surfaces. Here, these impedances
are theoretical surface impedances which are independent of frequency. It allows a fast analysis of
waveguides with all kinds of fixed isotropic and anisotropic surface impedances.

In this paper, the MET is extended for real 2D anisotropic surfaces in rectangular waveguides.
Therefore, the surface impedances are defined on top of the volume, and the dependence of frequency
f and incidence angle θ are taken into account. The anisotropic surfaces analysed in this paper consist
of a corrugation and a T-structure (h < λ0/10 or both, with λ0 the operational wavelength).
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2. CHARACTERIZATION PRINCIPLES

2.1. Modal Expansion Theory

In the following, the Cartesian coordinate system, cf. Figure 1, will be considered. In the horizontal
sections (y = 0 and y = b), the walls are Perfect Electric Conductors (PEC), while the vertical sections
(x = 0 and x = a) are constant surface impedances ZS |x=0 = ZS |x=a.

Anisotropic walls

PEC plates

a

b

z

y

x

x

y

z

Figure 1. Rectangular waveguide with anisotropic surfaces on the vertical walls.

The boundary conditions are expressed at the limits of the waveguide (x = 0, x = a, y = 0 et
y = b).

- On vertical walls, the anisotropic surface impedance conditions are:
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Zt and Zz are complex, since losses can be present. However, the examples treated here are lossless.
- On horizontal walls, the condition is metallic, hence, the boundary conditions are:
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For this kind of rectangular waveguide, the dispersion equation is obtained [10]:
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with X = e−2jkxa, the constants K0xc = (k0kx)/k2
c , Kzyc = (γzky)/k2

c and zz, zt the normalized surface
impedances (zz = Zz/Z0 and zt = Zt/Z0), with Z0 the characteristic impedance. k0 is the propagation
constant in vacuum, kc the cutoff constant, and kx, ky and γz are the wave propagation constants in
x, y and z directions, respectively. Equation (4) is a function of the propagation constant in the form
f(kc) = 0. It is solved numerically.

In this study, we are interested in the first modes propagating in waveguides, which generally have
the index m = 0 (ky = 0). For this case, the dispersion equation has to be analysed separately [10]:

k2
cz

2
t (1 − X) − 2k0kczt(1 + X) + k2

0(1 − X) = 0 and X = e−j2kca. (5)

It can be noticed that this equation, valid for m = 0, is indeed deduced from the general Equation (4)
and is independent of zz . We have Kzyc = 0 since ky = 0, and K0xc = k0

kc
since kx = kc. By inserting

these values in Equation (4) and multiplying the equation by (1 − X), we obtain Equation (5). The
mode type can be determined by observing kx. When kx = 0, the mode type is TEM, and otherwise,
the mode type is TE.
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2.2. MET for Metamaterials

In the case of a metamaterial, the surface impedances Z ′
t and Z ′

z are calculated above the partially
metalized volume of height h. These values of the surface impedances, used in the MET, have to
be calculated at each frequency separately. Beside the frequency dependence, Z ′

t and Z ′
z are also

dependent on the incidence angles θ and φ. Since this paper is about 2D metamaterials, only the angle
θ is considered here, c.f. Figure 2.

Ground plane

Metamaterial

Figure 2. Definition of the surface impedances seen at a height h of an anisotropic surface with a
dependency on the incidence angle θ.

2.2.1. Scheme of the Recursive Solution

To illustrate the dependence of the surface impedances to the incidence angle θ, an example of dispersion
diagram of a rectangular waveguide (a = 22.86 mm, b = 10.16 mm) with isotropic surface impedances
Zt = Zz = jZ0 on its vertical walls is presented in Figure 3(a), with εeff = (Im(γz)/k0)2.

Results obtained with the electromagnetic software HFSS (High Frequency Structure Simulator)
from Ansys (black circles) represent dispersion curve of the fundamental mode propagating in this
waveguide and are the reference to which the MET results shall be compared. For the other two
curves, the first step was to compute the surface impedances in HFSS by using a unit cell of the surface
(Zt = Zz = jZ0) with periodic boundaries and a Floquet port excitation. The surface impedances are
calculated at a height over the isotropic surface (h = 2mm) by taking into account their frequency
variation (Z ′

t(f, θ), Z ′
z(f, θ)). However, two fixed angles θ (0◦ and 89◦) have been chosen. These curves

(red and blue dots) have then been calculated with the MET code by using these surface impedances.
By analysing the three curves, it can be noticed around the cutoff frequency that the dispersion

curve calculated with HFSS is closer to the MET curve with θ = 0◦. On the other hand, at higher
frequencies, it is closer to the MET curve with θ = 89◦. Hence, we have an evolution of θ as a function
of the frequency in between the cutoff frequency and the higher frequencies from 0◦ to 89◦, respectively.
Beside their frequency dependence, the surface impedances are, thus, also dependent on the incidence
angle θ, which, a priori, is unknown for a given mode. Hence, this angle has to be corrected at each
frequency separately and for each mode.

According to Figure 2, the propagation constants are given by

kx = k0 cos θ, ky = 0, γz = jβ = jk0 sin θ. (6)

Hence, the angle θ can be written as:

θ = sin−1

(
β

k0

)
(7)

Now, according to Eq. (7), the angle θ is related to the propagation constant β. The angle θ can thus
be calculated iteratively for each frequency. At the cutoff frequency, the incidence angle is normal to
the surface (θ = 0◦), then, it evolves with the frequency, up to oblique angles. Knowing the propagation
constant β at the previous frequency, the new initial θ0 of the actual frequency is found. The solution of
the MET gives the corresponding β. If the new value of θ (θnew) is correct, β correlates with it. If not,
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Figure 3. (a) A dispersion diagram example that shows the dependency of the dispersion properties
to the angle θ and (b) a schematic algorithm to correct the angle θ.

θ0 = θnew has to be modified, which yields a modification of the values Z ′
t and Z ′

z and hence a new β.
This procedure is repeated as long as the difference between the two angles, computed at two successive
iterations, is larger than a precision defined by the user. The algorithm is illustrated in Figure 3(b).

By using the algorithm of Figure 3(b) in the MET code, the dispersion diagram of surfaces with
a certain height h for modes with m = 0 can be rebuilt very rapidly. To demonstrate the validity, the
MET code has been used for isotropic surfaces Zt = Zz = jZ0 and Zt = Zz = −jZ0. This time, the
correction of θ at each frequency has been included. The results are illustrated in Figures 4(a) and
4(b) for the surfaces Zt = Zz = jZ0 and Zt = Zz = −jZ0, respectively. The dispersion curves are now
coinciding very well with the HFSS results. In Figure 4(b), it can be seen that at certain frequencies
the angle θ has complex values, in the form of θ = (90− jx). More precisely, θ gets complex for effective
permittivities εeff higher than 1, thus, β > k0, since εeff = (β/k0)2. An explanation of the merging of
these complex angles is described below.

2.2.2. Physical Analysis of the Signification of Complex Values of θ

For two dimensions and hence for modes with cancelled propagation constant in y direction (ky = mπ
b =

0), the relation between the propagation constants β and kx can be written as:

β2 = k2
0 − k2

x. (8)

If β ≤ k0, a vectorial construction of the propagation constants as represented in Figure 5(a) is possible.
For a metallic waveguide for example, this vectorial construction is always true. Hence, the propagation
constants are described in z direction with

β = k0 sin θ < k0 (9)

and in x direction with
kx = k0 cos θ < k0. (10)

Now, if β > k0 and hence k2
x < 0, the propagation constant in x direction is purely imaginary. Thus,

kx = jαx, with αx ∈ R. With the help of Figure 5(b), it can be stated that a direct construction in
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Figure 4. Dispersion diagrams of rectangular waveguides with isotropic surfaces (a) Zt = Zz = jZ0

and (b) Zt = Zz = −jZ0 on the vertical walls calculated with the MET with the correction of θ.
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Figure 5. Vectorial construction of the propagation constants for a reflected plane wave on a 2D
surface.

vectorial form of the propagation constants is not possible anymore. The angle θ does not have any
physical meaning anymore. Anyway, it is possible to determine β by using complex angles θ. Even
if the complex incidence angle θ does not correspond to a physical incidence, Equation (7) is used in
the MET code to rebuild the dispersion curves of waveguides with anisotropic walls. Consequently, it
is necessary to include complex angles θ in the computation of the surface impedances. Currently, no
commercial software is able to compute surface impedances by using complex incidence angles, which
explains the suitability of developing an own FEM code. In the following section, this 2D FEM code,
which enables the calculation of surface impedances Z ′

t and Z ′
z at each frequency whatever the angle θ,

complex values included is presented.

2.3. Computation of the surface impedances with the FEM code

A representation of the unit cell of a 2D anisotropic surface is illustrated in Figure 6. For a better
understanding, a corrugation has been chosen to represent the anisotropic surface in this figure. An
incident electromagnetic wave, invariant in 
y and independent of y, is assumed. Ω′ (x = 0) is the level
at which the surface impedances of the anisotropic structure (height h) are to be computed. ΓS is
the physical surface, which is defined as a perfect electric conductor here. Γ1 and Γ2 are the periodic
boundaries of the unit cell. At level Γ3, Floquet modes TE and TM are excited.

For TE modes, the following variables are defined:
Eiy = ui, Ery = ud. (11)

Here, Eiy is the incident electric field, with

ui = −ejk0 sin θzejk0 cos θx (12)
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Figure 6. Unit cell for the FEM computation of the surface impedances.

and Ery is the diffracted electric field which constitutes the unknown variable. u = ui + ud corresponds
to the total field. The problem to solve is given in the following Equations (13)–(16). The equation of
propagation is given by Eq. (13). The definition of the periodic walls is denoted in Eq. (14), the one of
the surface impedance in Eq. (15). Eventually, Equation (16) presents the decomposition of the Floquet
modes.
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with n the normal vector to ΓS, μ0 the vacuum permeability, p the distance between the periodic
boundaries of the unit cell, γn = −k0 sin θ + 2πn

p and αn =
√

γ2
n − k2

0 .
By using the FEM and hereby developing the equations for Ey and Hz, as described in [12], the

surface impedance of the TE mode at Ω′ can be calculated with
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For TM modes, the equations to calculate the surface impedance Zz with the aid of a unit cell, as in
Figure 6, are developed similarly. This time, the incident and diffracted variables are:

Hiy = ui, Hry = ud, (18)

with Hiy the incident magnetic field (known) and:

ui = −e−jk0 sin θzejk0 cos θx. (19)

Hry is the diffracted magnetic field, which is the unknown of the problem.
As for the TE mode, the propagation Equation (13), conditions of periodicity in Eq. (14), Floquet

modes decomposition in Eq. (16) are to be solved. To these equations the condition on ΓS, which is
given by 20, is joined.
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with ε0 the vacuum permittivity. Eventually [12], the surface impedance seen by the TM mode at Ω′
can be solved with:

Zz =
Ez
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. (21)
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3. RESULTS

In order to validate the FEM approach included in the MET code, two structures of metamaterials
have been chosen: a corrugation and a T-structure. Both structures are arranged longitudinally to
the direction of propagation, so as to be invariant in y direction. The mesh structures of the surfaces
are defined in the open source software Gmsh [11]. The meshing is then used in the FEM code. The
structures and the used mesh of the corrugation and T-structure are illustrated in Figures 7(a) and
7(b), respectively. For the corrugation, the dimensions are h = 18.2 mm, hd = h, p = 26.225 mm
and t = 5.425 mm. For the T-structure, they are h = 4.55 mm, hd = h, p = 4 mm, t = 0.5 mm and
q = 3.5 mm.

The computed surface impedances with the FEM are then used in the MET code to calculate the
dispersion properties. The results of two different waveguides with the anisotropic surfaces described
above on the vertical walls are compared to HFSS results. For the HFSS results, dispersion diagrams
have been obtained from a section of a given waveguide using periodic boundary conditions, as shown
in Figure 8. For a given propagation constant, which is a function of the phase delay between two
periodic boundary conditions and the distance p between them, the eigenmode solver of HFSS returns
the frequency of each solution. By varying the phase delay between the two periodic boundary conditions
from 0◦ to 180◦, the complete dispersion diagram of the guided structure can be obtained.

For the corrugation, a waveguide of dimensions a = 163.6 mm and b = 100 mm is chosen. The
dispersion diagram is represented in Figure 9(a). The first two modes with the index m = 0 (TE10

and TE20) have been calculated by the MET code (blue dots). The code takes 11 s to compute the
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Figure 7. Unit cells and their meshs defined with Gmsh.
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Figure 8. Representation of the waveguide with its periodic boundary conditions and anisotropic
surfaces simulated in HFSS.
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dispersion diagram with the two modes with a Intel Core i7 (3.6 GHz, 8 GB of RAM) processor. The
same modes obtained with HFSS (red stars) have been added to the diagram and coincide perfectly.
However, the computation takes 547 s and is therefore 50 times slower than the MET code by using the
same processor.

For the T structure, the dimensions of the waveguide are a = 22.9 mm and b = 16 mm. The
dispersion diagram of the waveguide with T-structure on the vertical walls calculated by the MET
code is illustrated in Figure 9(b). Here again, the HFSS curves have been added to the MET results,
and the two overlap completely. The simulation time (Intel Core i7, 3.6 GHz, 8 GB of RAM) with the
MET code is 112 s to compute the dispersion diagram, whereas the one with HFSS is 365 s (3.3 times
slower than MET code). The time difference between the MET computation of the corrugation and
the T-structure is due to the higher number of tetrahedrons in the meshing of the T-structure, which
is visible in Figure 7 (993 nodes for the T-structure in comparison to 233 nodes for the corrugation).
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Figure 9. Dispersion diagrams of rectangular waveguides with a (a) corrugation- and (b) T-surface by
using the meshing illustrated in Figure 7.

The dispersion properties of any other 2D metamaterial structure employed in this kind of
rectangular waveguides can be analysed with the MET method introduced in this article.

4. CONCLUSION

A new method based on the Modal Expansion Theory and with the obective of computing the
dispersion properties of waveguides with 2D metamaterials has been developed. Two anisotropic surfaces
(corrugation and metamaterial), invariant in y direction, embedded in a rectangular waveguide have
been tested and have demonstrated the efficiency of the proposed tool in matters of accuracy and time.
This method is planned to be further developed for 3D metamaterials. To do so, the FEM shall be
developed for 3D metamaterials and the incidence angle φ shall be corrected.
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