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High Order Extractions of Broadband Green’s Function with Low
Wavenumber Extractions for Arbitrary Shaped Waveguide

Tien-Hao Liao1, *, Kung-Hau Ding2, and Leung Tsang1

Abstract—In this paper we develop a higher order extraction method to accelerate the convergence
in the computation of broadband Green’s function (BBGFL) for an arbitrary shaped homogeneous
waveguide.The broadband Green’s function is based on modal expansions in which the modal field
solutions are frequency independent. The higher order extraction is obtained by using three low
wavenumbers in extraction. It gives a modal expansion of Broadband Green’s Function with 6th
order convergence requiring fewer evanescent modes for convergence. Numerical results are illustrated
for both lossless and lossy dielectric cases. The accuracy of results are verified with direct method of
moment (MoM) and HFSS. The higher order BBGFL method is computationally efficient for broadband
simulations.

1. INTRODUCTION

Green’s functions are important in electromagnetic theory as they are the responses of the
electromagnetic fields of point sources that give physical understandings of the problems. They are
also useful for formulating integral equations for boundary values problems [1–4]. Commonly used
Green’s functions include free space Green’s functions, periodic Green’s functions for empty periodic
lattices, and Green’s functions of regular geometry such as a sphere or cylinder, Green’s functions of
layered media, etc. However, these are Green’s functions at a single frequency and are for regular
geometries. Recently, the Green’s function technique has been used to study the problems of signal
integrity (SI) and electromagnetic compatibility (EMC) in printed circuit boards (PCBs), including
the effects of vias for infinite ground plane and for finite ground plane [5–7]. In the past studies, the
free space Green’s functions were used. The disadvantage of using the free space Green’s function is
that, one has to solve the boundary value problem of an arbitrary shaped waveguide for each frequency.
For broadband simulations using integral equations, the dense matrix equation of MoM needs to be
solved for each frequency. In this paper, we develop broadband Green’s functions for arbitrary shaped
waveguides using a higher order extraction method to achieve accelerated convergence in computing
responses.

The Boundary Integral-Resonant Mode Expansion (BIRME) method was invented to calculate
the modes of an arbitrary shaped waveguide [8–10]. The BIRME method uses the DC extraction
of rectangular and circular waveguides to calculate the modes of an arbitrary shaped homogeneous
waveguide [8–10]. Recently, we have developed the method of broadband Green’s function with low
wavenumber extraction (BBGFL) to calculate the BBGFL of homogenous waveguide of arbitrary
shape [11, 13–16]. The BBGFL is a method of calculation and is also a quantity to be calculated. We
begin with the BBGFL of rectangular waveguide and use the method of BBGFL to calculate the BBGFL
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of arbitrary shaped waveguide [11]. Unlike BIRME, the BBGFL uses a low wavenumber extraction.
The MoM is applied in BBGFL a single time for low wavenumber extraction. We then compute the
modes of an arbitrary shaped waveguide using the BBGFL of rectangular waveguide. Then we use
the modes to construct the broadband Green’s function for the arbitrary shaped waveguide. The low
wavenumber extraction is also applied to the arbitrary shaped waveguide. The BBGFL was combined
with Foldy-Lax multiple scattering equations for the simulations of fields in arbitrarily shaped PCB
power/ground planes with vias [11–13]. It was also used to study EMC problems [14]. We also applied
the BBGFL method to periodic photonic structures and metamaterials [15, 16].

Previously, in the BBGFL method [11, 13–16], a single low wavenumber Green’s function is
extracted with the result of 4th order convergence in modal summations. The number of required
evanescent modes in modal expansion are reduced.The evanescent modes are modes with modal
wavenumber higher than the operating wavenumber. Using low wavenumber extraction to reduce the
number of required evanescent modes is physically equivalent to the conversion of evanescent modes to
near fields. In this paper we develop a higher order extraction technique. We use three low wavenumber
extractions giving a 6th order convergence of modal expansion. Results show that the number of
required evanescent modes are reduced significantly compared with single low wavenumber extraction.
Higher order convergences are also useful when spatial first and second order derivatives of the BBGFL
are often required in formulating integral equations with BBGFL. The accuracy of the BBGFL results
are validated by comparing with the results of direct MoM and HFSS.

The outline of the paper is as follows. In Section 2, we derive the higher order extraction of
broadband Green’s function. In Section 3, we illustrate the numerical results of BBGFL for resonant
modes and make comparisons of Green’s function with that of direct MoM and HFSS. The computation
efficiencies and error comparisons are also shown. In Section 4 we give conclusions.

2. BROADBAND GREEN’S FUNCTION WITH LOW WAVENUMBER
EXTRACTION (BBGFL)

In this section we illustrate the construction of BBGFL for an irregularly shaped waveguide with cross
section S and PEC boundary ∂S as shown in Figure 1(a). The homogenous waveguide is filled with
dielectric with relative permittivity εr. There are two stages in the construction of broadband Green’s
function [14]. In the first stage, the BBGFL of the rectangular waveguide is applied to form the linear
eigenvalue problem of modes for the irregularly shaped waveguide. A linear eigenvalue problem means
that resonant modes are calculated simultaneously. Normalization of the modes are carried out. In
the second stage, the broadband Green’s function for the arbitrary shaped waveguide is constructed by
expansion in therms of the normalized resonant modes. Next, the three low wavenumber extractions is
applied to accelerate the convergence of modal summation which results in 6th order of convergence.
The Green’s functions at the 3 low wavenumbers are calculated using MoM.

2.1. Resonant Modes of Arbitrary Shaped Waveguide S

We consider the TM modes of waveguide S with PEC boundary ∂S as shown in Figure 1(c). The part
of boundary ∂S − σ coincides with the rectangular boundary ∂Ω of Figure 1(b). The dimensions of
rectangular waveguide are Lx and Ly, and the boundary σ is (Figure 1(c)) with the dimensions of Wx

and Wy. We shall denote the arbitrary shaped waveguide as waveguide S.
The modal expansion of rectangular waveguide Green’s function gΩ

E is expressed as [8]

gΩ
E
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=
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Figure 1. Waveguide with homogeneous dielectric. (a) Arbitrary shaped waveguide S with boundary
∂S. (b) Rectangular waveguide Ω with boundary ∂Ω. (c) Arbitrary shaped waveguide S with boundary
σ and boundary ∂S − σ coinciding with rectangular boundary ∂Ω. The dimensions of rectangular
waveguide are Lx and Ly and the dimensions of boundary σ are Wx and Wy.

with p, q = 1, 2, . . ., −Lx
2 ≤ x ≤ Lx

2 and −Ly

2 ≤ y ≤ Ly

2 . The resonant wavenumbers kΩ
α are

kΩ
α =

√(
pπ

Lx

)2

+
(
qπ
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)2

(3)

The modal function ψΩ
α (ρ̄) satisfies the boundary condition ψΩ

α (ρ̄) = 0 for ρ̄ on ∂Ω. The subscript α is
the modal index for the domain Ω. It is used for the combined index pair (p, q). The subscript E in gΩ

E
denotes that the physical quantity considered is the electric field for the TM modes.

The modal summation in Eq. (1) converges slowly particularly when ρ̄ is close to ρ̄′. We previously
used a single low wavenumber extraction to accelerate the convergence [11–14].
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The low wavenumber (kΩ
L � k) term gΩ

E(kΩ
L , ρ̄, ρ̄

′
) is calculated readily using MoM with relatively few

unknowns because the low wavenumber corresponds to low frequency solution.
Similarly, the Green’s function of irregularly shaped waveguide S is expressed as

gS
E
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=
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(5)

where β stands for the modal index for S and kS
β the corresponding resonant wavenumber. The modal

functions of S obeys the wave equation

∇2
tψ

S
β (ρ̄) +

(
kS

β

)2
ψS

β (ρ̄) = 0 for ρ̄ inside S (6)

and the boundary condition
ψS

β (ρ̄) = 0 for ρ̄ on ∂S (7)

The subscript t stands for transverse since we are considering a 2D problem for PCB with small thickness
so that only the TM0 mode propagates.

To calculate kS
β and ψS

β (ρ̄), we apply the Green’s theorem using ψS
β (ρ̄) and gΩ

E(k, ρ̄, ρ̄
′
). Because

of the overlapping between ∂S and ∂Ω boundaries, the surface integral equation (SIE) is only over the
part σ of the boundary.∫
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where the unit normal vector n̂
′
out points outward of ∂S. Using Equation (8) and the extracted modal

summation (4) of gΩ
E(k, ρ̄, ρ̄

′
) yields∫
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The superscript L denotes low wavenumber.
Using pulse basis function and point matching in Eq. (9), we discretize the integral boundary σ

into N segments. Let zβn be the surface unknown of the nth patch.
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[
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′
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S
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′
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where ρ̄σ
n is the center of the nth segment on σ and Δtσn is the length of the segment. Substituting

Eq. (11) into Eq. (9) gives the matrix equation.

C
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where the matrix elements of C
L
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L
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In Eqs. (13) and (14), ρ̄σ
m is the testing point on σ.

Similarly, we apply pulse basis function and point matching to the SIE in Eq. (10) to obtain the
matrix equation.
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where both D
L

and E
L

β are diagonal matrices with matrix elements given by

EL
β =

1(
kS

β

)2
− (

kΩ
L

)2
(16)

DL
α =

1

(kΩ
α )2 − (

kΩ
L

)2 (17)

Substituting Eq. (12) into Eq. (15) gives the linear matrix equation that governs the eigenvalue problem,[
D

L −
[
R

L
]T (

C
L
)−1

R
L

]
c̄Lβ = EL

β c̄
L
β (18)

where the superscript T denotes the transpose of matrix. In Equation (18), vector c̄Lβ is the eigenvector
and is EL

β the corresponding eigenvalue. The resonant wavenumber kS
β is calculated from the eigenvalue

EL
β using Eq. (16). Note that the matrix on the left hand side of Eq. (18) is independent of wavenumber

so that the eigenvalues and eigenvectors are solved simultaneously. If the free space Green’s function,
instead of BBGFL, is used, the left hand side is a function of the wavenumber making the eigenvalue
problem nonlinear. For nonlinear eigenvalue problem, an iterative search needs to be conducted for
each eigenvalue. We rewrite Eq. (18) as

P
L
c̄Lβ = λL

β c̄
L
β (19)
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where P
L

represents the matrix on the left-hand side of Eq. (18). The resonant wavenumbers are
calculated from the eigenvalues λL

β .

kS
β =

√(
kΩ

L

)2 +
1
λL

β

(20)

2.2. Normalization of Modal Function of S Waveguide

After solving c̄Lβ , we use Eq. (8) to compute the unnormalized modal functions ψS
β . It can be shown

that modes are orthogonal. Since the Green’s functions are expressed in terms of normalized modes,
we next normalize the modes. The normalization of modal function is the condition∫∫

S
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Take the Laplacian on both sides of Eq. (21) and apply the low wavenumber conditions, kΩ
L � kΩ

α and
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β , Equation (21) can be approximated as
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Using Eq. (23), we then have
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The normalization condition of Eq. (21) becomes
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This leads to the normalization condition for the modal function ψS
β
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Hence, the normalized modal function ψS
β of the S waveguide is expressed in terms of the modal functions

ψΩ
α of rectangular waveguide as follows

ψS
β (ρ̄) =

1√∑
α

(
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∑
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where we have used the symbol ∼ to represent the un-normalized eigenvectors ¯̃cLβ . We now use the
resonant wavenumbers kS

β in Eq. (20) and the normalized modal function ψS
β (ρ̄) in Eq. (27) to construct

the modal representation of Green’s function gS
E for the waveguide S in Eq. (5).
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2.3. Higher Order Convergence for S Waveguide

For the S waveguide, we next derive a higher order extraction BBGFL for gS
E(k, ρ̄, ρ̄

′
) with a convergence

of 1/(kS
β )6.

With a low wavenumber extraction at kS
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Using Equation (29), Equation (28) becomes
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The expression (30) consists of three low wavenumber extractions at ω = ωS
L, ω = ωS

L + ΔωS
L

2 and

ω = ωS
L − ΔωS

L
2 . It is clear in Eq. (30) that the modal summation over β converges as 1/(kS

β )6 giving a
higher order extraction Green’s function gS

E with an accelerated convergence.

Table 1. First 20 resonant wavenumber of waveguide S.

β
kS

β (MoM)

[m−1]

kS
β (BBGFL)

[m−1]

kS
β (HFSS)

[m−1]
β

kS
β (MoM)

[m−1]

kS
β (BBGFL)

[m−1]

kS
β (HFSS)

[m−1]

1 383.2 383.2 374.9 11 1112.4 1112.8 1092.6

2 563.3 563.3 557.1 12 1176.2 1176.6 1169.1

3 627.5 627.5 611.2 13 1241.5 1241.9 1240.6

4 741.2 741.2 740.3 14 1268.5 1268.9 1268.0

5 800.3 800.3 796.8 15 1283.0 1283.4 1283.0

6 860.1 860.1 843.4 16 1371.4 1371.8 NA

7 943.3 943.7 918.7 17 1382.6 1383.9 NA

8 992.4 992.8 994.6 18 1445.4 1446.7 NA

9 1030.9 1030.5 1032.3 19 1505.8 1506.7 NA

10 1086.5 1086.5 1071.6 20 1523.8 1525.6 NA
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3. NUMERICAL RESULTS

We use the higher order BBGFL method to calculate the broadband Green’s function for the S waveguide
shown in Figure 1(c). The dimensions of waveguide S are Lx = 500 mils, Ly = 500 mils, Wx = 100 mils,
and Wy = 250 mils.

Table 1 lists the first 20 resonant wavenumbers computed by using BBGFL. These are compared
with the results from MoM and HFSS for the waveguide S. The relative permittivity is lossless with
εr = 4.4. For HFSS, we only calculate the first 15 resonant modes because of the much larger CPU
required for larger resonant wavenumbers. The results are in excellent agreement among BBGFL, MoM
and HFSS. The corresponding 20 normalized modal functions computed using BBGFL are plotted
in Figure 2. The modal functions are displayed within the waveguide S. The figure shows that the
structures of modal functions become more complicated for larger kS

β . The figure also shows that the
modal distributions calculated by HFSS agree with BBGFL.

Note that evanescent modes are required for convergence. Evanescent modes are modes with
higher resonant wavenumbers than the maximum operating wavenumber of interest. For example,
if the maximum interested frequency is 20 GHz, then the broadband Green’s functions will cover six

Figure 2. Modal functions of the first 20 resonant modes of waveguide S. All plots are in the same
scale, x = −250mils ∼ 250 mils and y = −250mils ∼ 250 mils.
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Table 2. List of 6 wavenumbers and the number of resonant modes for fmax = 20 GHz.

kmax 1.1kmax 1.2kmax 1.3kmax 1.5kmax 2kmax

wavenumber 880 968 1056 1144 1320 1760
number of kS

β 6 7 9 11 15 27

resonant modes at 8.71 GHz, 12.81 GHz, 14.27 GHz, 16.86 GHz, 18.2 GHz, and 19.56 GHz. Thus for
fmax at 20 GHz, the corresponding maximum operating wavenumber kmax is 880. The modal expansion
needs to have resonant wavenumbers larger kmax to attain a convergent summation. How much larger
depends on the rate of convergence. In Table 2, we list the number of resonant modes which will be
included in the summation versus the multiples of kmax, covered in the spectrum.

We next compare the convergence for the Green’s functions of waveguide S computed using 3
different methods: the direct modal summation of Eq. (5) with a 2nd order convergence,the single low
wavenumber extraction BBGFL of Eq. (28) with a 4th order convergence, and the three low wavenumber
extraction BBGFL of Eq. (30) with a 6th order convergence. The comparison is based on the number
of resonant modes required in the summation. The direct MoM solutionis used as a reference for
comparison. In the following, we consider three cases.

Case I: lossless waveguide with εr = 4.4. The source point is at x = 30mils and y = 20 mils. The
observation points are at x = −250 mils to 250 mils and y = −50 mils.

Since the dielectric is lossless, the Green’s function is purely real. In Figure 3, we compare the
Green’s function at 20 GHz computed by the three different modal solutions and MoM.The numbers of
modes are varied from 6 to 27. As we include more modes, we see that the results of modal summation
are in better agreement with MoM. Compared to the 4th order BBGFL, the 6th order BBGFL requires
less number of modes (11 modes) to converge to MoM. The direct modal summation (2nd order) is not
in good agreement with MoM even with 27 modes in the summation.

Figure 3. Case I with the observation point at x = −250mils ∼ 250 mils and y = −50 mils. The real
parts of Green’s functions are shown for the 2nd, 4th, 6th order, and MoM at 20 GHz. The number of
mode accumulations are 6, 7, 9, 11, 15, and 27.
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Figure 4. Case II with the observation point at x = −50mils and y = −50 mils. First row shows
the real parts of Green’s function for the 2nd, 4th, 6th order approaches, and MoM over the frequency
range of 10 GHz to 20 GHz. The number of mode accumulations are 6, 7, and 9. The second row shows
the comparison of corresponding imaginary parts of the Green’s function frequency responses.

Next, we consider lossy dielectric cases with a small loss tangent. We compare the frequency
responses of, the Green’s functions, and the mean errors from the three modal summation methods
using MoM solution as the reference.

Case II: lossy waveguide with εr = 4.4(1 − j0.023). The source point is at x = 30,mils and
y = 20 mils. The observation points are at x = −250 mils to 250 mils and y = −50 mils.

In this case, the source is not close to the observation. In Figure 4, the comparisons are made on the
real and imaginary parts of Green’s function over frequencies from 10 to 20 GHz at the observation point
x = −50 mils and y = −50 mils. We observe 5 resonances at the frequencies: 12.81 GHz, 14.27 GHz, and
16.86 GHz, 18.2 GHz, and 19.56 GHz. As we increase the modal expansion from 6 to 9 modes, the real
parts are in better agreement with the MoM results. We notice that the results of the 6th order BBGFL
are in better agreement with MoM than the results of the other two modal summation. However, the
comparisons of imaginary parts do not show significant differences among these 4 methods. Thereafter,
we will only compare the real parts of the Green’s functions.

In Figure 5, we compare the real part of Green’s function at the resonant frequency 19.56 GHz.
The number of modes in the modal expansion varies from 6 to 27. Since the source is not close to the
observation, the spatial response of Green’s function varies smoothly. Similar to the case I in Figure 3,
the 6th order BBGFL requires 11 modes to converge which is smaller than those required of the 4th
order BBGFL and the direct modal summation (2nd order) approach.

Case III: lossy waveguide with εr = 4.4(1 − j0.023). The source point is at x = 30 mils and
y = −50 mils. The observation points are at x = −250 mils to 250 mils and y = −50 mils.

In this case, the line of observation points include the source point. The spatial responses of
Green’s function are expected to have more variations. Figure 6 shows the frequency response for the
real parts of Green’s functions with different number of modes included in the modal summations. We
also observe five resonances between 10 and 20 GHz. Compared to Figure 4, Case III requires more
modes to converge. The 6th order BBGFL still converges fastest as only 9 modes are needed, while the
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Figure 5. Case II with the observation point at x = −250mils ∼ 250 mils and y = −50 mils. The real
parts of Green’s functions are shown for the 2nd, 4th, 6th order, and MoM at 19.56 GHz. The number
of mode accumulations are 6, 7, 9, 11, 15, and 27.

Figure 6. Case III with the source point at x = 50 mils and y = −50 mils. The real parts of Green’s
functions are shown for the 2nd, 4th, 6th order, and MoM over 10 GHz to 20 GHz. The number of mode
accumulations are 6, 7, 9, 11, 15, and 27.
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Figure 7. Case III with the observation at x = −250mils ∼ 250 mils and y = −50 mils. The real parts
of Green’s functions are shown for the 2nd, 4th, 6th order, and MoM at 19.56 GHz. The number of
mode accumulations are 6, 7, 9, 11, 15, and 27.

4th order BBGFL requires 15 modes to agree with MoM. The spatial responses of Green’s functions at
the resonant frequency 19.56 GHz are plotted in Figure 7. A sharp peak is observed at x = 30 mils where
the Green’s function becomes singular. In this case, because of the resonance and close to the singular
point, the modal expansion requires more modes for convergence. Nevertheless, the 6th order BBGFL
still requires less number of modes to agree with MoM. We note that the 2nd order expansion cannot
exhibit the singular behavior of Green’s function even with 27 modes. This confirms the advantage of
low wavenumber extraction to accelerate the convergence of modal summation.

In Figures 8 and 9, we compare the mean errors between the direct modal summation (2nd order),
4th order BBGFL, and 6th order BBGFL for lossy dielectric cases II and III. The MoM results are used
as the reference. The observation points are at x = −250 mils to 250 mils and y = −50 mils. We use
2000 frequency points from 0 to 20 GHz. Both cases show that the 6th order BBGFL converges faster
than the 4th order BBGFL and much faster than the 2nd order modal expansion. For case II, it takes 9
modes for the 6th order BBGFL to achieve the error less than 1%. The faster convergence of 6th order
BBGFL becomes more apparent in case III where the observation points include the source point. To
achieve less than 1% error, the 6th order BBGFL requires 9 modes while the 4th order BBGFL requires
21 modes. In case III, the 2nd order approach cannot lower the mean error to less than 10% even with
80 mode accumulations. This shows that the higher order extraction of BBGFL developed can maintain
faster convergence even when the Green’s function is close to the singularity.

To calculate the S waveguide modes, we have used 961 rectangular waveguide modes in the
Equation (19) of the linear eigenvalue problem. This means the resonant wavenumber kΩ

α of the
rectangular waveguide with α = 1, 2, . . . , 961. This number is more than sufficient as our purpose
is to demonstrate the accuracies for the construction of S waveguide modes. In terms of the number of
resonant wavenumbers, the 6th order BBGFL only needs to cover resonant wavenumbers up to 1.2kmax

for both cases II and III, while the 4th order BBGFL require more modes from up to 2kmax. Moreover,
for case III, the 6th order BBGFL requires less than half the number of modes needed for the 4th order
BBGFL. It is evident that both 6th and 4th order BBGFL outperform the direct modal summation
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Figure 8. Mean errors for the 2nd, 4th, and 6th
order using MoM as reference for the case II.

Figure 9. Mean errors for the 2nd, 4th, and 6th
order using MoM as reference for the case III.

approach (2nd order).
In Table 3, we show the CPU time for BBGFL and MoM for the simulations of case III. The

computations were performed using Intel i5-4690@3.5 GHz with 8GB memory. For the higher order
extraction, the computations consist of three parts: finding the modes through linear eigenvalue problem
of BBGFL, three low wavenumber extractions calculations for the S waveguide, and the broadband
computation. For the 6th order BBGFL, the total CPU time is 8.6 seconds for computing 2000 frequency
Green’s function responses. For the MoM, it requires 2000 computations with the same computation
complexities for each frequency response. The total CPU time for MoM is 675.8 seconds which is much
larger than the BBGFL.

Table 3. CPU time comparison between High order extraction of BBGFL with MoM.

High order extraction (6th order) MoM
Preset (Find all modes) 2.4 sec

2000 ∗ 0.3379 = 675.8 sec
Low wavenumbers extraction 0.51 sec

Broadband computation 2000 ∗ 0.00285 = 5.7 sec
Total Time 8.6 sec

4. CONCLUSION

In this paper, we develop a higher order extraction (6th order) BBGFL method to efficiently compute
the broadband frequency responses of Green’s functions. The approach combines the modal expansion
representation of Green’s function with three low wavenumber extractions. The higher order method
shows that the modal summation converges at the rate of 1/(kS

β )6 which is a faster convergence

than the BI-RME and BBGFL methods both with 1/(kS
β )4 convergence. The higher order extraction

BBGFL demonstrates that a less number of evanescent modes are required in modal summation for
the broadband Green’s function. This also means that less number of rectangular waveguide modes are
required to construct the modal functions of the S waveguide. The 6th order extraction BBGFL requires
a similar computation time as the 4th order BBGFL but with a faster convergence. The BBGFL is
useful and has been used in formulating integral equations for more complex problems [11, 12].
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The proposed technique best uses the existing knowledge of Green’s functions of regular geometry
to fast compute Green’s functions of arbitrary shaped waveguide. The higher order extraction technique
further accelerates the convergence of broadband Green’s functions. This paper demonstrates waveguide
with TM polarization. The acceleration scheme can also be applied to BBGFL for TE polarization which
will be a subject of future study. Previously the TE problem has been solved with BBGFL using a
single low wavenumber extraction [11–13].

APPENDIX A.

There are two parts of BBGFL that require the calculations using MoM. The first part is to calculate
the rectangular waveguide Green’s function at low wavenumber kΩ

L on the boundary σ. We write gΩ
E as

a sum of free space Green’s function g0 and the response gΩ
ER in Ω.

gΩ
E

(
k, ρ̄, ρ̄

′)
= g0

(
k, ρ̄, ρ̄

′)
+ gΩ

ER

(
k, ρ̄, ρ̄

′)
(A1)

In Equation (13), we have to compute the matrix elements for the non-self and self-patch integrals. The
respective expressions are shown in (A2) and (A3).

CL
mn = g0

(
kΩ

L , ρ̄
σ
m, ρ̄

σ
n

)
+ gΩ

ER

(
kΩ

L , ρ̄
σ
m, ρ̄

σ
n

)
for m �= n (A2)

CL
mm =

1
4j

(
1 − 2j

π
ln

(
γkL

4e
Δtσm

))
+ gΩ

ER

(
kΩ

L , ρ̄
σ
m, ρ̄

σ
n

)
(A3)

where γ = 1.78107 is the Euler constant. The response Green’s function gΩ
ER can be computed using

MoM.
The second part requiring MoM is the low wavenumber extraction for waveguide S. We write gS

E
as a sum free space Green’s function and the response in S.

gS
E

(
k, ρ̄, ρ̄

′′)
= g0

(
k, ρ̄, ρ̄

′′)
+ gS

ER

(
k, ρ̄, ρ̄

′′)
(A4)

The response Green’s function gS
ER is calculated by solving the SIE in Eq. (A5). The filling of impedance

matrix is similar to the first term on the right hand sides of Eqs. (A2) and (A3). After solving the
surface unknowns, the response gS

ER can be found using Eq. (A6) below. Note that, MoM calculations
have to be performed separately for each of the 3 low wavenumbers.∫

∂S
g0

(
k, ρ̄, ρ̄

′)
n̂

′
out · ∇

′
tg

S
E

(
k, ρ̄′, ρ̄

′′)
dl

′
= −g0

(
k, ρ̄, ρ̄

′′)
(A5)

gS
ER

(
k, ρ̄, ρ̄

′′)
=

∫
∂S
g0

(
k, ρ̄, ρ̄

′)
n̂

′
out · ∇

′
tg

S
E

(
k, ρ̄′, ρ̄

′′)
dl

′
(A6)
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