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Efficient SAR Raw Data Simulation including Trajectory Deviations

and Antenna Pointing Errors

Yuhua Guo1, 2, *, Qinhuo Liu1, Bo Zhong1, and Xiaoyuan Yang3

Abstract—Synthetic aperture radar (SAR) raw signal simulation is profoundly useful for validating
SAR system design parameters, testing the effectiveness of different processing algorithms, studying the
effects of motion errors, etc. Simulating signal data in frequency domain is more efficient than in time
domain. However, the former is difficult account for the effects of both sensor trajectory deviations
and antenna pointing error for the stripmap SAR mode. In this paper, we attempt to extend the
possibility of the Fourier domain approach to account for trajectory deviations as well as antenna
beam pointing errors, which is more concerned for airborne SAR systems. After demonstrating a full
two-dimensional Fourier domain simulation, an efficient simulation approach is proposed under certain
reasonable assumptions. The proposed approach has higher computational efficiency than simulation
in time-domain and also allows for imaging an extended scene. The validity of the proposed approaches
is analyzed and discussed. Finally, numerical examples are presented to verify the effectiveness and
efficiency of the approach.

1. INTRODUCTION

Synthetic aperture radar is an active microwave remote sensing system that images, with high spatial
resolution, an area over the ground. The high resolution in range direction is achieved by transmitting
a large bandwidth pulse, whereas the azimuth direction is obtained by using a coherent processing
approach to synthesize a long azimuth aperture [1].

SAR raw signal simulation is useful and even indispensable, in sensor design, mission planning,
image understanding and interpretation, to name a few [2–15]. For airborne SAR systems, due to the
inevitable atmospheric turbulence, platform trajectory and attitude variations are unavoidably induced
into sensor parameters. SAR raw signal simulation offers a powerful tool to assess, and subsequently to
mitigate, the effect of these motion errors. Time-domain simulation [16–19] is able to exactly account
for the effects of motion errors, but for extended scenes, it is computationally inefficient. Frequency-
domain simulation, based on the fast Fourier transform (FFT), for the ideal case was presented in [20–
25]. Since the SAR system transform function (STF) depends on the azimuth and range coordinates of
the ground targets, the frequency domain approach cannot be directly used to simulate SAR raw signal
in the presence of motion errors, some improved methods have been proposed [26–31]. The approach
presented in [26] considered a two-dimensional (2-D) Fourier domain simulation that accounts for the
effects of sensor trajectory deviations. It has a high processing efficiency by using 2-D Fourier transform,
but assuming a narrow-beam-slow-deviation make it only applicable to limited SAR system. Another
paper [27] presented a simulation approach that can be applied to lager trajectory deviations than
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the one shown in [26]. However, both of the approaches shown in [26] and [27] only deal with sensor
trajectory deviations, not including antenna attitude variations. A Fourier domain simulation approach
was presented in [28] for antenna attitude variations. This approach is based on the 2-D Fourier domain
formulation of the SAR raw signal including antenna beam pointing errors, but it does not take into
account the effects of sensors trajectory deviations. A hybrid-domain approach for the spotlight SAR
mode was proposed in [29], which account for low to medium squinted angles including platform motion
errors. SAR raw data simulation in the presence of sensor trajectory deviations was given in [30]. This
approach is based on a narrow bandwidth approximation and is able to simulate higher aperture angles.
Reference [31] proposes a frequency-domain stripmap-mode raw data generator of an extended scene
taking the antenna pattern deviation into consideration for fixed and variant squinted geometries.

Generally, platform attitude variations may cause antenna boresight offset in both azimuth and
range directions, in which the azimuthal offset is more serious as far as image focusing is concerned. In
this paper, we consider both the sensor trajectory deviations and platform attitude variations, which is
of more realistic and concerned for airborne SAR systems. As for scattering characteristics, which are
dependent on frequency, polarization, and target geometry and dielectric properties, in theory, should
be considered as far as quantitative evaluation of radiometric resolution is concerned. Simulation of
scattering matrix from complex target is also of interest, which however is beyond the scope of this
paper. Readers may be referred to [32] for detailed discussion.

The rest of the paper is organized as follows. The algorithm for trajectory deviations is presented
in Section 2. In Section 3, SAR signal simulations are carried out considering the trajectory deviations
and antenna attitude variations. Simulation results are discussed in Section 4 to show the effectiveness
of the proposed approaches. Finally, conclusions are drawn to close the paper.

2. RAW DATA SIMULATION IN THE PRESENCE OF TRAJECTORY DEVIATION

For comparison of the proposed method and corresponding time domain method and also for
understanding the following presentation, we firstly summarize the main results obtained in [26] and [27].
Note that h0(x′, r′) is used to denote the SAR signal in the presence of trajectory deviations. Some
important symbols used can be referred to Table 1.

Table 1. List of symbols.

f carrier frequency r′ = ct/2
range signal sample coordinate

(c being the speed of the light)

x′ the antenna azimuth coordinate P the general illuminated target

τ chirp duration λ carrier wavelength

αt chirp rate Δf = αtτ
2π

chirp bandwidth

(x, r)
azimuth and (slant) range coordinates of

the scene generic scattering point P
γ(x, r) surface reflectivity

ϑ(x, r)
soil surface equation

in cylindrical coordinates
W (·) antenna ground

illumination pattern

R

target-to-antenna

distance in the generic antenna

position for the actual trajectory

L
effective azimuth length

of the physical antenna

Rn

target-to-antenna

distance in the generic antenna

position for nominal trajectory

Lr
effective range length

of the physical antenna

X = λr/L azimuth footprint Ωx = 4π
L

azimuth spatial bandwidth

r0 range coordinate of the scene center Ts the integration time
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2.1. Small Trajectory Deviations

Assume that the transmitted signal is a chirp pulse and the received SAR signal in the presence of
trajectory deviations, after the heterodyne step, is:

h0(x′, r′) = rect
[
r −R

cτ/2

]
W 2

(
x′ − x

X

)∫∫
dxdrγ(x, r) exp

[
−j 4π

λ
R− j

4π
λ

Δf/f
cτ

(r′ −R)2
]
. (1)

From Figure 1, the slant ranges Rn and R take the forms [26]:

Rn =
√
r2 + (x′ − x)2 = r + ΔR(x′ − x, r) (2)

R =
√

(r + δrxr(x′, x, r))2 + (x′ − x)2. (3)

From the geometry shown in Figure 2, the term δrxr(x′, x, r) is given by:

δrxr(x′, x, r) ≈ −d(x′) sin(ϑ(x, r) − β(x′)) (4)

where d(x′) = |d| and β(x′) are related to the horizontal and vertical platform displacements [26]. When
displacements are much smaller than the target slant range, the approximation in Eq. (4) is established.
Then the slant range R can be separated as follows [26, 27]:

R(x′, x, r) = Rn(x′ − x, r) + δR(x′, x, r)
= r + ΔR(x′ − x, r) + δr(x′) + ψ(x′, r) + ϕ(x′, x, r) (5)

where δr(x′) is the projection of the trajectory deviations onto the scene center, ψ(x′, r) the range
variant term, and ϕ(x′, x, r) includes the azimuth variant effect. δr(x′), ψ(x′, r) and ϕ(x′, x, r) can be
computed using Eq. (4).

As given in [26], a major step in simulation flow is to obtain the following equations, after the
range Fourier transform (FT) of the SAR raw data in Equation (1), followed by separating the factor
exp{−j(η + 4π

λ )δr(x′)} from the integral,

h0(x′, η) = exp
{
−j
(
η +

4π
λ

)
δr(x′)

}
h̄0(x′, η). (6)

The next step is to take the azimuth FT of Equation (6), i.e.,

h̄0(ξ, η) =
∫

exp[−jη̄r]
∫
G(ξ − l, η, r)F̄ (ξ − l, l, η, r)dl (7)

Figure 1. SAR system geometry in the presence of trajectory deviation [26].
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Figure 2. SAR system geometry in cross track plane [26].

with

F̄ (χ, l, η, r) =
∫∫

f̄(x, x′, η, r) exp(−jxχ) · exp(−jx′l)dxdx′ (8)

G(ξ, η, r) = rect
[ η
bcτ

]
w2

(
ξ

Ωx

)
exp
[
j
η2

4b

]
exp
[
−j
(√

η̄2 − ξ2 − η̄
)
r
]

(9)

f̄(x, x′, η, r) = γ(x, r) exp
{−jη̄[ψ(x′, r) + ϕ(x′, x, r)]

}
(10)

where G(·) is SAR STF and η = η + 4π
λ .

It shows in [26] that if the following three conditions hold simultaneously:

|ϕ(x′, x, r)| � λ

4π
(11)

|ψ(x′, r)| � f

Δf
λ

2π
(12)

|ψ(x′, r) − ψ(x, r)| � λ

4π
(13)

Then a full 2-D Fourier domain approach is attainable. A detailed discussion on the above conditions
can be referred to [26].

2.2. Moderate Trajectory Deviations

If conditions in Eqs. (11) and (12) hold, Equation (10) takes the following approximation:

f̄(x′, x, η, r) ≈ γ(x, r) exp
{
−j 4π

λ
ψ(x′, r′)

}
(14)

The SAR STF, G(·) can be separated into two different contributions as follows:

G(ξ, η, r) = GA(ξ, r)GB(ξ, η, r) (15)

where

GA(ξ, r) = ω

(
ξ

Ωx

)
exp

⎡⎣−j
⎛⎝√(4π

λ

)2

− ξ2 − 4π
λ

⎞⎠ r

⎤⎦ (16)



Progress In Electromagnetics Research B, Vol. 72, 2017 115

accounts for the azimuth frequency modulation including the focus depth effect, while

GB(ξ, η, r) = rect
[ η
bcτ

]
ω

(
ξ

Ωx

)
exp
[
j
η2

4b

]
exp
[
−j
(√

η̄2 − ξ2 − η̄
)
r
]

exp

⎡⎣j
⎛⎝√(4π

λ

)2

− ξ2 − 4π
λ

⎞⎠ r

⎤⎦ (17)

describes the range cell migration effect.
It follows that Equation (7) can be simplified as:

h̄0(ξ, η) ≈
∫

exp[−jη̄r]GB(ξ, η, r){Q(ξ, r) ⊗ξ [GA(ξ, r)Γ(ξ, r)]}dr. (18)

Once h̄0(ξ, η) is computed, then h0(x′, η) can be evaluated through Eq. (6). It follows that h(x′, r′) can
be readily obtained after range inverse FT.

3. RAW DATA SIMULATION IN THE PRESENCE OF TRAJECTORY DEVIATIONS
AND ANTENNA ATTITUDE VARIATIONS

The SAR received signal in the presence of trajectory deviations and azimuth antenna pointing error
can be expressed as follows:

h(x′, r′) =
∫∫

dxdrγ(x, r) exp
[
−j 4π

λ
R− j

4π
λ

Δf/f
cτ

(r′ −R)2
]

rect
[
r −R

cτ/2

]
W 2

(
x′ − x− δx

X

)
. (19)

Note that the azimuth envelope term, W 2(x′−x−δx
X ) in Equation (19), is different from that in

Equation (1) with the additional term that accounts for antenna pointing error:

δx = (r + δrxr(x′, x, r))δaz(x′) (20)

δaz(x′) is the antenna pointing errors in the azimuth dimension. It can be observed that the antenna
pointing error leads to gain variations, appearing as amplitude modulations. Compared with the
case of accounting for antenna attitude variations without trajectory deviations [28], the amplitude
modulation in Eq. (20) depends on the actual range coordinate estimation of the target via the term
r + δrxr(x′, x, r). Indeed, Equation (19) can be served as a signal model for the exact time-domain
simulation. Theoretically, it is used as a reference to assess the effectiveness of the proposed algorithm,
to be presented below.

Since the amplitude modulation depends on both the azimuth position of sensor and the target-to-
antenna range, simulation in 2-D Fourier domain is not feasible. Suppose the antenna pointing errors
are small compared with the beamwidth, the following approximation can be taken:

W 2

(
x′ − x− δx

X

)
≈ W 2

(
x′ − x

X

)
−W 2(1)

(
x′ − x

X

)
(r + δrxr(x′, x, r))δaz(x′)

+
1
2
W 2(2)

(
x′ − x

X

)
(r + δrxr(x′, x, r))2δ2az(x

′) (21)

where W 2(n)(·) denotes the nth order derivative of the two-way antenna radiation diagram. Accordingly,
the expression of Eq. (19) can be approximated as:

h(x′, r′) � h0(x′, r′) + h1(x′, r′) + h2(x′, r′) (22)

where h0(x′, r′) is the nominal raw data in the presence of trajectory deviations, but free of antenna
pointing errors. The latter two terms in the right side of Eq. (22) denote the effect of trajectory
deviations and azimuth antenna pointing error. It should be noted that the difference of the
approximation of the antenna pattern between Equation (21) and that made in [28] is that each
component of Eq. (21) is related to the trajectory deviations error. The decomposition of W 2(n)(·)
in [28] corresponds to δrxr(x′, x, r) = 0 in Eq. (21).



116 Guo et al.

3.1. Small Trajectory Deviations and Antenna Attitude Variations

For the approach in 2-D Fourier domain, h0(x′, r′) can be evaluated by the procedures outlined in
Section 2.1. For the terms h1(x′, r′) and h2(x′, r′), it is highly desirable to evaluate them in a form
similar to h0(x′, r′), such that fast computation in 2-D Fourier domain can be attempted. Note that
h1(·) and h2(·) include both the trajectory deviations and azimuth antenna pointing error, which couple
the azimuth and range space-variant effects of the displacement motion error. Hence, it is preferable,
even necessary, to decouple the effects of trajectory deviations and azimuth antenna pointing error. In
doing so, let us denote the range FT of h1(x′, r′) as h1(x′, η), then it is readily recognized that

h1(x′, η) = exp
{−jη̄δr(x′)} h1(x′, η). (23)

The term δaz(x′) can be taken out from the integral of h̄1(x′, η)

h1(x′, η) = δaz(x′)h̃1(x′, η) (24)

where

h̃1(x′, η) = rect
[ η
bcτ

]
exp
{
j
η2

4b

}∫∫
dxdrγ(x, r) exp

{
− jη̄(r + ΔR(x′ − x, r)

+ψ(x′, r) + ϕ(x′, x, r))
} [

−(r + δr(x′, x, r))W 2(1)

(
x′ − x

X

)]
(25)

and
b =

4π
λ

Δf/f
cτ

. (26)

From Equation (24), it can be seen that the trajectory deviations and antenna pointing errors are now
decoupled, to large degree, allowing the azimuth FT of h1(x′, η) to be expressed as

h1(ξ, η) = FT[δaz(x′)] ⊗ h̃1(ξ, η) (27)

where h̃1(ξ, η) is the azimuth FT of h1(x′, η) and is given by:

h̃1(ξ, η) =
∫
drexp[−jη̄r]

∫
dlG̃1(ξ − l, η, r)F̃1(ξ − l, l, η, r). (28)

The term F̃1(·) in the above equation is the 2-D FT of f̃1(·), where

f̃1(x, x′, η, r) = −[r + δrxr(x′, x, r)]γ(x, r) exp
{−jη̄[ψ(x′, r) + ϕ(x′, x, r)]

}
(29)

and

G̃1(x′, x, η, r) = rect
[ η
bcτ

](PRF
v

)[
W 2

(
ξ − Δξ(r)

2Ωx

)
−W 2

(
ξ

2Ωx

)]
exp
[
j
η

4b

]
× exp

[
j
η2

4b

]
exp{−j(

√
η2 − ξ2 − η2)r}. (30)

In Equation (30), note that Δξ(r) = 4πv
λrPRF [28]. It is seen that f̃1(·) depends on the trajectory deviations

and G̃1(·) involves the variations of the antenna pattern which is induced by the antenna pointing error
effect. Similarly, the 2-D FT of h2(x′, r′) can be obtained by the same manner. After the range FT of
h2(x′, r′), and separating the factor exp{−jηδr(x′)}, the azimuth FT of h2(x′, η) is

h2(ξ, η) = FTx′ [δ2az(x
′)] ⊗ h̃2(ξ, η) (31)

where
h̃2(ξ, η) =

∫
dr exp[−jηr]

∫
dlG̃2(ξ − l, η, r)F̃2(ξ − l, l, η, r). (32)

In the above equation, F̃2(·) is the 2-D FT of f̃2(·) with respect to x and x′. The difference
between f̃1(·) and f̃2(·) is that the former includes the factor [r + δrxr(x′, x, r)], whereas the latter
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Figure 3. Flow-chart of the SAR raw data simulation.

includes 1
2 [r + δrxr(x′, x, r)]2. G̃2(ξ, η, r) is similar to G̃1(ξ, η, r) except that G̃2(ξ, η, r) involves

(PRF
v )2[W 2( ξ−Δξ

Ωx
) − 2W 2( ξ−Δξ(r)

Ωx
+ W 2( ξ−2Δξ(r)

Ωx
)] instead of (PRF

v )[W 2( ξ−Δξ
Ωx

) + W 2( ξ
Ωx

)]. Then, the
spectrum of h̃1(x′, r′) and h̃2(x′, r′) can be obtained. Finally, h(x′, r′) is evaluated according to the flow
chart given in Figure 3.

Recall that f̃1(·) and f̃2(·) involve the azimuth and range space-variant effects of the displacement
motion error, computation in a full 2-D Fourier domain is not yet feasible at this point. Hence, it is
required to take an effective estimation of f̃1(·) and f̃2(·). Unlike the approximation made in Section 2.1,
now both the amplitude and phase approximations should be put together to evaluate f̃1(·) and f̃2(·)
as follows:

f̃1(x, x′, η, r) ≈ (r + δrr(x′, r))γ(x, r) exp {−jη̄ψ(x, r)} = γ1(x, r) (33)

f̃2(x, x′, η, r) ≈ 1
2
(r + δrr(x′, r))2γ(x, r) exp {−jη̄ψ(x, r)} = γ2(x, r). (34)

While the approximation for the phase in f̃1(·) and f̃2(·) requiring to meet, simultaneously, the conditions
specified in Equations (11), (12) and (13), approximation of f̃1(·) and f̃2(·) for the amplitude should
satisfy the following condition:

δrxr(x′, x, r) ≈ δrr(x′, r) (35)
which is equivalent to (see appendix):

|d(x′)| = |d(x)|. (36)
That is, the offset of trajectory deviations along the azimuth direction are equal to the trajectory
deviations with respect to the target. When conditions in Eqs. (11)–(13) and (35) are all satisfied,
h̃1(ξ, η) and h̃2(ξ, η) can be evaluated using the 2-D FT method. The procedure can be illustrated in
Figure 4.

The validity limit of the simulator should satisfy Eqs. (11)–(13), (21), (35). From the analysis in
Section 2.1, it can be deduced that conditions in Eqs. (11)–(13) lead to the approach only applicable
for narrow-beam-slow-deviation. In addition, the condition in Eq. (21) requires that

δx
X

� 1 (37)

that is
δaz(x′) � X

r + δrr(x, r)
<
X

r
=
λ

L
. (38)
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Figure 4. Flow-chart of the method discussed in Section 3.1.

3.2. Moderate Trajectory Deviations and Antenna Attitude Variations

In the previous section, the 2-D FT of SAR raw data simulation accounting for small trajectory
deviations and antenna pointing errors is considered. However, the approach requires satisfying the
condition of narrow-beam-slow-deviation, making it pertinent to some specific SAR systems. To remove
this limitation, one-dimensional azimuth Fourier domain processing followed by range time-domain
integration is used. Now that the major task is to evaluate h1(x′, r′) and h2(x′, r′). When h̃1(ξ, η) and
h̃2(ξ, η) are available, evaluation of h1(x′, r′) and h2(x′, r′) can be performed according to the procedures
in Figure 3. Hence, it only requires to evaluate h̃1(ξ, η) and h̃2(ξ, η) as described in the following. The
difference of the evaluation of h̃1(ξ, η) and h̃2(ξ, η) with respect to h̃0(ξ, η) is that in the evaluation of
f̃1(·) and f̃1(·) we have to consider both the amplitude and phase approximation. For the evaluation of
f̃1(·), let

f̃1(x, x′, η, r) ≈ (r + δrr(x′, r))γ(x, r) exp
[
−j 4π

λ
ψ(x′, r)

]
. (39)

The conditions of approximation in the above equation with respect to the phase of f̃1(·) are the same as
given in Section 2.2, i.e., Eqs. (11) and (12), while the approximation for the amplitude of f̃1(·) should
satisfy the following condition:

δrxr(x′, x, r) ≈ δrr(x′, r). (40)

Then f̃1(·) can be separated into two terms, which are related to x and x′ variables. Hence, F̃1(·) in
Eq. (28) can be separated as:

F̃1(χ, l, η, r) = Γ(χ, r)Q1(l, r) (41)
where Γ(·) is the FT of γ(·) [27] and

Q1(l, r) = FTx′

{
[r + δrr(x′, r)] exp

[
−j 4π

λ
ψ(x′, r)

]}
. (42)

Accordingly, G̃1(·) in Eq. (30) can be decomposed into the following two parts:

G̃1(ξ, η, r) = GA(ξ, r)GB1(ξ, η, r) (43)
where

GB1(ξ, η, r) = rect
[

η

2bcτ/2

](
PRF
v

)[
W 2

(
ξ − Δξ

2Ωr

)
−W 2

(
ξ

2Ωr

)]

× exp
{
j
η2

4b

}
exp{−j(

√
η2 − ξ2 − η2)r} exp

⎧⎨⎩j
⎛⎝√(4π

λ

)2

− ξ2 − 4π
λ

⎞⎠ r

⎫⎬⎭ . (44)
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Then h̃1(ξ, η) can be evaluated as follows:

h̃1(ξ, η) ≈
∫
dr exp[−jη̄r]GB1(ξ, η, r) {Q1(ξ, r) ⊗ξ [GA(ξ, r)Γ(ξ, r)]} . (45)

Similarly, after assuming

f̃2(x, x′, η, r) ≈ 1
2
(r + δrr(x′, r))2γ(x, r) exp

[
−j 4π

λ
ψ(x′, r)

]
(46)

the evaluation of h̃2(ξ, η) can be obtained by:

h̃2(ξ, η) ≈
∫
dr exp[−jη̄r]GB2(ξ, η, r) {Q2(ξ, r) ⊗ξ [GA(ξ, r)Γ(ξ, r)]} . (47)

The difference between Q1(·) and Q2(·) is that Q2(·) includes the term 1
2(r + δrr(x′, r))2 instead

of (r + δrr(x′, r)). Correspondingly, GB2(·) includes the amplitude modulation factor [W 2( ξ
2Ωr

) −
2W 2( ξ−Δξ

2Ωx
)+W 2( ξ−2Δξ

2Ωx
)]. From Eqs. (45) and (47), efficient computation of h̃1(ξ, η) and h̃2(ξ, η) is easily

attainable. Figure 5 summaries the computation flow chart of the procedures outlined above. It should
be stated that at this point that since the attitude variations follows the condition in Equation (21),
the validity limit of the simulator in domain of attitude variations is specified by Eq. (37). It follows
that

δaz(x′) � X

r + δrr(x′, r)
<
X

r
=
λ

L
. (48)

The validity limit of the simulator with respect to trajectory deviations should satisfy Eqs. (11), (12)
and (40). Note that condition in Eq. (11) implicitly requires the topography be smooth, which implies
that condition in Eq. (40) is established [26]. Then the approximations made in the proposed approach
for trajectory deviations only satisfy the conditions of Eqs. (11) and (12), which are the same as the
analysis of [27]. Together with condition in Eq. (37), the proposed approach in Section 3.2 is valid for
moderate trajectory deviations and antenna pointing error.

3.3. Computational Efficiency Comparison

Now, comparison of computational complexity between the approaches presented in Sections 3.1 and 3.2
is in order, where the computational complexity, for both approaches, is increased as the nth order

Figure 5. Flow-chart of the method discussed in Section 3.2.
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approximation of the two-way antenna radiation diagram. Denoting Nx and Nr the azimuth and range
directions (in pixels), respectively, of the raw signal, then the computational complexity of γ(x, r) is
of the order NxNr. Let N and N1 be the complex multiplications needed by the method discussed in
Section 3.1 and the one in Section 2.1 [26], then

N = (n+ 1)N1. (49)

From [27], it is known that
N1 ≈ NxNr(1 + log2NxNr). (50)

Now, let Ñ and N2 be the complex multiplications (in pixels) needed by the method discussed in
Section 3.2 and the one in Section 2.2, then

Ñ = (n+ 1)N2 (51)

where
N2 ≈ NxN

2
r . (52)

From Eqs. (49) and (51), it can be seen that the algorithm given in Section 3.1 has a higher computational
efficiency than the one discussed on Section 3.2 with the same n. Now let us compare the computational
complexity of the proposed approach of Section 3.2 with reference to the time-domain approach. It is
not difficult to verify that the computational complexity in the time domain is [27]:

N3 ≈ NxNrNtpNsa (53)

whereNtp and Nsa are the dimensions of the transmitted pulse and of the synthetic aperture. In general,
the size of n is smaller than Nsa and Ntp is of the same order as Nr [27], then the algorithm shown in
Section 3.2 turns out to have a higher computational efficiency than the exact time domain approach.
The computational time saving is

N3

N
≈ Nsa

n+ 1
. (54)

Hence, simulation of raw signal from extended scenes becomes highly feasible in the sense of saving
computation time.

4. SIMULATION RESULTS

In this section, some simulation results are presented to verify the effectiveness of the proposed
approaches. Simulation parameters were taken from the X-band airborne SAR system [26] and [27],
given in Table 2. Note that the ideal time domain simulator can be realized by making use of equation of
Eq. (19). For shorthand notation, we designate the algorithm presented in Section 3.1 as Algorithm A,
the algorithm in Section 3.2 as Algorithm B, and the time-domain approach as Algorithm C. Considering
that the raw signal from a scattering point is placed at midrange (r = 5140 m) over a perfectly absorbing
background, the horizontal and vertical components of the trajectory deviations are reported in Figure 6.
The antenna pointing error is assumed, without loss of generality, to be sinusoidal form:

δaz(x′) = δm sin
(

2π
vTb

x′ + φ0

)
(55)

where δm is the amplitude, Tb the antenna jitter period, and φ0 the initial phase, assuming δm = 1
20

λ
L ,

Tb = 1
10Ts and φ0 = 0. The simulation results of Approaches A and C are compared, where the

amplitude comparisons of the target along the azimuth and range direction are plotted in Figures 7(a)
and (b), respectively. It can be observed that the difference between the exact and simulated raw signal
is negligible. Comparison of phase in the azimuth and range directions is shown in Figure 8, where
Figure 8(a) is the azimuth cut while Figure 8(b) is the range cut. We see that the phase difference
between Algorithms A and C is very small. Thus the accuracy of Algorithm A is verified.

Now the performance of Algorithm B is assessed. Both the horizontal and vertical components of
the trajectory deviations are shown in Figure 9, and the antenna pointing error in Eq. (55) is considered.
We consider a scene consisting of a scattering point located near range (r = 4840 m), the comparison
of the amplitude and the phase between Algorithm B and C are illustrated in Figure 10 and Figure 11,
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Table 2. Simulated sensor parameters.

Nominal height 4000 m Range pixel dimension 3m
Midrange coordinate 5140 m Chirp bandwidth 45 MHz

Wavelength 3.14 cm Chirp duration 5µs
Platform velocity 100 m/s Azimuth antenna dimension 1m

Pulse Repetition Frequency 400 Hz Range antenna dimension 8 cm
Sampling Frequency 50 MHz Number of azimuth samples in the raw data 1941

Azimuth pixel dimension 25 cm Number of range samples in the raw signals 830
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Figure 6. The horizontal and vertical displacement of trajectory deviations [cm] vs. the azimuth
pixels.
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Figure 7. SAR raw data amplitude comparison between Algorithm A and C (The blue lines are the
results from the Algorithm A, and the red lines are from Algorithm C).(a) Azimuth cut. (b) Range cut.
The scattering point is located at the center of the illuminate scene.

respectively. It is seen from the figures that the difference, both the amplitude and phase, between
exact and the simulated raw signal is very small.

Next we consider the case of much larger trajectory deviations, as shown in Figure 12. By using
Algorithm B, the range and the azimuth cuts of the amplitude and phase errors with respect to
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Figure 8. SAR raw data phase comparison between Algorithm A and C. (a) Azimuth cut. (b) Range
cut. The scattering point is located at the center of the illuminated scene.
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Figure 9. The horizontal and vertical displacement of trajectory deviations [m] vs. the azimuth pixels.
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Figure 10. SAR raw data amplitude comparison between Algorithm B and C (The blue lines are the
results from Algorithm B, and the red lines are from Algorithm C). (a) Azimuth cut. (b) Range cut.
The scattering point is located in the near range at r = 4840 m.
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Figure 11. SAR raw data phase comparison between Algorithm B and C. (a) Azimuth cut. (b) Range
cut. The scattering point is located at near range at r = 4840 m.
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Figure 12. Simulated trajectory deviations relative to Figure 13 and Figure 14.

Table 3. The focus performance of the point target response of Algorithm A and C.

Algorithm r (m) Azimuth direction Range direction
IRW (dB) PSLR (dB) ISLR (dB) IRW (dB) PSLR (dB) ISLR (dB)

A
4840 0.2305 −12.7076 −9.6657 2.7188 −6.4449 −5.2897
5140 0.2305 −9.6684 −12.7126 2.8125 −11.8499 −9.4681
5440 0.2305 −12.7156 −9.6700 2.7656 −8.6651 −7.4312

C
4840 0.2305 −12.7339 −9.6783 2.7656 −6.3795 −5.2775
5140 0.2305 −12.7314 −9.6823 2.7656 −11.9681 −9.5139
5440 0.2305 −12.7396 −9.6803 2.7656 −8.7917 −7.5640

Algorithm C are plotted in Figure 13 and Figure 14, respectively. From Figure 13, the difference
in the amplitude between Algorithm B and C in the azimuth direction is obvious, and non-negligible.
Meanwhile, from Figure 14, it can be observed that the range cut is similar to Figure 11(b), whereas
the azimuth cut shows the presence of a non-negligible phase ramp. Furthermore, in order to test the
validity of condition in Eq. (48), suppose that δm = λ

L in Equation (55). Figures 15(a) and (b) show the
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Figure 13. SAR raw data amplitude comparison between Algorithm B and C. The track deviations
are depicted in Figure 12 and (55) gives the antenna pointing errors (The blue lines are for the results of
Algorithm B and the red lines are from Algorithm C). (a) Azimuth cut. (b) Range cut. The scattering
point is located in the near range at r = 4840 m.
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Figure 14. SAR raw data phase comparison between Algorithm B and C. The track deviations are
depicted in Figure 12 and (55) gives the antenna pointing. (a) Azimuth cut. (b) Range cut. The
scattering point is located in the near range at r = 4840 m.

amplitude and phase error in the azimuth direction between Algorithms B and C. It can be observed
that both the amplitude and phase error are very large. Therefore, Algorithm B is only applied to
moderate trajectory deviations and azimuth antenna pointing errors.

By comparing Algorithm A with Algorithm C, the point target analyses for far range (5440 m),
midrange (5140 m) and near range (4840 m) are shown in Table 3, including the impulse response
width (IRW), peak side-lobe ratio (PSLR) and integrated side-lobe ratio (ISLR). It is shown that the
proposed algorithms achieve high precision as that in time domain. Similar conclusion can be obtained
by comparing Algorithm B with Algorithm C, which is shown in Table 4.

To assess the computational efficiency of the proposed algorithms, in the following, raw signals from
extended scenes are analyzed. Let us consider the same system parameters shown in Table 2 except that
the simulation in the range direction has 416 samples, and azimuth direction has 972 samples. Suppose
that the height profile of the extended scene is a pyramid [26, 27]. The trajectory displacements of
the corresponding Algorithms A and B are shown in Figures 16(a) and (b), respectively. In addition,
the antenna attitude pointing error of the algorithms is given in Eq. (55). The entire simulation took
approximately 5 seconds for Algorithm A and 4 minutes for Algorithm B on a 2 GHz Intel Core i5
personal computer. Note that Algorithm C processing for the same scene took about 10 hours. The
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final images obtained by processing the simulated raw signal using Algorithm A and Algorithm B
without motion compensation (MOCO) are shown in Figures 17(a) and (b), respectively. And yet, the
corresponding trajectory deviations MOCO results of Algorithms A and B, which are shown in [33], are
displayed in Figures 7(c) and (d), respectively.
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Figure 15. SAR raw data amplitude comparison between Algorithm B and C. The track deviations
are depicted in Figure 9, (55) gives the antenna pointing errors where δm = λ

L (The blue lines are for
the results of Algorithm B and the red lines are from Algorithm C). (a) Azimuth amplitude error. (b)
Azimuth phase error. The scattering point is located in the midrange at r = 5140 m.

Table 4. The focus performance of the point target response of Algorithm B and C.

Algorithm r (m) Azimuth direction Range direction
IRW (dB) PSLR (dB) ISLR (dB) IRW (dB) PSLR (dB) ISLR (dB)

B
4840 0.2266 −5.0346 −3.9095 2.7188 −6.8351 −5.6503
5140 0.2227 −3.4025 −2.2344 2.8125 −12.3214 −9.5441
5440 0.2188 −2.4523 −1.2622 2.7656 −8.5 −7.2288

C
4840 0.2266 −5.3933 −4.2801 2.7656 −7.1473 −6.0101
5140 0.2227 −3.3611 −2.1945 2.7656 −12.8208 −9.6497
5440 0.2188 −2.4399 −1.2496 2.7656 −8.0237 −6.8483
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Figure 16. (a) Simulated trajectory deviations relative to Figures 17(a) and (c). (b) Simulated
trajectory deviations relative to Figures 17(b) and (d).
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Figure 17. Image comparison of different algorithms: (a) Algorithm A without motion compensation.
(b) Algorithm B without motion compensation. (c) Algorithm A with the compensation of trajectory
deviations. (d) Algorithm B with the compensation of trajectory deviations.

5. CONCLUSIONS

In this paper, the problem of efficient airborne SAR raw signal simulation is addressed for sensor
trajectory deviations and antenna pointing errors for stripmap SAR mode. Under the assumption that
the antenna pointing error is small compared with the beamwidth, the raw signal is separated into
three different components, where the first one describes the trajectory deviations, and the latter two
account for the effect of trajectory deviations and antenna pointing error. Consequently, an efficient
algorithm for SAR raw signal simulation in the presence of moderate trajectory deviations and antenna
pointing errors is proposed. The simulation approach to evaluation of each component relies on using
1-D azimuth Fourier domain processing followed by range time domain integration. This approach has
a high computational efficiency compared with the time domain simulator due partly to the use of FT
in the azimuth direction, while maintain high accuracy. Extensive analytical and numerical evaluations
are performed to demonstrate the effectiveness and efficiency of the proposed algorithms. It should be
worth to test the algorithms on real world data from airborne SAR system and will be reported in the
future.
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APPENDIX A.

Let us conside Eq. (36). By comparing δrxr(x′, x, r) and δrr(x, r), we can obtain

δrxr(x′, x, r) − δrr(x, r) ≈ −d(x′) sin(ϑ(x, r) − β(x′)) + d(x) sin(ϑ(x, r) − β(x))
= −d(x′)[sin(ϑ(x, r) cos β(x′)) − cosϑ(x, r) sin β(x′)]

+d(x)[sin ϑ(x, r) cos β(x) − cos ϑ(x, r) sin β(x)]
= sinϑ(x, r)[−d(x′) cos β(x′) + d(x) cos β(x)]

+ cos ϑ(x, r)[d(x′) sin β(x′) − d(x) sin β(x)]. (A1)

Since 0 < |ϑ(x, r)| < π
2 , the approximation of δrxr(x′, x, r) ≈ δrr(x, r) requires the following conditions

are satisfied:

d(x′) cos β(x′) = d(x) cos β(x) (A2)
d(x′) sin β(x′) = d(x) sin β(x). (A3)

The corresponding square on both sides of Equations (A2) and (A3) are

d2(x′) cos2 β(x′) = d2(x) cos2 β(x) (A4)
d2(x′) sin β2(x′) = d2(x) sin2 β(x). (A5)

By adding the both sides of Equations (A4) and (A5), it can get

d2(x′) = d2(x) (A6)

then Eq. (36) is obtained.

REFERENCES

1. Franceschetti, G. and G. Schirinzi, “A SAR processor based on two-dimensional FFT codes,” IEEE
Trans. Aerosp. Electron. Syst., Vol. 26, No. 2, 142–149, 1990.
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