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Enhanced Three-Dimensional Imaging for Multi-Circular
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Abstract—In multi-circular synthetic aperture radar (MCSAR) mode, resolution and sidelobes are two
important parameters to consider when representing imaging quality, as in other SAR imaging modes.
In this paper, three-dimensional (3-D) resolution and cone-shaped sidelobes of MCSAR are analyzed for
a point target in the scene center under the Nyquist sampling criterion. The results of the analysis show
that resolution can be improved, and cone-shaped sidelobes can be suppressed by increasing the system
bandwidth and the length of synthetic aperture in the elevation direction. But this will make the system
of acquiring data more difficult. It turns out that some digital signal processing techniques can enhance
3-D imaging quality of MCSAR. In this paper, a simple method based on spectrum extrapolation and
interferometric phase masking is proposed to improve 3-D resolution and suppress cone-shaped sidelobes
of MCSAR. Experimental results regarding a tank model in a microwave anechoic chamber demonstrate
that this method is effective.

1. INTRODUCTION

Multi-circular synthetic aperture radar (MCSAR) is an extension of circular synthetic aperture radar
(CSAR) [1–3]. MCSAR is an imaging mode where radar illuminates the target over multi-circular
tracks [4–6]. It has the potential to produce high quality three-dimensional (3-D) images. As in other
SAR imaging modes, resolution and sidelobes are two important parameters for representing imaging
quality. In MCSAR mode, 3-D resolution and cone-shaped sidelobes are considered. The 3-D resolution
can be analyzed from point spread function (PSF) and spectrum [7]. The cone-shaped sidelobes are
always considered due to non-uniform sampling and undersampling in the elevation direction [7, 8].
In fact, even though the elevation acquisition strictly satisfies the Nyquist sampling criterion, cone-
shaped sidelobes still exist. In this paper, we analyze resolution and cone-shaped sidelobes from the
3-D spectrum under the Nyquist sampling criterion. The results of the analysis on 3-D resolution and
cone-shaped sidelobes of MCSAR show that resolution can be improved and cone-shaped sidelobes can
be suppressed by increasing the system bandwidth and the length of synthetic aperture in the elevation
direction. But this will make the system of acquiring data more difficult.

However, some digital signal processing techniques can be used to improve 3-D resolution and
suppress cone-shaped sidelobes of MCSAR. Compressive sensing (CS) is a good way to reconstruct
3-D targets [9, 10]. It not only has the ability of super-resolution imaging, but also can suppress
cone-shaped sidelobes by choosing strong scatterers of targets. The disadvantages of this method
are that it is time-consuming and memory-consuming. CS used in the height reconstruction is also
considered [7, 8], but it is still time-consuming. Besides, the whole aperture is divided into several
sub-apertures, and the approximation is required in each sub-aperture reconstruction. In order to
obtain 3-D reconstruction effectively, some classic processing techniques can be considered. As we
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know, the spectrum extrapolation is a simple and effective method to increase the system bandwidth
in CSAR mode [11]; the interferometric phase masking method in all-aperture is introduced to obtain
the height of the target by suppressing cone-shaped sidelobes in two-pass CSAR mode [12]. Both of
these methods can be extended to MCSAR mode. In this paper, we combine the spectrum extrapolation
with the interferometric phase masking method to obtain high quality 3-D images. Experimental results
regarding a tank model in a microwave anechoic chamber demonstrate that this method is effective.

The rest of the paper is organized as follows. In Section 2, the 3-D resolution analytical expressions
are given, and the characteristics of cone-shaped sidelobes are analyzed. In Section 3, an enhanced
imaging method based on spectrum extrapolation and interferometric phase masking is proposed.
Experimental results are shown in Section 4. Finally, Section 5 concludes the paper.

2. THREE-DIMENSIONAL RESOLUTION AND CONE-SHAPED SIDELOBES OF
MCSAR

The MCSAR imaging geometry is shown in Fig. 1. Radar illuminates the target area over multi-circular
tracks. The distance between radar and the center of the target area is always a constant Rc. Assume
that there are M tracks, the depression angle is θ and the depression angle sample spacing is Δθ. Then
the slant depression angle of the i-th track can be expressed as θi = θ1 + (i− 1)Δθ, for i = 1, 2, . . . ,M .
Furthermore, denote the azimuthal angle of radar as φ. Then the 3-D coordinates of the radar are
(x, y, z) = (Rc cos θ cos φ,Rc cos θ sinφ,Rc sin θ).

X

Figure 1. The MCSAR imaging geometry.

Suppose that there are N targets, the n-th target is located at (xn, yn, zn), and its ideal reflectivity
is σn. The echoed signals received by radar from these targets can be written as

s(k, φ, θ) =
∑
n

σn exp
{
−j2k

√
(xn − x)2 + (yn − y)2 + (zn − z)2

}
(1)

where k = 2π/λ and λ is the wavelength of transmitted signals.

2.1. Three-dimensional Resolution of MCSAR

From Eq. (1), the phase of the echoed signal about the n-th target is

phasen = −2k
√

(xn − x)2 + (yn − y)2 + (zn − z)2 (2)
The spatial frequency in the kx, ky, kz directions of the n-th target can be respectively derived as

the derivative of the phase with respect to x, y, z [2],⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

kx =
∂(phasen)

∂x
= 2k

(xn − Rc cos θ cos φ)
Rn

ky =
∂(phasen)

∂y
= 2k

(yn − Rc cos θ sinφ)
Rn

kz =
∂(phasen)

∂z
= 2k

(zn − Rc sin θ)
Rn

(3)



Progress In Electromagnetics Research M, Vol. 53, 2017 79

where Rn =
√

(xn − Rc cos θ cos φ)2 + (yn − Rc cos θ sin φ)2 + (zn − Rc sin θ)2.
We consider the spatial spectrum of the point target located at the origin (xn = yn = zn = 0).

Suppose that there are spatial spectrum overlaps in the kz direction between two adjacent tracks. This
means 2kmin sin θi+1 < 2kmax sin θi (kmin = min {k}, kmax = max {k} and i = 1, 2, . . . ,M − 1). The 3-D
spatial spectrum is shown in Fig. 2(a). The different colors in this figure represent the spatial spectrum
of different tracks. The projection of the 3-D spatial spectrum onto kxky plane is shown in Fig. 2(b).
The projection of the 3-D spatial spectrum onto the kxkz plane is shown in Fig. 2(c).

(a) (b)

(c)

Figure 2. (a) 3-D spatial spectrum. (b) The projection of the 3-D spatial spectrum onto kxky plane.
(c) The projection of the 3-D spatial spectrum onto kxkz plane and onto the line with slope cot θav.

In Fig. 2, it is easy to obtain the width of the spatial spectrum in kx, ky, kz directions. Thus
analytical expressions of resolution in the x, y, z directions can be written as⎧⎪⎨

⎪⎩
Δx = Δy ≈ π

2kmax cos θ1

Δz ≈ π

kmax sin θM − kmin sin θ1

(4)

From Eq. (4), the resolution in the z direction can be improved by increasing the system bandwidth
BW (where BW = kmax − kmin). The resolution in the x, y directions can also be improved slightly.
In [4], the increased system bandwidth is also helpful to reduce the peak sidelobe ratio (PSLR) in the
x, y directions.

2.2. Cone-shaped Sidelobes

With the 3-D spatial spectrum shown in Fig. 2(a), the PSF can be obtained by its inverse Fourier
transform, which is shown in Fig. 3(a). The xz profile (y = 0) of the PSF is shown in Fig. 3(b). When
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(a) (b)

(c) (d)

Figure 3. (a) 3-D PSF (the number of tracks is M , and the system bandwidth is BW ). (b) The xz
profile (y = 0) (the number of tracks is M , and the system bandwidth is BW ). (c) The xz profile (y = 0)
(the number of tracks is 2M , and the system bandwidth is BW ). (d) The xz profile (y = 0) (the number
of tracks is 4M , and the system bandwidth is 2BW ).

the number of tracks is increased to 2M , and the system bandwidth is still BW, the xz profile (y = 0)
is shown in Fig. 3(c). When the number of tracks is increased to 4M , and the system bandwidth is
increased to 2BW , the xz profile (y = 0) is shown in Fig. 3(d). In all these figures, the cone-shaped
sidelobes can be seen as the defocused imaging results of the point target located at the origin.

In Fig. 3(c), two solid lines in red are drawn along cone-shaped sidelobes. The slope of one line
with length L is about cot θav (θav ≈ (θ1 + θM )/2) and the slope of the other line with length W is
about − tan θav. The lengths L and W are defined as the length and the width of cone-shaped sidelobes
respectively.

From Figs. 3(b)–(d), it is obvious that the length of the cone-shaped sidelobes is shorter when the
number of tracks is bigger, and the width of the cone-shaped sidelobes is narrower when the system
bandwidth is wider. These characteristics of cone-shaped sidelobes can be explained by considering the
perspective of the spatial spectrum.

In order to illustrate the characteristic of the length of cone-shaped sidelobes, the 3-D spatial
spectrum is projected onto the line with slope cot θav which is on the kxkz plane (ky = 0). This is
shown in Fig. 2(c). In this figure, the slope of the baselines (φ = 0◦) is also approximately equal to

−2kmax sin θ1 + 2kmax sin θM

2kmax cos θ1 − 2kmax cos θM
≈ cot θav (5)

Therefore, the width of the projected spectrum in pink is approximately equal to the spectrum



Progress In Electromagnetics Research M, Vol. 53, 2017 81

width Δkθ in the direction of the baselines and it can be computed as
Δkθ ≈

√
(2kmax cos θ1 − 2kmax cos θM )2 + (2kmax sin θ1 − 2kmax sin θM )2

≈ 2kmax sin
(

M − 1
2

Δθ

)
(6)

In addition, the width of the projected spectrum in purple is so narrow that it can be ignored and the
width of the projected spectrum in green is approximately equal to the system bandwidth. On the
other hand, the amplitudes of the projected spectrum in pink and in green decrease linearly, while the
amplitude of the projected spectrum in black in the middle part is a constant.

As a result, the spectrum amplitudes on the line with slope cot θav can be shown in Fig. 4. On the
left side of Fig. 4, it is approximately trapezoidal shaped. On the right side of Fig. 4, the trapezoidal-
shaped spectrum can be seen as the convolution of two rectangular-shaped spectra. According to the
property of Fourier transform, the total spatial response of cone-shaped sidelobes in the direction of the
line with slope cot θav can be seen to be the product of two sinc function responses.

0 0 0X
kθ kθ kθΔkθ

Δkθ

Figure 4. Spectrum amplitude on the line with the slope of cot θav and its decomposition.

Because the spectrum width in the direction of the baselines is generally narrower than the system
bandwidth, the sinc function corresponding to the rectangular-shaped spectrum with narrow width Δkθ

determines the amplitude of the total response. Thus the length of the cone-shaped sidelobes can be
approximately defined as

L ≈ 2π
Δkθ

≈ π

kmax sin
(

M − 1
2

Δθ

) (7)

From Eq. (7), the length of cone-shaped sidelobes can be reduced by increasing the number of
circular tracks under the Nyquist sampling criterion.

Similarly, when the 3-D spatial spectrum is projected onto the line with slope − tan θav which is
on the kxkz plane (ky = 0), the width of the cone-shaped sidelobes can be approximately defined as

W ≈ 2π
BW

=
2π

kmax − kmin
(8)

From Eq. (8), the width of cone-shaped sidelobes can be reduced by increasing the system
bandwidth BW.

The above method can also be used when analyzing the length of sidelobes in the x, y, z directions.
This results in reducing the length of sidelobes in these directions by increasing the number of circular
tracks. As expected, the length of sidelobes in z direction is changing, which is obvious from Figs. 3(b)–
(d).

Under the Nyquist sampling criterion, increasing the number of circular tracks is the same as
increasing the length of synthetic aperture in the elevation direction. Although the cone-shaped sidelobes
can be suppressed by increasing the system bandwidth and the length of synthetic aperture in the
elevation direction, it will make acquiring data more difficult.

3. ENHANCED 3-D IMAGING BASED ON SPECTRUM EXTRAPOLATION AND
INTERFEROMETRIC PHASE MASKING

In this section, an enhanced 3-D imaging method based on spectrum extrapolation and interferometric
phase masking is proposed to improve 3-D imaging quality.
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3.1. The Principle of Spectrum Extrapolation

The spectrum extrapolation based on an autoregressive (AR) model is considered here. An AR model
can make use of the correlation of the observed spectrum data. It is useful in super-resolution imaging
of targets which are made up of strong scatterers.

Let {x(n), n = 1, 2, . . . , N} be the one-dimensional spectrum data. The forward prediction of x(n)
based on the p-th order AR model can be defined by [13, 14]

x̂p
f (n) = −

p∑
i=1

aix(n − i) (9)

and the backward prediction of x(n) can be defined by

x̂p
b(n − p) = −

p∑
i=1

a∗i x(n − p + i) (10)

where ai denotes the i-th coefficient in the model, and n = p + 1, p + 2, . . . , N .
Then the forward and backward prediction error can be expressed as

{
ep
f (n) = x(n) − x̂p

f (n)

ep
b(n) = x(n − p) − x̂p

b(n − p)
(11)

By the minimization of forward and backward prediction error, that is {min
N∑

n=p+1
(|ep

f (n)|2+|ep
b(n)|2)

/2}, the coefficients ai can be obtained. With these coefficients, the width of the spectrum can be
increased through Eqs. (9) and (10). The process of spectrum extrapolation is shown in Fig. 5.

left middle right

Figure 5. The process of spectrum extrapolation.

3.2. The Principle of Interferometric Phase Masking

The height reconstruction by interferometric phase masking is deduced in [12]. In this section, we
simplify the derivation process. The imaging geometry of two adjacent circular tracks is shown in
Fig. 6. Suppose that a point target is located at (xn, yn, zn), the azimuthal angle of radar is φ1 the
first depression angle is θ1 and the second one is θ2. Then the difference between two depression angles
is Δθ (Δθ = θ2 − θ1).

We consider the two-dimensional (2-D) imaging at the same imaging plane for echoed signals from
two adjacent tracks. Choose zplan to be the height of imaging plane. When radar is in the first track,
the 2-D imaging result on the plane of height zplan is denoted by s1 and the imaging positions of the
point target can be obtained by{

xn1 ≈ xn + (zn − zplan) tan θ1 cos φ1

yn1 ≈ yn + (zn − zplan) tan θ1 sinφ1
(12)

When radar is in the second track, the 2-D imaging result on the plane of height zplan is denoted
by s2 and the imaging positions of the point target can be obtained by

{
xn2 ≈ xn + (zn − zplan) tan θ2 cos φ1

yn2 ≈ yn + (zn − zplan) tan θ2 sinφ1
(13)
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(x , y , z )n n n

(x, y, z     )plan

(x   , y   , z     )n2 n2 plan

Figure 6. The imaging geometry of two adjacent circular tracks.

Both (xn1, yn1) and (xn2, yn2) fall in the same pixel unit (x, y) to ensure that s1 and s2 are
coherent. So the phase difference between s1 and s2 in the pixel unit (x, y) is

Δφ ≈ −4π
λ

√
(xn1 − xn2)2 + (yn1 − yn2)2 cos θav

= −4π
λ

(zn − zplan)(tan θ2 − tan θ1) cos θav ≈ − 4πΔθ

λ cos θav
(zn − zplan) (14)

where θav ≈ (θ1 + θ2)/2.
From Eq. (14), when the height of imaging plane zplan is equal to the real height zn, the phase

difference is approximately equal to zero. Otherwise, it is not equal to zero. Therefore, the focused 2-D
image can be achieved by discarding the pixel units where the phase difference is not approximately
equal to zero. The processing is as follows.

At first, the phase difference can be obtained by

Δφ = angle(s1 · conj(s2)) (15)

where angle(•) represents the interferometric phase between s1 and s2.
Then the mask using interferometric phase can be designed as

mask =
{

1, Δφ ≈ 0
0, otherwise

(16)

Finally, if s1 or s2 is multiplied by the mask, then a new image is obtained, where targets are
focused because they are with the real height.

For two coherent 3-D images, take them as multi-slice 2-D images in the height direction, and
do the interferometric phase masking at the same slice. Form a 3-D mask by determining whether
interferometric phase is approximately zero at each slice. Then multiply one of the two images by
the mask to obtain a focused 3-D image. In MCSAR mode, this method is very helpful to suppress
cone-shaped sidelobes which are defocused imaging results of targets.

3.3. An Enhanced 3-D Imaging Method Based on Spectrum Extrapolation and
Interferometric Phase Masking

Combining the spectrum extrapolation with interferometric phase masking, an enhanced imaging
method is proposed to improve 3-D resolution and suppress cone-shaped sidelobes. The detailed steps
of the method are as follows.
(1) Implement pulse compression, spectrum extrapolation based on an AR model and 3-D imaging using

a back projection (BP) algorithm, for echoed signals received from each circular track. Denote the
3-D image of the i-th track as Si (i = 1, 2, . . . ,M).

(2) Calculate the interferometric phase Δφj (j = 1, 2, . . . ,M − 1) for two 3-D images Sj and Sj+1 by
Δφj = angle(Sj · conj(Sj+1)). If Δφj is equal to zero, then maskj is equal to 1, otherwise, maskj

is equal to 0. Multiply the first 3-D image Sj by the maskj to obtain a new focused 3-D image
Sj new, and the calculation expression is Sj new = Sj · maskj.
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(3) Coherently add all the new focused 3-D images Sj new (j = 1, 2, . . . ,M − 1) to achieve the final

MCSAR image S, and the calculation expression is S =
M−1∑
j=1

Sj new.

i = 1

Pulse compression

Spectrum extrapolation

Generate a 3-D image Si for the i-th track

i = i + 1

i < =M?

j = 1

Calculate the interferometric phase  j by

 j  =  angle(Sj conj(Sj+1))

Form the 3-D maskj by

Sj_new = Sj maskj

j < M?

Generate the final 3-D image S by

j = j + 1

 Echoed signals from M tracks

Obtain echoed signals from the i-th track

(i = 1, 2,…, M)

1

0

j

j
mask

otherwise

M

j

S S

Y

N

Y

N

Step1

Step2

Step3

Δφ
Δφ .

{ Δφ

.

Σ

Figure 7. The flow chart of the enhanced 3-D imaging method.
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The flow chart of the enhanced 3-D imaging method is shown in Fig. 7. It is obvious that steps (1)
and (2) can be processed in parallel for any two-circular tracks data, which is helpful to save computing
time.

4. EXPERIMENT RESULTS

Experiments in MCSAR imaging model were performed in an anechoic chamber for a metal tank model,
which is shown in Fig. 8. The geometry of data acquisition is shown in Fig. 1 and the parameters of
the radar system are shown in Table 1. There are a total of 20 circular tracks.

Table 1. Parameters of radar system.

Carrier frequency 15 GHz
Bandwidth 6 GHz

Radius of radar 8.722 m
Depression angles interval [8, 11.8] degree

Depression angle sample spacing 0.2 degree

Figure 8. Tank model in an anechoic chamber.

The phase history data of the tank model are shown in Fig. 9(a). When the bandwidth of the
observed data is extrapolated from 6 GHz to 10 GHz, the result is shown in Fig. 9(b). Obviously, the
spectrum extrapolation is smooth.

(a) (b)

Figure 9. Phase history data (a) without spectrum extrapolation; (b) with spectrum extrapolation.

The BP algorithm is used in 3-D imaging, and four different imaging cases are considered. (1) 3-
D imaging without spectrum extrapolation and without interferometric phase masking, for the echoed
signals received from the former 10 tracks; (2) 3-D imaging without spectrum extrapolation and without
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(a) (b)

(c) (d)

Figure 10. 3-D imaging (a) without spectrum extrapolation and without interferometric phase masking
(the number of tracks M = 10); (b) without spectrum extrapolation and without interferometric
phase masking (M = 20); (c) without spectrum extrapolation but with interferometric phase masking
(M = 20); (d) with spectrum extrapolation and with interferometric phase masking (M = 20).

interferometric phase masking, for the echoed signals received from all 20 tracks; (3) 3-D imaging without
spectrum extrapolation but with interferometric phase masking, for the echoed signals received from
all 20 tracks; (4) 3-D imaging with spectrum extrapolation and with interferometric phase masking, for
the echoed signals received from all 20 tracks. These four imaging results are shown in Figs. 10(a)–(d),
respectively.

Comparing Fig. 10(a) with (b), the cone-shaped sidelobes and other sidelobes in the x, y, z
directions are suppressed because the number of circular tracks is increased from 10 to 20. In Fig. 10(b),
the cannon, the body and the wheels of the tank model are clearer than in Fig. 10(a), but they are not
well resolved. The cone-shaped sidelobes and other sidelobes still exist.

Comparing Fig. 10(b) with (c), the cone-shaped sidelobes are suppressed very well due to the
interferometric phase masking. In Fig. 10(c), the cannon, the body, the wheels and the upper part,
including the hemisphere and the cylinder of the tank model, coincide with the theoretical imaging
results. Even the gaps between the wheels are clearly visible.

Comparing Fig. 10(c) with (d), the resolution in z direction is improved due to the spectrum
extrapolation based on the AR model. In Fig. 10(d), the cannon, the body and the wheels of the tank
model are well resolved. The sidelobes between the hemisphere and the cylinder are reduced because
the increased spectrum can also suppress PSLR in the x, y directions. The weak edges of the tank
back appear as a result of the reduced energy of sidelobes. To be brief, 3-D imaging with spectrum
extrapolation and interferometric phase masking can improve the quality of MCSAR imaging effectively.

5. CONCLUSIONS

In this paper, 3-D resolution and cone-shaped sidelobes are analyzed from the spectrum. The results
of the analysis show that the imaging quality can be improved by increasing the system bandwidth
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and the length of synthetic aperture in the elevation direction. However, it will make the system of
acquiring data more difficult. Therefore, an enhanced imaging method based on spectrum extrapolation
and interferometric phase masking is presented, which can mainly improve the height resolution and
suppress cone-shaped sidelobes. Experimental results focused on the tank model show that this method
is effective.
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