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Analogy between Circular Core-Cladding and Impedance
Waveguides and Their Membrane Functions

Vitalii I. Shcherbinin1, *, Gennadiy I. Zaginaylov1, 2, and Viktor I. Tkachenko1, 2

Abstract—One-side boundary conditions on the field inside core region are obtained for core-cladding
waveguide with anisotropic cladding. The boundary conditions involve two functions acting as
components of anisotropic surface impedance for cladding material. These functions are determined in
relation to desired values for step-index waveguide and dielectric-lined waveguide with either perfectly
or finitely conducting walls. With resulting surface impedance, the perfect analogy between core-
cladding and impedance waveguide is achieved. Using this analogy, independent eigenvalue problems
are obtained for membrane functions of HE and EH waves of core-cladding waveguide. From this result
some conclusions about electromagnetic properties of HE and EH waves are drawn.

1. INTRODUCTION

Dielectric waveguides [1] are widely used in various branches of modern science and technology. Among
other applications, dielectric-loaded waveguides have found applications in gyro-devices including
gyrotron [2–4], gyro-TWT [5–13], CARM [14] and others [15–29]. The gyro-devices usually employ
RF structures with small structural nonuniformities. Such structures support electromagnetic modes,
which have much the same transverse field pattern as eigenmodes of conventional uniform waveguide.
For this reason, solutions to eigenvalue problem for uniform waveguide form the basis of gyrotron theory.
They are also the subject of our investigation.

Most of the above-listed studies devoted to the dielectric-loaded gyro-devices deal with eigenfields
lacking variation along certain direction. For the most widespread guiding structure of circular cross-
section such eigenfields correspond to axially-symmetric modes. These modes are pure TE and TM
modes. Except for them, the eigenmodes of dielectric-loaded circular waveguide are hybrid HE and EH
modes.

It is well known that the field of TE or TM wave is expressed in terms of a single scalar function
called membrane function. The membrane functions for TE and TM waves are uncoupled and satisfy
independent eigenvalue problems. Contrary to this, the field of any hybrid wave of dielectric-loaded
waveguide is expressed in terms of two scalar functions coupled by either or both the continuity and the
boundary conditions on the field. Therefore, usually it is impossible to deal with each type of hybrid
waves separately. This makes the waveguide problem for hybrid waves more complicated as compared
to that for TE or TM waves. As a result, HE and EH waves are governed by common dispersion
equation. This may sometimes lead to confusion with mode designation for solutions of dispersion
equation, especially when their spectrum is rather dense.

A simple way to avoid this problem for a circular waveguide with anisotropic impedance surface was
proposed in [30]. It was shown that the field of any hybrid wave in such guide can be expressed in terms
of a single membrane function. There are two membrane functions, each relating to either HE or EH
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waves and satisfying independent eigenvalue problem. In this connection, hybrid waves of impedance
guide are somewhat similar to pure TE and TM waves. Solutions to eigenvalue problems for HE or
EH waves are independent dispersion equations. Compared to the common dispersion equation (see,
for example, [31–33]), these equations are individually much simpler in form, have sparser spectrum of
solutions and do not cause any confusion with mode designation. Besides, it was proven that HE and EH
waves of impedance waveguide always behave like TE and TM waves, respectively. To our knowledge,
there is no other proof of this fact to this day. The above-discussed results provide additional insights
into electromagnetic properties of hybrid waves of impedance waveguide. Moreover, separate treatment
for HE and EH hybrid waves can be used to alleviate more general and more complicated problem of
beam-wave interaction in impedance waveguide, in particular, for guides used in gyro-devices.

Much the same results can be obtained for several core-cladding dielectric waveguides. To
show this in our study, we have reduced the required continuity and boundary conditions for core-
cladding waveguide to one-side boundary conditions on the field inside the core region. The resultant
boundary conditions were found to have the same form as for circular waveguide with anisotropic
surface impedance. We have determined the components of effective surface impedance as functions
of cladding parameters and desired eigenfrequency for step-index waveguide and perfectly conducting
(PEC) waveguide with dielectric-lined surface. In the general case these components appear to be
mode-dependent. This differentiates our results from those presented in [34], which are mainly related
to several special cases of frequency-dependent surface impedance. Besides, our study differs from [34]
in that it concerns anisotropic cladding material [35–37].

2. CIRCULAR DIELECTRIC-LOADED WAVEGUIDE WITH ANISOTROPIC
IMPEDANCE SURFACE

As a preliminary, we briefly review the main results [30] for a circular uniform waveguide bounded by
anisotropic impedance surface and filled completely with homogeneous isotropic dielectric. The aim is
to find solution {E,H} = A{e(r, φ),h(r, φ)} exp(−iωt+ ikzz) to the wave equations(

Δ⊥ + k2
⊥
)
hz = 0,

(
Δ⊥ + k2

⊥
)
ez = 0 (1)

with the following boundary conditions:

eφ
hz

∣∣∣∣
r=R

= ηφ,
hφ

ez

∣∣∣∣
r=R

= −η−1
z , (2)

where ω and A are the wave frequency and amplitude, respectively; kz and k⊥ =
√
εk2 − k2

z are the axial
and the transverse wavenumbers, respectively; k is the wave vector in free space; R is the waveguide
radius; ε is the complex permittivity of dielectric; ηz and ηφ are the arbitrary wall impedances in axial
and azimuth directions, respectively.

We seek solution to Eqs. (1) and (2) in the following form:

hz = hz (r) cos (lφ) , ez = ez (r) sin (lφ) , (3)

where l is the azimuth wavenumber.
According to Maxwell’s equations, the transverse components of the field are expressed in terms of

two scalar functions hz and ez, as

e⊥ =
i

k2
⊥

[k (∇⊥hz × z) + kz∇⊥ez] , h⊥ =
i

k2
⊥

[kz∇⊥hz − εk (∇⊥ez × z)] , (4)

where ∇⊥ is the transverse derivative operator.
In view of Eqs. (3) and (4), the boundary conditions in Eq. (2) can be written in the form:

dhz

dr
− ik2

⊥ηφ

k
hz − lkz

kR
ez

∣∣∣∣
r=R

= 0,
dez
dr

− ik2
⊥η

−1
z

εk
ez − lkz

εkR
hz

∣∣∣∣
r=R

= 0. (5)

The boundary conditions in Eq. (5) relate the axial field components hz and ez, which are both
non-zero for hybrid waves. This property differentiates the field of a hybrid wave from that of pure TE
(ez = 0) or pure TM (hz = 0) waves. As a result, the waveguide problem for hybrid waves is more
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complicated than that for TE or TM waves. For circular impedance waveguide, however, this problem
can be greatly simplified.

In this case, solutions hz(r) and ez(r) to Equation (1) are both equal to the single membrane
function ψ(r) = Jl(k⊥r) within a constant factor, where Jl(x) is the Bessel function. Therefore, one
can write hz(r) and ez(r) as

hz =
√
εψ (r) , ez = Pψ (r) , (6)

where P = P (ω, kz) is the unknown quantity called hybridization parameter. In what follows notation
(ω, kz) is used to emphasize that the quantity depends on both the wave frequency ω and the axial
wavenumber kz, and therefore is mode-dependent.

Using Eq. (6), one can also express the transverse components in Eq. (4) of the field in terms of
membrane function ψ(r). In particular,

eφ = − i

k2
⊥

[√
εk
dψ

dr
− kzP

l

r
ψ

]
cos (lφ) , hφ =

i
√
ε

k2
⊥

[√
εkP

dψ

dr
− kz

l

r
ψ

]
sin (lφ) . (7)

Rewriting the boundary conditions in Eq. (5) in terms of Eq. (6), we obtain Robin boundary
condition [38] on ψ(r): [

dψ

dr
+ λ (ω, kz)ψ

]
r=R

= 0, (8)

where λ(ω, kz) = (a+ bP ) = (c+ bP−1), a = −ik2
⊥ηφ

/
k, c = −ik2

⊥
/
(εkηz), b = −lkz/(

√
εkR),

hybridization parameter P equals P1 for HE waves or P2 for EH waves [34],

P1,2 = α
(
1 ∓

√
1 + α−2

)
(9)

α = (c− a)/(2b), P1P2 = −1. Thus, we have two independent eigenvalue problems for different
membrane functions ψ(r), one for HE waves (P = P1) and another for EH waves (P = P2).

It is evident from Eq. (9) that the hybridization parameter P must be zero for pure TE waves
(ez/hz = 0) and infinity for pure TM waves (hz/ez = 0). Therefore, hybrid waves satisfying |P | < 1 or
|P | > 1 will be called TE-like or TM-like waves, respectively.

It can be seen from Eq. (6) that the hybridization parameter P for each hybrid wave is the function
of a single variable α, which combines the wave characteristics (ω, kz, l) and the waveguide parameters
(R, ε, ηz and ηφ). What is more remarkable, it does not depend explicitly on the membrane function
ψ(r). From Eq. (9) it follows that |P1| ≤ 1 and |P2| ≥ 1 for arbitrary value of α. This proves that
HE and EH waves of impedance waveguide are generally TE-like and TM-like waves, respectively. The
waves transform to pure TE and TM as α tends to infinity. This occurs in each of the following limiting
cases: kz → 0, ηz → 0 and ηφ → ∞.

Substitution of ψ(r) = Jl(k⊥r) into Eq. (8) gives the dispersion equation for either HE or EH waves

k⊥J ′
l (k⊥R) + λ (ω, kz)Jl (k⊥R) = 0, (10)

depending on value (P1 or P2) of hybridization parameter.
Alternatively [39], this equation may be deduced from the general (common) dispersion equation,

which yields the axial wavenumbers kz(ω) for hybrid modes of both HE and EH types. Compared to
the general dispersion equation, Eq. (10) has much simpler form and sparser spectrum of solutions.

Once kz = kzs(ω) has been determined for HEl,s (or EHl,s) mode of impedance waveguide,
it becomes a straightforward matter to find the transverse wavenumber k⊥s(ω), the hybridization
parameter P (ω, kzs), the membrane function ψs(r), and finally the field {es,hs} of this mode. In
the case of mode-independent impedance components ηz = ηz(ω) and ηφ = ηφ(ω), such modes of both
types form an infinite orthogonal set [34, 40, 41], so that

A2
s

R∫
0

rdr

2π∫
0

dφ [es (r, φ) × hn (r, φ)]z = Nsδsn, (11)

where As and Ns are the amplitude and the normalization factor for the field of s-th mode, respectively,
δsn is the Kronecker delta.
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However, such is not always the case for impedance guides. An illustrative example is the circular
PEC waveguide with axially corrugated wall [34, 42, 43]. When the number of periodic corrugations N
is large enough (N > 2l), field inside the corrugations can be approximated by that of a single axially
symmetric TE mode. By averaging the ratios between φ and z components of this field over the period
p = 2πR/N of corrugations, one obtains components of the effective surface impedance

ηφ (ω, kz) = −iw
p

k

k⊥I
tan (k⊥Id) , ηz = 0 (12)

for |k⊥IR| 	 1. Here k⊥I =
√
εIk2 − k2

z ; εI is the permittivity inside the corrugations; w and d are the
corrugation width and depth, respectively.

Obviously, such wall impedance is mode-dependent. In this case, the eigenmodes of impedance
waveguide are non-orthogonal. Each of these modes with axial wavenumber kz = kzs(ω) is orthogonal
to modes of another impedance waveguide, having ηφ(ω) = ηφ(ω, kzs(ω)) and ηz = 0. Setting
ηφ = ηφ(ω, kzs(ω)), we imply in fact that the wave inside the waveguide is matched to the single mode
of bounded medium. Such single-mode approximation is the distinct feature of the surface-impedance
approach and is often the only means for evaluating the effective surface impedance. It is definitely
true for uniform impedance waveguide and may serve as a first approximation for RF structures of
gyro-devices [44] with small axial nonuniformities. Note also that in the case of gyrotron, |k2

z | 
 |εIk2|
for operating and main competing modes. Therefore, for these modes kz in Eq. (12) is sometimes
omitted [45] without significant loss in accuracy.

3. CORE-CLADDING WAVEGUIDE

Consider now the case (Fig. 1), when the core region with the permittivity ε and the radius R is
embedded in cladding medium. For generality (see also [35–37]), the cladding medium is assumed
to be uniaxial anisotropic and described by the permittivity tensor ¯̄εI with non-zero components
εrrI = εφφI = εI and εzzI = δIεI . In what follows the subscript “I” denotes quantities related to
the cladding region and {EI ,HI} = AI{eI(r, φ),hI(r, φ)} exp(−iωt+ ikzz).

{ },

I

I I

ε

E H

{ },

ε

E H

I
R

R

Figure 1. Two-medium model.

Wave field in central dielectric satisfy Eqs. (1), (3) and (4) as before. Meanwhile, the axial and
azimuth components of the field must now be continuous at the core-cladding interface. Thus for r = R
we have

eφ
hz

=
eφI

hzI
,

hφ

ez
=
hφI

ezI
,

ez
hz

=
ezI

hzI
, (13)

where hzI = hzI(r) cos(lφ) and ezI = ezI(r) sin(lφ).
Note that the transverse and the longitudinal components of the field {eI ,hI} in the cladding

region are also related by Eq. (4) [35, 36] with εI (and k⊥I) in place of ε (and k⊥). With this in mind,
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we can use Eqs. (3), (4) and (13) to obtain one-side boundary conditions on the field {e,h} inside the
core region

dhz

dr
− ik2

⊥ηφI

k
hz − lkz

kR

(
1 − k2

⊥
k2
⊥I

)
ez

∣∣∣∣
r=R

= 0,

dez
dr

− ik2
⊥η

−1
zI

εk
ez − lkz

εkR

(
1 − k2

⊥
k2
⊥I

)
hz

∣∣∣∣∣
r=R

= 0,
(14)

where

ηφI (ω, kz) = − ik

k2
⊥IhzI

dhzI

dr

∣∣∣∣
r=R

, η−1
zI (ω, kz) = − iεIk

k2
⊥IezI

dezI

dr

∣∣∣∣
r=R

. (15)

A comparison of Eqs. (5) and (14) clearly shows the similarity between boundary conditions
for impedance and core-cladding waveguides. These conditions become identical in form, when
|k2

⊥
/
k2
⊥I | 
 1. In this case, the functions ηφI(ω, kz) and ηzI(ω, kz) can be explicitly treated as

components of the surface impedance for cladding material. This occurs when either |k2
⊥
/
k2

z | 
 1
or |ε/εI | 
 1. Each of these conditions yields k⊥I ≈ √

(εI − ε)k and, as will be seen below, ensures
only a weak mode-dependence for impedance components ηφI(ω, kz) and ηzI(ω, kz). The first condition
is true for waves far from cutoff and the second one for waveguides with extremely low core/cladding
permittivity ratio. Such special cases of mode-independent surface impedance have been considered
in [34]. However, they do not cover every possible situation. In particular, these cases are hardly
related to the operating conditions of dielectric-loaded gyro-devices.

Axial field components inside the core region can still be written as Eq. (6). With such a field
representation, boundary conditions in Eq. (14) yield two values

P1,2 = αI

(
1 ∓

√
1 + α−2

I

)
(16)

of hybridization parameter P (ω, kz) related to the hybrid waves of core-cladding waveguide. Here
αI = (cI − aI)/(2bI), aI = −ik2

⊥ηφI

/
k, cI = −ik2

⊥η
−1
zI

/
(εk), bI = −(1 − k2

⊥
/
k2
⊥I)lkz/(

√
εkR).

Using Eq. (16), one may rewrite Eq. (14) in alternative form

eφ
hz

∣∣∣∣
r=R

=
(
ηφI (ω, kz) +

ilkz√
εk2

⊥IR
P (ω, kz)

)
= ηφ (ω, kz) ,

hφ

ez

∣∣∣∣
r=R

= −
(
η−1

zI (ω, kz) +
i
√
εlkz

k2
⊥IR

P−1 (ω, kz)
)

= −η−1
z (ω, kz)

(17)

and thereby achieve a perfect analogy between core-cladding and impedance waveguides. Thus, given
ηφI(ω, kz) and ηzI(ω, kz), it is possible to treat explicitly core-cladding waveguide as a waveguide with
anisotropic surface impedance. In the general case such surface impedance is mode-dependent.

It should be emphasized that functions hzI(r) and ezI(r) in Eqs. (15)–(17) are still to be determined.
They are solutions of the following equations(

Δ⊥ + k2
⊥I

)
hzI = 0,

(
Δ⊥ + δIk

2
⊥I

)
ezI = 0 (18)

with unknown integration constants.
There are a few waveguide configurations for which ηφI(ω, kz) and η−1

zI (ω, kz) in Eq. (15) are free
from such constants. Among them are step-index waveguide and PEC waveguide with dielectric-lined
wall.

3.1. Step-Index Circular Waveguide

Consider a cylindrical core embedded in infinite cladding medium (RI → ∞ in Fig. 1). In this case,
solutions for Eq. (18) are as follows:

hzI =
√
εH

(1)
l (k⊥Ir) , ezI = PIH

(1)
l

(√
δIk⊥Ir

)
, (19)
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where H(1)
l (x) is the Hankel function of the first kind, PI the unknown constant, and δI here is assumed

to be real and positive for simplicity. For more details, see [35, 36].
For conducting cladding material (ImεI > 0) the form of Eq. (19) ensures the field decay as r grows

to infinity. This suggests that the field is mostly concentrated in the core region when embedded in
good conductor (ImεI 	 |ReεI |). For lossless dielectrics such field decay requires the permittivity εI to
be less than ε. This condition provides the real frequency range εI < k2

z

/
k2 <ε for waves propagated

(k2
⊥ > 0) in the core region and attenuated (k2

⊥I < 0) in the cladding region.
Substitution of Eq. (19) into Eq. (15) gives:

ηφI (ω, kz) = − ik

k⊥I

H ′(1)
l (k⊥IR)

H
(1)
l (k⊥IR)

, η−1
zI (ω, kz) = − iεIk

√
δI

k⊥I

H ′(1)
l

(√
δIk⊥IR

)
H

(1)
l

(√
δIk⊥IR

) . (20)

It is seen that the functions ηφI(ω, kz) and η−1
zI (ω, kz) for step-index waveguide depend on given

azimuth wavenumber l, radius R, permittivity ¯̄εI of cladding material and desired axial wavenumber
kz(ω). These functions represent the well-known impedance components ηφI ≈ 1

/√
εI and ηzI ≈

1
/√

δIεI for cladding surface, when |k⊥I |R far exceeds both unity and
√
δI (e.g., for cladding with a

rather high conductivity). The eigenvalue problem Eqs. (1) and (14) for step-index waveguide, in view
of Eq. (20), is clearly defined.

Again, as in the Section 2, we may write its solution in the form of Eq. (6). Then, with aI , bI
and cI in place of a, b and c, relations in Eqs. (7)–(10) become valid for step-index waveguide. Note
that substitution of Eq. (20) into Eqs. (16) and (17) yields a perfect analogy between step-index and
impedance waveguides.

Using this analogy, one can conclude that (a) the field inside the core region of step-index waveguide
is expressed in terms of a single scalar membrane function ψ(r); (b) for step-index waveguide there
exist two membrane functions, each satisfying independent eigenvalue problem and describing hybrid
waves of either HE or EH type; (c) solutions to eigenvalue problems are independent dispersion
Equations (10) for HE and EH waves; (d) these dispersion equations, taken separately for each type of
hybrid waves, have sparser spectrum of solutions, are easier to analyze and do not cause confusion in
mode designation; (e) the hybridization parameter P for each hybrid wave depends on single variable
αI = αI(l, ω, kz , R, ε, ηφI , ηzI); (f) inside the core region of step-index waveguide hybrid HE and EH
waves are always TE-like (|P | ≤ 1) and TM-like (|P | ≥ 1) waves, respectively.

We now turn our attention to the cladding region. From Eqs. (13) and (19) we obtain

PI = P
H

(1)
l (k⊥IR)

H
(1)
l

(√
δIk⊥IR

) . (21)

Hence it follows that constant PI equals hybridization parameter P in the case of isotropic cladding
material (δI = 1). Therefore, in this case, the conditions PI ≤ 1 and PI ≥ 1 hold true for HE and EH
waves, respectively. Thus, whatever the problem parameters are, HE (EH) waves of isotropic step-index
waveguide behave generally like TE (TM) waves in the entire space. Besides, note that εIηφIηzI = 1
for such guide.

3.2. Circular Waveguide with Dielectric-Lined PEC Wall

Let us next consider the dielectric core of radius R, which is surrounded by anisotropic dielectric layer
(cladding) with the radius RI of outer surface (Fig. 1). At r = RI the following boundary conditions

dhzI

dr
+ γHhzI

∣∣∣∣
r=RI

= 0
dezI

dr
+ γ−1

E ezI

∣∣∣∣
r=RI

= 0 (22)

are imposed. With γH = γE = 0, the boundary conditions in Eq. (22) imply that the external material
(r > RI) is the perfect electric conductor with smooth inner surface. In the case of PEC walls with
densely spaced axial corrugations (see Eq. (11)), γE = 0 and γH �= 0.

Axial components of the field inside anisotropic dielectric layer are now given by

hzI =
√
εZ

(1)
l (k⊥Ir) , ezI = PIZ

(2)
l

(√
δIk⊥Ir

)
(23)



Progress In Electromagnetics Research M, Vol. 53, 2017 117

where Z(n)
l (x) = [Jl(x) −B

(n)
I Nl(x)], Nl(x) is the Neumann function, PI the unknown constant, and

B
(1)
I and B(2)

I must be taken as

B
(1)
I =

k⊥IJ
′
l (k⊥IRI) + γHJl (k⊥IRI)

k⊥IN
′
l (k⊥IRI) + γHNl (k⊥IRI)

, B
(2)
I =

√
δIk⊥IJ

′
l

(√
δIk⊥IRI

)
+ γ−1

E Jl

(√
δIk⊥IRI

)
√
δIk⊥IN

′
l

(√
δIk⊥IRI

)
+ γ−1

E Nl

(√
δIk⊥IRI

)
to fulfill Eq. (22).

Using Eq. (23), we obtain the functions

ηφI (ω, kz) = − ik

k⊥I

Z ′(1)
l (k⊥IR)

Z
(1)
l (k⊥IR)

, η−1
zI (ω, kz) = − iεIk

√
δI

k⊥I

Z ′(2)
l

(√
δIk⊥IR

)
Z

(2)
l

(√
δIk⊥IR

) (24)

involved in boundary conditions in Eq. (14), which are free from any uncertain quantities.
With Eq. (24), we have clearly defined eigenvalue problem in Eqs. (1) and (14) for dielectric-lined

PEC waveguide. It is analogous to the eigenvalue problem for step-index waveguide and thus may be
solved by the procedure described above in the previous subsection. Hence it follows that conclusions
made in this subsection are valid for both step-index and dielectric-lined PEC waveguides.

From Eqs. (13) and (24), we obtain

PI = P
Z

(1)
l (k⊥IR)

Z
(2)
l

(√
δIk⊥IR

) . (25)

Hence, for waveguide with isotropic cladding and hard (γE = 0 and γH = ∞) outer surface r = RI ,
constants PI and P appear to be equal to each other. This exemplifies the case when HE (EH) hybrid
waves are generally TE- (TM-) like waves throughout the perfect conducting waveguide with dielectric-
lined surface.

3.3. Circular Conducting Waveguide with Dielectric-Lined Wall

Obviously, perfect conductivity is the idealization, which fails in some cases of practical interest.
Therefore, next we consider conducting waveguide with dielectric-lined surface. In this case, the
boundary conditions are as follows:

eφI

hzI

∣∣∣∣
r=RI

= Zφ,
hφI

ezI

∣∣∣∣
r=RI

= −Z−1
z , (26)

where Zφ and Zz are the components of surface impedance for external material.
The boundary conditions in Eq. (26) give no way of deducing ηφI and η−1

zI in Eq. (15) as functions
of cladding parameters and desired axial wavenumber kz(ω) only. These functions depend also on
additional unknown, denoted as PII . A technique for finding this unknown is described below.

In addition to Eq. (26) we introduce extra condition at r = RI

ezI

hzI

∣∣∣∣
r=RI

=
PII√
ε
. (27)

With Eq. (27) the boundary conditions in Eq. (26) are reduced to the following form:

dhzI

dr
+ γH (PII)hzI

∣∣∣∣
r=RI

= 0,
dezI

dr
+ γ−1

E (PII) ezI

∣∣∣∣
r=RI

= 0, (28)

where γH(PII) = aII +bIIPII , γ−1
E (PII) = cII +(εbII)/(εIPII), aII = −ik2

⊥IZφ/k, bII = −lkz/(
√
εkRI),

cII = −ik2
⊥IZ

−1
z

/
(εIk).

It is seen that the boundary conditions in Eq. (28) are identical in form to Eq. (22). Therefore, the
eigenvalue problem in Eqs. (1), (13) and (28) can be solved in the same manner as for PEC waveguide
with dielectric-lined wall. As a result, we obtain functions ηφI(PII) and η−1

zI (PII) (see (24)) and also
the values P1(PII) and P2(PII) (see Eq. (16)) of hybridization parameter in relation to the unknown
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constant PII . Alternatively, the hybridization parameter is found from Eqs. (13) and (27). We equate
these alternative expressions of hybridization parameter and thus obtain

P1,2 (PII) = PII
Z

(1)
l (k⊥IRI)

Z
(1)
l (k⊥IR)

Z
(2)
l

(√
δIk⊥IR

)
Z

(2)
l

(√
δIk⊥IRI

) . (29)

The resulting relation is complementary to the dispersion Equation (10). Both Eqs. (10) and (29)
form a system of transcendental equations in two unknowns kz(ω) and PII . Analogous system can be
derived in the case of multi-layer dielectric waveguide. In this case, extra condition similar to Eq. (27)
should be imposed on the field at the outer boundary of the waveguide.

It is well known [46, 47] that for multi-layer waveguide the straightforward derivation yields
dispersion equation in the form of zero determinant of large size matrix. To avoid problems associated
with such matrices, the so-called matrix approach was proposed in [46]. Our approach is the alternative.
In contrast to the matrix approach, it does not involve any matrix operations (inversion, multiplication,
etc.). The weakness of our approach is that it yields a system of transcendental equations. By
comparison, in the matrix approach the resultant combined equations are linear algebraic.

4. CONCLUSION

We have demonstrated the close analogy between circular waveguide with anisotropic impedance surface,
step-index waveguide and perfectly conducting waveguide with dielectric-lined walls. The common
feature is the form of eigenvalue problem, which involves components of anisotropic surface impedance.
It has been found that for step-index and dielectric-lined PEC waveguides these components depend
solely on cladding parameters and desired eigenfrequency.

Using this analogy, we have shown that (a) the field inside the core region of step-index or dielectric-
lined waveguides is expressed in terms of single scalar membrane function; (b) HE and EH hybrid waves
of these guides have different membrane functions subject to independent eigenvalue problems; (c)
solutions to these problems are independent dispersion equations for HE and EH waves; (d) inside
the core region of step-index or dielectric-lined waveguides HE and EH hybrid waves behave generally
like TE and TM waves, respectively. These results provide additional insights into electromagnetic
properties of hybrid waves of step-index and dielectric-lined waveguides.

Besides, a new approach to eigenvalue problem for conducting waveguide with dielectric-lined walls
has been proposed. The approach yields a system of two coupled transcendental equations with desired
eigenfrequency as one of two unknowns. The possibility of derivation of analogous system for multi-layer
dielectric waveguide has been also discussed.
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