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Image Reconstruction from Highly Sparse and Limited Angular
Diffraction Tomography Using Compressed Sensing Approach
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Abstract—Diffraction tomography (DT) from limited projection data has been an active research topic
for over three decades. The interest has been steadily fueled due to its application in multiple disciplines
including medical imaging, structural health monitoring and non-destructive evaluation to name a
few. This paper explores the applicability of compressed sensing to recover complex-valued objective
functions (e.g., complex permittivity in microwave tomography). Generally, compressed sensing based
tomographic reconstruction has been studied under full angular access. In this paper, the effect of
lowering the angular access in addition to highly limited number of projection data is explored. The
effectiveness of the reconstruction methods is tested with severely limited dataset which would render
reconstruction impossible by traditional iterative approximation methods. Furthermore, results show
that complex-valued phantoms can be reconstructed from as few as 15 projections from 120◦ coverage,
a significant finding. In this study, the Total Variation (TV) has been used as the l1 norm within the
compressed sensing framework. The robustness of the algorithm in presence of noise is discussed. Use
of multiple sparse domains has also been explored briefly. The results show the effectiveness of TV as a
regularization parameter even for complex-valued images under the compressed sensing regime. This is
a pertinent observation as TV is a simple norm to implement. For a large class of images, especially in
medical imaging, this implies the availability of a steady l1 norm for easy implementation of compressed
sensing reconstruction for complex-valued images.

1. INTRODUCTION

Diffraction Tomography is a popular imaging technique with highly multidisciplinary applications. It
is a broad imaging modality of which ultrasound and microwave tomographic imaging are sub-classes.
Unlike Computed Tomography (CT) which assumes straight line propagation of the incident waves,
DT incorporates the diffracting nature of the interrogating energy and can be used to recover complex-
valued objective functions or images. In the presence of weak scatterers, assuming the Born or Rytov
approximations [1], the Fourier Diffraction Projection theorem (FDP) relates the scattered field data
from the Region of Interest (ROI) to the 2D-Fourier Space of the ROI. This scattered field data or
the projection data from multiple angles can be used to populate the Fourier space of the object
(ROI). The ROI is reconstructed from this Fourier data through Fourier inversion or backpropagation
techniques. A major obstacle in many real life scenarios is that projection measurements cannot be
gathered over full 360◦ view around the test object. Reconstruction from this partial data leads to
many artifacts and loss of important features in the resulting image. Thus, specialized schemes are
needed for image reconstruction from limited angular coverage projection data. If the angular coverage
is moderately limited, between 180◦–270◦, the authors had recently proposed generalized algorithms
which exploit redundancy in the projection data [2–5]. This is a direct backpropagation based method
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which can handle moderate limitations in coverage. However, for highly sparse data or limited angular
access various minimization, regularization, estimation techniques and statistical approaches have to
be utilized and indeed, these approaches are being successfully explored to make the reconstruction
algorithms more robust to sparse and noisy data, e.g., [6, 7]. A recent and highly popular development
in the domain of sparse recovery is the field of compressed sensing (CS) [8–11]. The allure of this
field arises from the fact that under certain constraints (i.e., if the data acquisition and signal recovery
procedure conforms to the CS formulation), it can ensure that exact recovery is possible in highly
under-determined systems. Thus a few projections are sufficient to create an almost distortion free
reconstruction. Hence it is of great importance in all applications dealing with highly limited projection
data as in medical imaging [12–17], data channel sampling [18], radar imaging [19–21], spectrum sensing
in cognitive radio systems [22] and many other applications. A steady focus is also directed towards
improving the data acquisition and reconstruction frameworks for increasing the present capabilities of
compressed sensing [23–25].

This paper explores CS based reconstruction for complex-valued objective functions under the
domain of diffraction tomography. It is organized as follows: Section 2 briefly introduces DT basics and
the field of compressed sensing, Section 3 sets up Sparse Diffraction Tomography as a CS formulation,
Section 4 sets up total variation as the l1 penalty term for CS based DT reconstruction and provides
detailed results and analysis of performance of using TV as the penalty term in CS, Section 5 briefly
explores the feasibility of using multiple sparse domains in CS based reconstruction and finally Section 6
concludes the paper summarizing the findings and their impact.

2. BACKGROUND

2.1. Diffraction Tomography

The fundamental theory underlying 2D-DT is the FDP which relates the scattered field data from
the ROI due to incident plane waves to the 2D-Fourier space of the ROI [1]. The traditional 2D-
configuration is shown in Fig. 1 [4], where the object f(x, y) is illuminated with a monochromatic plane
wave of frequency ν0 incident at an angle φ to the horizontal axis. The 1D Fourier Transform (FT)
of the scattered field measured along the straight line η = l in the co-ordinate system (ξ, η) gives the
values of the 2D transform of the object F (νx, νy) along a semi-circular arc in the frequency domain, at
angle φ as shown in the right half of Fig. 1. The scattered field data and the object function are related
by the following equation:
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Figure 1. (a) Classical scan configuration of 2D DT and (b) relation of scattered field data with the
2D Fourier space of the objective function.
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where U(ν, l) represents 1D FT of the scattered field, u(ξ, η) under Born approximation (measured on
line η = l), and ν lies in the range [−ν0, ν0].

This relates the scattered field from a single projection to Fourier space data of the object function
being investigated. Multiple projections, i.e., scattered field data from incident excitation from different
angles can then be used to get Fourier domain information of the ROI. Traditional reconstruction
techniques such as filtered backpropagation (FBPP) [26] and Fourier inversion use this projection data
from [0, 2π] angular coverage for accurate image recovery. Though the formulation applies to weak
scatterers, it is widely used and since its introduction, a steady research focus has been maintained on
this topic [27–33]. Present day research on DT focuses on image recovery from projection data obtained
under constraints of angular coverage and/or the number of available projections. Many regularization
and optimization techniques have been explored and developed to solve this under-determined system.
However recently, with the advent of compressed sensing theory, a natural interest has developed in
performing DT image recovery under the CS regime. This paper explores DT reconstruction algorithms
under this CS regime for complex valued image recovery.

2.2. Compressed Sensing (CS)

The fundamental concept underlying compressed sensing (CS) is the successful exploitation of a sparse
representation of the signal to be recovered. That is, even if the signal itself is not sparse, it might be
expressed as a sparse signal in some other domain. The sparsity in this alternate domain can then be
exploited in CS based algorithms.

Consider a sensing matrix Φ, representing the data acquisition system. For example, in tomography,
Φ is the Fourier matrix. Let Φ directly compress the signal while sensing it. That is, a small number
of measurements (e.g., projection data in tomography) retain all the information within the original
signal. Also, let it be a linear measurement process that collects M datapoints (M < N ) and N being
the dimension of the signal to be recovered. Then Φ is a M × N matrix and the output y is an inner
product of the signal x with the columns of Φ. Then if Ψ be a sparse basis of x, we can write

y = Φx = ΦΨs = Θs (2)

where Θ := ΦΨ is an M × N matrix. The measurement or sensing matrix Φ is fixed and independent
of x. In traditional theory, since M < N , the system in Eq. (2) is under determined and in general the
solution is ill-posed. However, the sparsity of x in the Ψ domain alleviates this issue.

CS aims to reduce the number of minimum measurements required to completely describe a signal
by exploiting its compressibility. This can be expressed in terms of sparsity of a signal. A S-sparse
signal x ∈ C

n is a signal which has at most S non-zero elements. The goal is to be able to completely
reconstruct a S-sparse signal x of dimension n from M measurements where M ≈ S or marginally
more. In order to do this, the measurement (or data acquisition), signal handling and image recovery
(reconstruction) has to be formulated in the proper CS framework and adhering to specific constraints.
These are actually the very conditions which enable us to defeat the Shannon sampling rate on a grand
scale. These requirements are briefly enumerated below:

• The signal of interest x should be sparse or compressible in some domain.
• A stable measurement matrix Φ must be available which can transform the S-sparse signal x ∈ C

N

to y ∈ C
M without any loss of information due to the dimensional reduction from N to M . This

condition of Φ is often referred to as the Restricted Isometry Property (RIP) [34].
• A reconstruction algorithm which can recover the original signal from the measurements y. For

compressed sensing framework, l1-norm minimization is the de-facto algorithm of choice.

As CS aims to exploit sparsity, the logical approach would be to solve an l0 norm minimization
problem, which is an Np hard problem. However, most of the signal recovery related work in compressed
sensing explores the use of l1 as a substitute of l0 norm. An l1 minimization problem can be solved as a
linear program and because of the greatly reduced computational complexity, is always preferable over
an l0 norm minimization. This is possible because fortunately, in [35], it was shown that for a K-sparse
signal, if the measurement size M satisfies

M ≥ cK log (N/δ) (3)
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where c is a constant, then with probability more than 1−δ, the solution to the l1 minimization problem:
ŝ = argmin ‖s′‖1, such that , Θs′ = y (4)

is the desired original signal. In the presence of noise, the constraint is just ‖Θs′y‖2 ≤ ε with ε being a
tolerance parameter. The l1 minimization problem can be recast as a convex optimization problem as:

ŝ = argmin ‖y − Θs′‖1 (5)
This can be conveniently solved, e.g., as a linear program called basis pursuit, which has O(N3)
computational complexity [8, 11]. A very well researched minimization problem is to minimize the
following functional:

Fτ (x) ≡ ‖Φx − y‖2
2 + 2τ‖x‖1 (6)

with τ > 0 and bounded above. This is an unconstrained convex optimization problem. It has been
shown [36] that a solution to Eq. (4) would also minimize Eq. (6). Thus many well investigated convex
optimization algorithms can be applied to solve an l1 minimization problem.

A curious fact is that many physical signals of interest do in fact abide by these conditions. Hence,
compressed sensing is applicable to a variety of scenarios. Thus, the development of this new theory
gained a huge impetus over the last few years. It has become one of the most hotly researched topics
under image reconstruction algorithms.

To show the effectiveness of CS over traditional methods, before delving further, reconstructions
from a regular Least Squares approach (LS) and CS based reconstruction from 20 views (or projections)
and 150◦ coverage have been compared in Fig. 2. A complex-valued phantom has been reconstructed.
The real part of the original image is shown in Fig. 2(a), the imaginary part in Fig. 2(d). The real and
imaginary parts have been purposefully made different to see the effect of reconstruction on both these
components individually. This image is also the reference image for all the other reconstructions shown
in this paper. This is the same phantom used by the authors as the reference image in [4]. As can
be seen, the traditional LS method fails drastically under the severe limitations, whereas the CS based
reconstruction reproduces the image with no major distortions and retaining all the major features of
the image.

(b)(a) (c)

(e)(d) (f)

Figure 2. Effect of reconstruction from highly sparse data in traditional and compressed sensing based
reconstructions of complex image from 20 views and 150◦ coverage: (a) real part of original image, (b)
real part from LS recovery, (c) real part from CS recovery, (d) imaginary part of original image, (e)
imaginary part from LS recovery, and (d) imaginary part from CS recovery.

3. CS BASED RECONSTRUCTION FOR DT

The projection data acquisition in diffraction tomography can be expressed as
F = Φ(f) (7)



Progress In Electromagnetics Research, Vol. 158, 2017 25

where Φ is the diffraction operator, F the sampled data in k-space and f the object function. If the
acquired data is highly sparse, then classical interpolation methods are no longer applicable as the
Nyquist limit is not met. FBPP alone results in a lot of artifacts in the reconstructed image and
distorts actual features in the image. However, under a compressed sensing framework, high quality
reconstruction from sparse view data can still be achieved. Firstly, it is assumed that f , the signal to be
recovered, is approximately sparse in some domain Ψ, such that f = Ψs as in previous section. Then,
with the availability of F , knowledge of Φ and Ψ, we can formulate a convex optimization problem using
the functional in Eq. (6):

min
s

{‖y − Θs‖2
2 + α‖s‖1 } (8)

where α is the regularization parameter.

3.1. Application of CS to Sparse DT Recovery

For ultrasound or microwave based DT, the data acquisition matrix is the partial Fourier matrix. The
sparse view data is generated by randomly choosing view angles. These samples give the vector y of (4)
and (8). For setting up the CS framework, the sensing matrix Θ = ΦΨ must be constructed with Ψ
being the sparse basis for the object. Let the object function be denoted by f , so that f(x, y) can be
used to represent the spatial distribution of the object function. The object has a bounded support, say
[−C,C]× [−C,C], i.e., f(x, y) = 0 for |x|, |y| > C. Let fd denote the discretized object function which is
to be reconstructed. fd ∈ C

nd×nd , with nd = 2[C/T ]) with T being the sample period. Also, let F (u, v)
and Fd(u, v) be the Fourier transforms of f(x, y) and fd(n1, n2) respectively. Also, the receiver array will
have limited number of elements. Let the discrete field be ûs,θ = us,θ(nτ), where τ is the spatial sampling
interval of the system. Let Ûs,θ(κ) and Us,θ(κ) be the respective Fourier transforms. In the limit τ → 0,
both the signals become equal. A point to note here is that the Fourier transform of the scattered field
is related to the Fourier space of the object along semicircular arcs as mentioned in Subsection 2.1.
Here, κ gives the projection of a point on the semicircular arc to its tangent at the origin. Also, θ is
the angle of incidence. Then, invoking the FDP, we can have Ûs,θ(κ) ≈ Us,θ(κ) = F (u, v) ≈ Fd(u, v).
Let Ω1 = θ1, θ2, . . . , θN1 be the set of view or projection angles over which ûs,θ(nτ) is obtained and
from that Ûs,θ(κ) is calculated for ∀κ ∈ Ω2 = κ1, κ2, . . . , κN2 . Then, fd can be reconstructed from the
projection dataset Ûs,θ(κ) | (θ, κ) ∈ (Ω1,Ω2) as [16]:

(Tκ0)2U0

2jγ
ejγl

�C/T �∑
n1=�−C/T �

�C/T �∑
n2=�−C/T �

fdn1,n2
e−2πj(n1u+n2v)T = Ûs,θ(κ) + ns,θ(κ) (9)

This is expressible in a compact matrix equation form as Φfd = F + n, where Ω = (Ω1,Ω2),Φ ∈
C
|Ω|×(nd)2 , fd ∈ C

(nd)2 , (n1, n2) ≤ |nd/2|, F ∈ C
|Ω|. From (9), the Φ for the minimization problem is

obtained. Essentially, the summation expression in Eq. (9) gives the coefficients of a Fourier matrix.
By FDPT, the spatial frequency samples are gathered along the arc AOB (see Fig. 1). As the angle
of incidence varies, the arc revolves around in the Fourier space and describes a centered disk of radius√

2k0. So the reconstruction of the object is always a low-pass filtered version of the original image.
The following steps would be used to assure that the CS framework is maintained:

• Incoherence will be maintained by using a random set of angles for the projection data. A partial
Fourier matrix will be used, which ensures RIP of the sensing matrix.

• Sparsity will be exploited initially through image gradients in Section 4. Later, in Section 5
simultaneous exploitation of multiple sparse domains will also be explored briefly.

Let the sparse basis matrix be Ψ. Combining l1 norm and data constraints in the minimization
problem, the initial problem is of the form:

min
s

{
G(s) = ‖F − ΦΨs‖2

2 + α‖s‖1

}
(10)

Here, F gives the spatial frequency samples, and s is the coefficients of fd in the sparse basis Ψ. In the
next section, the reconstruction algorithm from projection dataset is presented.
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3.2. Reconstruction

A minimization problem involves reducing a cost function in a series of iterative steps starting from an
initial value of the cost function. The key feature is how the cost function is updated at each iteration.
A significant amount of literature on methods are available to minimize a cost function. In this paper,
as the minimization problem is essentially a convex optimization problem, optimization toolkit from
Boyd and Vanderbeghe [36] has been used.

The overall reconstruction algorithm sequentially follows these steps:

• Generate projection data from random view angles.
• Fourier space data along semi-circular trajectories is found applying the FDPT.
• Iterative reconstruction through l1 minimization in the sparse domain is applied while preserving

the data constraints.

In the next section, reconstructions have been performed using TV as the l1 sparsity term. The
performance of the reconstruction under varying degrees of limited data and angular access have been
evaluated.

4. RECONSTRUCTION WITH TOTAL VARIATION AS L1 PENALTY TERM

Most physical samples investigated tomographically, do in fact possess piecewise continuous property
distribution. Particularly, biological specimens would fall under this category, where regions over
extended areas would have no variations but rapidly vary in certain confined areas, such as edges
of organs or boundaries between different tissue. These images themselves are not sparse, however,
their gradient images are sparse.

This is one form of sparsity that can be exploited in a CS framework. The gradient magnitude
image (GMI) is defined in terms of derivatives in the vertical and horizontal direction of the image.
Let Dh

n1,n2
and Dv

n1,n2
denote the finite difference operators in the horizontal (h) and vertical (v)

directions respectively. The gradient of the image is ∇fd = [Dh
n1,n2

,Dv
n1,n2

]fd = Dfd, where
D = [Dv,Dh] = Ψ is the sparsity promoting operator. The gradient magnitude then becomes

| ∇fd |=
√

(Dh
n1,n2

fd)2 + (Dv
n1,n2

fd)
2.

The l1-norm of the gradient image has often been termed as the total variation (TV) of the image,
which then can be defined as

TV (fd) =
∑
n1,n2

√
(Dh

n1,n2
fd)2 + (Dv

n1,n2
fd)

2 (11)

TV can be employed as a means to exploit sparsity of piecewise smooth objects. It has been
already used as a regularizing term before, e.g., [6]. TV can be effective in suppressing Gibbs effect
while preserving edges [37]. To use TV as the l1 norm, in the minimization problem of Eq. (10), the
sparse signal s is the GMI, so that s = D(fd) where D is the sparsity operator and by definition,
‖D(fd)‖1 = TV (fd). In this case, Eq. (10) becomes

min
s

{G(s) = ‖F − Θs‖2
2 + α‖s‖1 = ‖F − ΦD∗s‖2

2 + αTV (fd) } (12)

with α being the regularization parameter for the TV term and Θ = ΦD∗. To avoid a zero
denominator in the TV term, an approximation which is often employed is: ‖ Dn1,n2fd ‖≈√

(Dh
n1,n2

fd)2 + (Dv
n1,n2

fd)
2 + μ, where μ is a small positive number. The second term in Eq. (12) is

the data constraint term added to keep the problem as an unconstrained optimization problem. The
parameter α determines the relative weightage of the data constraint term and the l1 penalty term.
The value of α needs to be carefully chosen. In most cases this value would be application specific.
A standard approach is to plot a response of the two terms in the minimization term with respect to
the variation of α. A sweep of α over a large range would generally give insight towards an optimal
value. Over the range of the sweep generally as α increases, the l1-norm decreases whereas the error
norm increases. A value of α is so chosen as to make the l1 norm low enough without increasing
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the error norm. For the reconstructions performed here, the value of α has been fixed at 0.2. Once
the reconstruction problem is set up in the CS framework as shown here, the l1 minimization is an
optimization problem in standard form. It is efficient to use an optimization toolkit if applicable.
For solving convex optimization problems expressed in standard forms, a host of optimization toolsets
are already available. In this work, the minimization problem of Eq. (12) is solved using a convex
optimization toolkit cvx by Boyd & Vanderberghe [36, 38]. A particular advantage of using this toolkit
is that it can be used to solve the primal-dual problem with the Matlab based SeDumi toolkit [39]. The
solution comes with a certificate of convergence in the form of the distance from the dual maximum
and the duality gap. So the distance of the solution (i.e., minimum of the objective function achieved)
from the theoretical lower limit is known.

4.1. Reconstruction with TV as l1 Minimizer

As part of this research, reconstruction was performed on a complex-valued phantom structure shown
in Figs. 2(a) and (d). The acquisition data F is computed by determining semi-circular trajectories
in Fourier space based on the angle of the incident beam as prescribed in [6]. To incorporate effects
of measurement noise, this projection data is injected with random noise with energy levels at 5% of
the average energy in the projection data. This noise injected data is assumed to be a reasonable
approximation of experimental data.

To see the effectiveness of TV as the l1 penalty term, two types of data variation is analyzed. The
first being the number of projections when the angular access is fixed. The second being the variation
of total coverage for a fixed number of projections. In this exercise, the projection datasets are fixed
at 15, 20, 30 and 45 views. The angular coverage limits are fixed at 180◦, 150◦, 120◦ and 90◦. In
the figures below, reconstructions of real and imaginary part of the phantom are shown separately for
these aforementioned variations. The effect of both type of variations on the reconstruction error are
presented separately.

In Fig. 3 and Fig. 4, reconstructions from 45 projections are presented. It is seen that for the
first three coverages, the quality of the images is almost constant. At 90◦ coverage, the reconstruction

(b)(a)

(c) (d)

Figure 3. Reconstructions of real part of image
with 45 views for different angular coverages: (a)
180◦, (b) 150◦, (c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 4. Reconstructions of imaginary part
of image with 45 views for different angular
coverages: (a) 180◦, (b) 150◦, (c) 120◦, and (d)
90◦.
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(b)(a)

(c) (d)

Figure 5. Reconstructions of real part of image
with 30 views for different angular coverages: (a)
180◦, (b) 150◦, (c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 6. Reconstructions of imaginary part
of image with 30 views for different angular
coverages: (a) 180◦, (b) 150◦, (c) 120◦, and (d)
90◦.

starts showing considerable distortion. This is however not surprising as the restriction of the available
data has been limited on both fronts of projections as well as coverage. The process yields better
reconstructions from same number of projections when the angular access is higher or more complete.
The interesting observation here is that as the coverage decreases from 180◦ to 120◦, the degradation in
the image quality is marginal and maybe considered acceptable based on the application. Detailed error
analysis has been done in the next section of this chapter. From Fig. 5 to Fig. 10, the reconstructions of
real and imaginary parts have been shown separately for angular sweeps as the number of projections is
progressively decreased. With higher angular coverage, the reconstruction quality is maintained at up
to 20 projections. Significant degradation is observed at 15 projections. This illustrates that as long as
the coverage is high, the random sampling and l1 minimization can perform good reconstructions from
very few projections. As the coverage is lowered, acceptable reconstruction is maintained at up to 120◦.
For even lower coverage, the l1 minimization alone is not effective. This is because the minimum data
requirement even under sparse reconstruction is being violated. In the following section quantitative
error analysis has been done on these reconstructions.

4.2. Error Analysis

In order to quantitatively evaluate the reconstructions performed, the Mean Absolute Error (MAE)
described in [4] is used again. It is the average of the pixel-by-pixel sum of the absolute difference
between the reference and reconstructed image and is given by: MAE = 1

n

∑ |imgorig(i) − imgrecon(i)|,
where imgorig(i) is the ith pixel in the original image and imgrecon(i), the ith pixel in the reconstructed
image and n is the total number of pixels in the image. The error for the real and imaginary part are
calculated separately. For this analysis, additional reconstructions for a coverage range of 60◦ is also
considered. The relative percentage change in MAE for different projection numbers and angular access
are shown in Figs. 11–14.

Figures 11 and 12 show the MAE increase for a fixed angular coverage as the number of projections
change. The MAE from the maximum number of projections (60) is taken as the base reference to
which the percentage change of error is measured as the number of projections is progressively lowered
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up to 15. This change is plotted for different angular coverages between 60◦ to 180◦. Fig. 11 shows the
performance for the real part of the reconstructed image and Fig. 12 for the imaginary part. As expected,
for each angular coverage, as the available number of projections is reduced, the error increases, as seen
from the plots.

(b)(a)

(c) (d)

Figure 7. Reconstructions of real part of image
with 20 views for different angular coverages: (a)
180◦, (b) 150◦, (c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 8. Reconstructions of imaginary part
of image with 20 views for different angular
coverages: (a) 180◦, (b) 150◦, (c) 120◦, and (d)
90◦.

(b)(a)

(c) (d)

Figure 9. Reconstructions of real part of image
with 15 views for different angular coverages: (a)
180◦, (b) 150◦, (c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 10. Reconstructions of imaginary part
of image with 15 views for different angular
coverages: (a) 180◦, (b) 150◦, (c) 120◦, and (d)
90◦.
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Figure 11. Percentage increase of MAE for real
part of image as the number of projections is
lowered for a fixed coverage. Graphs plotted for
different coverages.

Figure 12. Percentage increase of MAE for
imaginary part of image as the number of
projections is lowered for a fixed coverage. Graphs
plotted for different coverages.

The percentage increase remains below 20% for all coverages at 30 views. From 20 views or less, the
error rate increases sharply, e.g., in the real part of the image, the MAE increase for 180◦ coverage at
20 views is 18% and 56.7% for 15 views. For 120◦ coverage, the values are respectively 26.7% and 43%.
With respect to visual identification of features or defects from reconstructed image, this translates
to good reconstructions maintaining all features up to 30 views and acceptable reconstruction at 20
views. At 15 views, the degradation gets considerably high to depend on the images for diagnosis or
fault detection with high confidence. An important thing to note here is that in Fig. 11 and Fig. 12,
each line shows the percentage increase of error as the view number is decreased while the coverage
is fixed. So, although all the plots start at 0% error increase, the actual error value would be higher
for a lower coverage, and vice versa. The total coverage determines the extent of data availability
for reconstruction. Hence, the change in percentage MAE increase is more striking for higher angular
coverages than lower ones. This is illustrated through the plots themselves. The percentage change for
60◦ is 10.5% in real and 12.4% in imaginary part at 15 projections which is the lowest change observed.
This is because the starting point itself is already much worse due to limited coverage and in effect does
not get worse with lower number of projections. The observed percentage change in error increases with
increasing angular coverage. The MAE plots show that with higher access, the reconstruction accuracy
increases.

Another avenue to explore is to observe the effect of the available angular access for a fixed number
of projections. This effect is illustrated in Fig. 13 and Fig. 14. Here, for a fixed number of projections,
the percentage MAE error is calculated with respect to the maximum angular coverage (180◦). The
coverage is decreased to 60◦. The process is repeated while varying the number of projections from 60
to 15. A similar trend is observed as in the last case. For each fixed projection number, the MAE error
increases as the total coverage decreases. This is expected. However, a surprising and appealing fact is
that the increase in error is marginal irrespective of total number of projections between 180◦ to 120◦.
This illustrates the stability and utility of this CS based reconstruction procedure. The procedure would
be handy in either lower angular access or a sparse projection dataset (and up to a certain limit when
both constraints are simultaneously present). This puts this CS based framework in a strong position
to handle highly adverse data acquisition conditions.

In summary from these reconstruction sets it can be concluded that at 120◦ coverage, as little as
20 projections might be sufficient for a reasonably accurate reconstruction. This is definitely a great
improvement over other traditional iterative methods. For comparison between CS based reconstruction
and traditional LS reconstruction, see Fig. 2 from Subsection 2.2.

Further restrictions would be too limiting for reconstruction in a generalized setup of complex
valued image with no prior information or known restrictions. However when we have some a-priori
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Figure 13. Percentage increase of MAE for real
part of image as the angular coverage is lowered
for a fixed number of projections. Graphs plotted
for different number of projections.

Figure 14. Percentage increase of MAE for
imaginary part of image as the angular coverage is
lowered for a fixed number of projections. Graphs
plotted for different number of projections.

knowledge, either about the structure or some practical insights about the imaged system or ROI,
tighter bounds might be achievable as will be demonstrated briefly in the next subsection.

4.3. Reconstruction from Phantoms with Realistic Permittivity Distribution

In practical scenarios, e.g., in microwave tomography, the physical distribution of permittivity variation
in the real and imaginary parts would be same, i.e., the real and imaginary parts of the complex valued
image would have the same spatial variations and would essentially be visually identical. In this section
some reconstructions from a more realistic phantom is shown. The imaginary part of the phantom is
kept the same as the real with respect to the shape, as expected in practical measurements. However,
the magnitude has been scaled by half. This is reasonable, as in complex permittivity, the imaginary
part is much lower than the real part. Because of this simplification, the data requirement would be
looser than in the last section and expected to produce better reconstructions under comparable data
constraints. Reconstructions from 15 and 10 projections from different angular coverage are given in
Fig. 15–Fig. 18. As is evident, for 15 views, there is almost distortionless reconstruction up to 120◦
and acceptable even at 90◦ coverage. The imaginary part shows more degradation than the the real
part at lower coverage. This is because the magnitude of the imaginary components being half of that
in the real part and as such, is more susceptible to degradation in general and especially under sparse
data recovery conditions. For 10 views, the real part is well retained up to 120◦, however, below 150◦,
the imaginary part degrades considerably. In conclusion, we see that for 15 projections, acceptable
reconstruction can be achieved at 120◦ and for 10 views at 150◦. At full 180◦, even 10 views can
generate a clear reconstruction, maintaining all features distinctly.

For any measurement system, noise is an integral part. The robustness of any reconstruction
algorithm is dependent on the noise margins it can handle. So far, the reconstructions have been done
with 5% noise. However, to see the effect of increasing noise in the data, reconstructions were performed
under various levels of noisy data. The effect was observed on reconstruction from 15 views and 120◦
angular coverage. The effect of noise is seen in Fig. 19, Fig. 20. The reconstruction is good at 10% noise.
The real part is still acceptable at 20% noise, however, the imaginary part is considerably degraded.
At 50% noise both real and imaginary parts are highly degraded and unacceptable for visual analysis.
However, it should be noted that this is too high a noise margin, which should require improvements in
the physical acquisition system rather than the reconstruction algorithm itself. In conclusion, it can be
inferred that with TV based CS reconstruction, acceptable reconstruction of complex valued objective
function can be achieved from moderately noisy data with as limited coverage as 120◦ and as little
measurements as 15 projections. This is a significant contribution and of value in numerous scenarios
with either highly limited angular access or various constraints (like available acquisition time) limiting
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(b)(a)

(c) (d)

Figure 15. Recovery with symmetric phantoms
(visually identical real and imaginary parts):
Reconstructions of real part of image with 15
views, for different angular coverages (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 16. Recovery with symmetric phantoms
(visually identical real and imaginary parts):
Reconstructions of imaginary part of image with
15 views, for different angular coverages (a) 180◦,
(b) 150◦, (c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 17. Recovery with symmetric phantoms
(visually identical real and imaginary parts):
Reconstructions of real part of image with 10
views for different angular coverages (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 18. Recovery with symmetric phantoms
(visually identical real and imaginary parts):
Reconstructions of real part of image with 10
views for different angular coverages (a) 180◦, (b)
150◦, (c) 120◦, and (d) 90◦.
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(b)(a)

(c) (d)

Figure 19. Effect of noise: Reconstructions
of real part of image with 15 views and 120◦
coverage, when real and imaginary parts have
similar physical boundaries, for different noise
levels (measured as % of mean signal energy level)
(a) 5%, (b) 10%, (c) 20%, and (d) 50%.

(b)(a)

(c) (d)

Figure 20. Effect of noise: Reconstructions of
imaginary part of image with 15 views and 120◦
coverage, when real and imaginary parts have
similar physical boundaries, for different noise
levels (measured as % of mean signal energy level)
(a) 5%, (b) 10%, (c) 20%, and (d) 50%.

the total number of projections that can be obtained. With an aim to explore other avenues which might
also have pertinent effect towards lowering data requirements in tomographic reconstruction, effect of
incorporating multiple sparsity promoting factors is briefly explored in the next section.

5. MULTIPLE SPARSE DOMAIN INCORPORATION

The fundamental principle underlying compressed sensing based signal recovery is to exploit a sparse
representation of the signal. If a signal could be represented in multiple sparse domains, it would be
interesting to see if these domains could be used simultaneously for better reconstruction. Traditionally
wavelets have provided a popular sparse domain in image processing and has been used in CS based
reconstructions with great success. It would be instructive to see if wavelets could be incorporated as an
added sparse domain in recovery of complex valued objects as well. If a basic wavelet based penalty term
can be incorporated to get an acceptable level of reconstruction, a vast bank of wavelet/curvelet/coiflet
based filters open up and provide opportunity for further research towards utilizing multiple sparse
representations for increasing reconstruction efficiency or lowering data requirements further. Here a
basic wavelet penalty term has been incorporated using Haar wavelets. The main aim is to explore
the possibility of incorporating multiple sparse domains easily for complex-valued image reconstruction
from sparse data. To incorporate the wavelet sparsity term, the optimization problem of (12) is modified
as

min
s

{G(s) = ‖F − ΦΨs‖2
2 + αTV (Ψs) + β‖s‖1 } (13)

In the above equation, Ψ is the Haar wavelet operator so that Ψ ∗ fd is the wavelet domain
representation of the image fd. β is the regularization parameter for the second l1 penalty term. In the
following reconstructions, α = 0.2 and β = 0.1 has been used. In Fig. 21, Fig. 22, reconstruction has
been performed by solving the optimization problem in Eq. (13) for 15 projections at different angular
coverages.
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(b)(a)

(c) (d)

Figure 21. Exploiting multiple sparse domains:
Reconstructions of real part of image from
5% noisy data with 15 views, when real and
imaginary parts have similar physical boundaries,
for different angular coverages: (a) 180◦, (b) 150◦,
(c) 120◦, and (d) 90◦.

(b)(a)

(c) (d)

Figure 22. Exploiting multiple sparse domains:
Reconstructions of imaginary part of image from
5% noisy data with 15 views, when real and
imaginary parts have similar physical boundaries,
for different angular coverages: (a) 180◦, (b) 150◦,
(c) 120◦, and (d) 90◦.

It is interesting to note that the reconstructions are comparable for 180◦ and 150◦ coverage but
degrades more rapidly than the TV based reconstruction at lower coverage and especially for the
imaginary part. There are two possible reasons behind this. Firstly, for these reconstructions, Haar
wavelets have been used for wavelet domain representation. This is the simplest wavelet available.
Further sophisticated wavelets would actually be much more effective in better sparse representation.
Secondly, once a more optimal wavelet is determined, the regularization factors can be optimized to set
up a more efficient optimization problem which will generate better reconstructions by truly exploiting
the sparsity in multiple domains in parallel. From this experiment, it is apparent that multiple sparsity
promoting terms can be simultaneously incorporated in a CS based recovery. Further, there is a huge
potential of improvement by using more optimal wavelets than the Haar wavelet used here.

6. CONCLUSION

This paper presents image reconstruction techniques using TV as the sparse l1-norm under the
compressed sensing regime. Complex valued image reconstruction has been performed with simulated
projection data. Hence, this work extends the applicability of CS based DT image recovery for complex
valued objective functions. Application areas are many, e.g., recovery of complex permittivity in
microwave tomography or complex refractive index in optical diffraction tomography, quantum state
tomography etc.. TV based CS algorithms were shown to recover complex valued images from as few
as 15 measurements and 120◦ coverage without any major artifact and retaining all image features
distinctly. The noise analysis shows that the algorithms can perform robustly with noisy data. Thus
the data requirement for good quality reconstructions under this framework is very low and supports
image recovery in all scenarios where highly limited projection data is available due to challenges of
limited angular access or small time-frames for data acquisition. The use of multiple sparse domains
was also explored. Sample reconstructions were performed using both gradient magnitude of image and
Haar wavelets as sparse domains. The responses could be further improved by exploring more optimum
wavelets for this application. This is an area for exploration and an interesting future work for extension
of this research.
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