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Design of Short-Length Polarization Beam Splitter Based on Highly
Birefringent Dual-Core Photonic Crystal Fiber

Zhenpeng Wang1, *, Fei Yu1, 2, Zhuo Wang2, and Huimin Liu3

Abstract—We propose an all circular-air-hole short-length polarization beam splitter (PBS) with high
extinction ratio based on dual-core highly birefringent photonic crystal fiber (PCF). The impacts of
geometrical parameters on the coupling polarization dependence, coupling length ratio (CLR), and
propagation property are numerically investigated by the full-vector finite element method (FEM) and
the semi-vector beam propagation method (BPM). From simulation results, it is seen that CLRs at the
excitation wavelength of 1.55 µm can be optimized to be closed to the desired values of 3/2 and 4/3 to
satisfy the sufficient condition of splitting polarized modes by appropriately tailoring the air-hole sizes.
For the two optimal structures, the separation of x- and y-polarized modes can be achieved in short
lengths of 1.41 mm and 2.89 mm at the operating wavelength of 1.55 µm, respectively. Furthermore,
the extinction ratios at λ = 1.55µm are estimated to be 97.7 dB and 88.1 dB, and the wavelength
bandwidths of extinction ratio better than 15 dB are about 107 and 82 nm, respectively.

1. INTRODUCTION

PBS, which can separate TM and TE polarization modes, is an important passive optical device, and
it is widely used in optical fiber communication systems as well as fiber optical sensing systems [1].
In the literature, various configurations of integrated optic PBS based on branched waveguides have
been presented, where highly birefringent materials, such as LiNbO3 or compound semiconductors,
were employed [2, 3]. Since the technology for fabrication of PBS in these materials is relatively
complex, interest has emerged in the fabrication of these devices in glass waveguides and optical
fibers [4]. However, one major disadvantage of conventional fiber PBS is that a long coupler length
is required because of the small birefringence in conventional glass fibers [5, 6]. In recent years, PCFs
have attracted great attentions for their unique flexibly controllable properties, such as endlessly single
mode, high birefringence, controllable chromatic dispersion, and high nonlinear property [7–10]. Since
the experimental fabrication of twin-core PCF was reported in Refs. [11, 12] and confirmed the possibility
of using the PCF as an optical fiber coupler [13], different geometrical configurations of PBSs based
on dual- or multi-core PCFs have been intensively presented [14–18]. Compared to conventional fiber-
based PBSs, PCF-based PBSs can achieve short length and high extinction ratio, and PCFs have the
advantage of that they are much easier to make into multiple cores and/or more complex structures [19].

From the view point of the device configuration, PCF-based PBSs can be classified into two
types [20]. The first type of PBS possesses an asymmetric configuration, in which only the selective
polarized mode can be freely coupled between PCF cores while the other polarized mode is intentionally
entrapped into the incident core [21–23]. Although broad bandwidth can be realized in this type of PBS,
it shows a low extinction ratio due to the fact that modal coupling cannot be prohibited completely.
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Besides, in order to select the desired coupling mode by the index-match method, the geometrical
constructions are always very complicated to the current fabrication technique. The second type of
PBSs is based on symmetric identical twin-core PCFs, relying on the high birefringence to produce a
large difference of coupling lengths between x- and y-polarized modes [24–30]. Zhang and Yang [14]
firstly reported the symmetric dual-core PCF-based PBS, and showed that the splitting ratio better than
−11 dB and a bandwidth of 40 nm could be achieved in a 1.7 mm length. Florous et al. [24] proposed a
15.4 mm-long symmetric PCF beam splitter with uniform elliptically-shaped air holes. Lu et al. [25, 26]
realized an ultra-broadband PBS by introducing two fluorine-doped cores with the device length of
more than 80 mm. Recently, Jiang et al. [27] designed an circular-elliptic hybrid air-hole PBS with
the ultra-short length of 119.1 µm, in which the high extinction ratio of 118.7 dB at λ = 1.55µm and
broad bandwidth of 249 nm could be achieved. Liu et al. [28] reported a square-lattice ZnTe glass PBS
with the length of 1.1452 mm. Wang et al. [29] realized an octagonal-lattice PCF-based PBS, whose
bandwidth of extinction ratio as low as −15 dB is 82 nm. Wang et al. [30] lately designed a square-
lattice circular-elliptical air-hole PBS, and the extinction ratio lower than 20 dB is about 70 nm with
the length of 93.3 µm. Although these PCF-based PBS can achieve good performance, their structures
are too complex to be fabricated. For example, it is impossible to realize two different kinds of air
holes (circular and elliptical) in PCFs using present fabrication techniques [31], and the fabrication of
octagonal-lattice PCF remains a challenge to our knowledge. Currently, designing the PCF-based PBS
with a simple air-hole pattern is a key issue to make them practical.

In this paper, we propose a novel dual-core PCF-based PBS, characterized by a short length, easy
fabrication technology, as well as high extinction ratio. Considering the feasibility of fabrication, the
hexagonal lattice (or triangular lattice) and all circular air holes are adopted in the proposed PBS.
To optimize the performance, we apply the full-vector FEM to accurately investigate the influence
of geometrical parameters on CLR, and then the semi-vector BPM is employed to visualize the light
propagation behaviour in longitudinally varying PCF. The simulated results show that the value of CLR
at the wavelength of 1.55 µm can be successfully optimized to be 3/2 and 4/3 to meet the sufficient
condition of splitting polarized modes. The propagation analysis indicates the separation of x- and
y-polarized modes can be achieved in short lengths of 1.41 mm and 2.89 mm at λ = 1.55µm. Finally,
the corresponding extinction ratios and wavelength bandwidths are also discussed. From the point of
fabrication, the proposed PCF-based PBS possess the advantage that the shape of all air holes are
uniformly circular and arranged in the triangular lattice that is easy to fabricate with the method of
stack and draw.

2. THEORETICAL MODEL

According to the normal-mode coupled theory, the coupling of a dual-core fiber can be described by the
use of the supermodes [32, 33]. When light is incident into one core, the propagation mode of the core
is excited. An exponentially decaying portion of mode field will diffuse into the cladding and inevitably
enter the other core due to the small distance between two cores. Then this energy may be trapped in
the other core and becomes a source for a propagating mode. Then the propagating modes in two cores
will couple each other. Therefore, there are four polarization components in the dual-core structure,
and can be denoted as Eeven

x , Eeven
y , Eodd

x , and Eodd
y , where the superscripts of even and odd represent

the even and odd modes, and the subscripts of x and y are the x- and y-polarized modes. The x and
y components of the electric field along z direction can be described by the overlap of even and odd
modes for x- and y-polarized modes [33]:

−→
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−−−→
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(1)

where a+ and a− are the excited coefficients of even and odd modes, and they satisfy the condition
of 0 < a+, a− < 1, a2

+ + a2− = 1. k is the wave number. neven
x,y and nodd

x,y denote the effective refractive
indexes of the even and odd modes for x- and y-polarized modes, respectively. The phase difference
between even and odd modes for two orthogonal polarized modes can be obtained by

δx,y = kz
(
neven

x,y − nodd
x,y

)
(2)
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From Eq. (2), we can see that the value of δx,y varies with the propagation distance. When the
variation value of the phase difference is π, the corresponding propagation distance is defined as the
coupling length, which can be used to quantify the strength of coupling. The coupling length for x- and
y-polarized modes at the wavelength of λ can be derived from Equation (2):

Li =
π∣∣βeven

i − βodd
i

∣∣ =
λ

2
∣∣neven

i − nodd
i

∣∣ (3)

where i = x, y, βeven
i and βodd

i are the propagation constants of even and odd modes for the i polarization,
respectively. The coupling lengths of x- and y-polarized modes are different due to the high birefringence
in this splitter, i.e., a complete power transfer for x polarization and y polarization happen at different
lengths. In order to successfully separate two polarization modes, the total physical length L of the
device are required to satisfies the sufficient condition L = mLx = nLy where m and n are positive
integers with opposite parity. Therefore, we define the coupling length ratio (CLR) as:

CLR =
Ly

Lx
=

m

n
(4)

From the above equations, we can learn that the key of designing a PBS is to obtain an appropriate value
of CLR by accurately tailoring the geometrical parameters. The coupling mechanism of the splitter is
the beating of the even and odd modes along the coupling region of the proposed structure. If it is
assumed that input power Pin = P x

in + P y
in is launched into core A, the output powers at the through

and coupled ports are given by:

PA
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incos2

(
πL

2Lx

)
+ P y

incos2

(
πL
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)
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insin2

(
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)
+ P y

insin2

(
πL

2Ly

) (5)

where P x
in and P y

in denote the input powers of x- and y-polarized modes, respectively, and L represents
the propagation distance along the PBS. The extinction ratio (ER) evaluates the performance of the
polarization splitters quantitatively and can be defined as:

ER = 10 lg
(

P x
out

P y
out

)
(6)

Due to the two-fold symmetry of the PBS structure, ERs at through and coupled output ports are the
same. So only the through output port is used to evaluate the performance of the proposed PBS.

In addition, numerical simulations play an important role for the design and modeling of PCFs.
So far, various theoretical models on analysis of PCFs have been developed, such as effective index
approach, plane wave method, BPM, multi-pole method, and FEM [34]. Compared with other methods,
the full vector FEM with curvilinear hybrid edge/nodal elements is capable of accurately dealing with
the curved boundaries of air holes in PCFs [35], and it has been widely used in the study of PCF
properties, including modal birefringence, chromatic dispersion, confinement loss, as well as the coupling
property [25–30]. In the simulation, we firstly use the full-vector FEM to accurately investigate its
basic characteristics and optimize the value of CLR, and then employ semi-vector BPM to analyze the
propagation behaviour and extinction ratio for the optimum structure.

3. GEOMETRICAL STRUCTURE AND SIMULATION RESULTS

3.1. Geometrical Structure and Basic Characteristics

The cross section of the proposed dual-core PBS is shown in Fig. 1, where all the circular air holes are
arranged into a hexagonal array. In the transversal profile, symbols Λ and d represent the lattice constant
and the diameter of the cladding air holes, and d1, d2 and d3 denote the corresponding diameters of air
holes surrounding around the PCF cores, respectively. The refractive index of air holes is assumed to be
1.0, and the background index of silica can be obtained by Sellmeier formula. The two identical cores,
A and B, are formed by combination of the small and large air holes and are individually separated by
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Figure 1. Cross section of the proposed PCF-based PBS.

(a) (b) (c) (d)

Figure 2. Transverse electric-field distributions at λ = 1.55µm. (a) y-polarized even mode, (b)
y-polarized odd mode and (c) x-polarized even mode, (d) x-polarized odd mode with Λ = 2.0µm,
d = 0.5Λ, d1 = 0.9Λ, d2 = 0.3Λ and d3 = 0.4Λ.

the central hexagon element. The separated distance between the centers of A and B is 2
√

3Λµm. In
each core, two enlarged air holes d1 are deliberately introduced for enhancing the coupling polarization
dependence, and the smaller air holes with the diameters of d2 and d3 are designed for controlling the
silica bridge of the energy transfer between dual cores so as to ensure a strong coupling.

During the simulation, we firstly evaluate the field distributions of even and odd supermodes at
the wavelength of 1.55 µm with Λ = 2.0µm, d = 0.5Λ, d1 = 0.9Λ, d2 = 0.3Λ and d3 = 0.4Λ, as shown
in Fig. 2. It can be obviously seen that the field powers are well restricted in the core region although
little field power diffuses into the lattice near the core, and the electric field directions in dual-cores are
identical for even supermodes but opposite for odd supermodes. Then, the effective refractive indexes of
supermodes as a function of wavelength are calculated and illustrated in Fig. 3, where we can find that for
the i polarization the effective index neven

i is greater than nodd
i in the whole wavelength range. Moreover,

it can be also clearly found that the index difference Δn = neven
i − nodd

i increases with the increase of
the wavelength, which will lead to the decrease of coupling length according to Equation (3). Fig. 4
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Figure 3. Effective refractive indexes of super-
modes for x- and y-polarized modes at different
operating wavelengths when the structure param-
eters are set as Λ = 2µm, d = 0.5Λ, d1 = 0.9Λ,
d2 = 0.3Λ, and d3 = 0.4Λ.
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Figure 4. Coupling lengths of x- and y-polarized
modes as a function of wavelength with d1 = 0.9Λ,
0.96Λ when the structure parameters are set as
Λ = 2µm, d = 0.5Λ and d2 = 0.3Λ, and d3 =
0.4Λ.

plots the variation of coupling lengths for two polarized modes at different transmission wavelengths
with d1 = 0.9 and 0.96. Firstly, it is apparent that the two polarized modes have different coupling
lengths by reason of the highly birefringent core, and this coupling polarization-dependent property
plays an critical role in achieving the aim of splitting them. Secondly, the coupling lengths of two
polarized modes become apparently shortened when d1 varies from 0.9Λ to 0.96Λ, because the coupling
coefficients of two polarized modes and the birefringence are increased significantly. In addition, at
the operating wavelength of 1.55 µm the coupling length is shorter than 0.5 mm, which provides the
possibility for realizing the PBS in a several millimeter length.

3.2. Coupling Length Ratio and Parameter Optimization

From Equations (2) and (3), we learn that the total physical length of the splitter relates not only to
the coupling lengths (Lx and Ly) but also to their ratio Ly/Lx (CLR). Therefore, it is necessary to
investigate the dependent relationship between CLR and geometrical parameters at λ = 1.55µm. From
a theoretical point of view, the optimal value of CLR is 2/1. However, although many attempts have
been made, CLR fails to be close to the optimal value of 2/1 at λ = 1.55µm. Fig. 5 indicates the
impacts of the normalized diameter d3/Λ on CLR under different situations of d1/Λ varying from 0.86
to 1.0 with the step of 0.02. The other structural parameters Λ, d and d2 are fixed to be 2 µm, 0.5Λ
and 0.3Λ, respectively. It can be clearly seen that the value of CLR obviously increases as d1 increases
for a given fixed d3, which is mainly attributed to the fact that the birefringence becomes stronger and
enhances the polarization dependence. Fig. 5 also illustrates that the value of CLR decreases with the
increasing value of d3 for a given d1. Most importantly, the desirable values of 3/2 and 4/3 are able to
be obtained when the structural parameter group (d3/Λ, d1/Λ) are designed appropriately. In addition,
it should be noted that there are multiple sets of combinations of (d3/Λ, d1/Λ) for CLR = 3/2 and 4/3.

For further optimizing geometrical parameters, the dependence of the variation of parameter d3/Λ
on the coupling length at λ = 1.55µm is investigated for different values of d1/Λ with Λ = 2µm,
d = 0.5Λ, and d2 = 0.3Λ, as shown in Fig. 6. It is apparent that the coupling length increases with
the increase of d3, because the increase of d3/Λ makes the silica channel of energy transfer narrower.
In the following discussion, we only focus on two cases of CLR that are close to 3/2 and 4/3 for a
short-length PBS. According to Figs. 5 and 6, the corresponding parameter group (d1/Λ, d3/Λ) is
designed to be (0.98, 0.32) for CLR ≈ 3/2 and (0.88, 0.31) for CLR ≈ 4/3, respectively. For the two
optimal PBS structures, the coupling lengths of x- and y-polarized modes are calculated. For the case
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Figure 5. Coupling length ratio CLR as a function of the normalized d3/Λ for different normalized
diameters d1/Λ at λ = 1.55µm with Λ = 2µm, d = 0.5Λ, and d2 = 0.3Λ.
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Figure 6. Coupling lengths of (a) x-polarized mode and (b) y-polarized mode as a function of the
normalized parameter d3/Λ for different values of d1/Λ at λ = 1.55µm with Λ = 2µm, d = 0.5Λ, and
d2 = 0.3Λ.

of CLR ≈ 2/3, the coupling lengths are about Lx = 0.471 mm and Ly = 0.706 mm, and thus the total
length is about 1.41 mm by L ≈ 3Lx ≈ 2Ly; for the other case of CLR ≈ 4/3 the coupling lengths are
respectively Lx = 0.722 mm and Ly = 0.963 mm, so the total length can be obtained about 2.89 mm by
L ≈ 4Lx ≈ 3Ly.

3.3. Propagation Characteristics

To visualize the coupling mechanism of the proposed PCF-based splitter, the three-dimensional semi-
vector BPM is also employed to model the optimized PBS structures. In the simulation, it is assumed
that a given polarization light of 1.55 µm is incident into core A, and then powers in core A and core B
will periodically change with the propagation distance. In Fig. 7, we plot the electric field distributions
of x-polarized mode at the propagation distance of z = 0, Lx/3, Lx/2, 2Lx/3 and Lx for the case of
CLR = 3/2 with the optimal structure of Λ = 2µm, d = 0.5Λ, d1 = 0.98Λ, d2 = 0.3Λ, and d3 = 0.32Λ.
As can be seen in Fig. 7, at the transmission distance of Lx/3, only a small portion of the energy couples
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Figure 7. Field distributions of x-polarized mode at the propagation distance of (a) z = 0, (b)
z = Lx/3, (c) z = Lx/2, (d) z = 2Lx/3, and (e) z = Lx.
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Figure 8. Normalized power of x- and y-polarized modes versus the propagation distance at
λ = 1.55µm in (a) core A, and (b) core B for the case of CLR = 3/2.
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Figure 9. Normalized power of x- and y-polarized modes versus the propagation distance at
λ = 1.55µm in (a) core A, and (b) core B for the case of CLR = 4/3.

into core B from core A, and with the increase of the propagation distance more energy transfers to
core B, and till z = Lx/2 the powers in dual cores are almost the same. Finally, when the transmission
distance reaches the coupling length of Lx, almost all the original power in core A couples into core
B. The y-polarized mode also has a similar behaviour to this. Figs. 8 and 9 illustrate the normalized
powers in core A and core B against the propagation distance for the two optimal structures. It can be
seen that the incident light transfers back and forth between the twin cores, and at the distance of Lx

or Ly the power of x- or y- polarized mode in core A almost disappears while that in core B reaches
the peak. More importantly, after a propagation distance of 1.41 mm in Fig. 8, almost all x-polarized
power stays in the through channel A while that of the y-polarized mode exists in the coupled channel
B. Similarly, as Fig. 9 shows, the two polarized modes are also completely divided and couple out from
different channels at the distance of 2.89 mm.

The extinction ratio gives the performance of the device to isolate the two polarized lights. Fig. 10
indicates the extinction ratio as a function of wavelength for the two optimal structures. It can be learned



Progress In Electromagnetics Research C, Vol. 70, 2016 131

1.45 1.49 1.53 1.57 1.61 1.65
-100

-80

-60

-40

-20

0

Wavelength (μm)

E
xt

in
ct

io
n 

ra
tio

 (
dB

)

1.45 1.49 1.53 1.57 1.61 1.65
-100

-80

-60

-40

-20

0

Wavelength (μm)

E
xt

in
ct

io
n 

ra
tio

 (
dB

)

(a) (b)

Figure 10. The extinction ratio of the polarization beam splitter versus wavelength for the two optimal
structures with lengths of (a) 1.41 mm, and (b) 2.89 mm.

that the extinction ratio can reach 97.7 dB and 88.1 dB at the transmission wavelength of 1.55 µm, and
the wavelength bandwidths of extinction ratio better than 15 dB are about 107 and 82 nm, respectively.

4. DISCUSSION AND CONCLUSIONS

To summarize, we have proposed a novel PCF-based PBS with twin highly birefringent cores, and all
the air holes are circular holes and are arranged in a triangular lattice that is easy to fabricate with
the method of stack and draw. The polarization-dependent coupling characteristics of the proposed
splitter are modeled and analyzed by the full-vector FEM and the three-dimensional semi-vector BPM.
The simulation results reveal that the polarization dependence of coupling can be significantly enhanced
when the birefringence of dual cores is heightened by increasing the diameter of d1. The analysis of CLR
indicates that the eligible CLR values of 3/2 and 4/3 can be obtained when the normalized parameters
(d1/Λ, d3/Λ) are optimized to be (0.98, 0.32) and (0.88, 0.31) with Λ = 2µm, d/Λ = 0.5 and d2/Λ = 0.3.
For the two different configurations, the extinction ratio at Λ = 1.55µm can reach 97.7 dB and 88.1 dB
with different device lengths of 1.41 mm and 2.89 mm, and the wavelength bandwidths of extinction
ratio as low as 15 dB are about 107 and 82 nm, respectively.

Compared with the ultra-short PBSs in [28–30], the proposed PCF-based PBS has a larger device
length partly resulting from the large distance between the two core centers. However, the larger
separation may bring the convenience of connecting with other external devices. In addition, the
wavelength bandwidth of high extinction ratio may be further enlarged by introducing depressed-index
fluorine-doped cores [25, 26, 36] or embedding a defected air hole into the core in our opinion. Till now,
PCFs with different structures have been fabricated by stack-and-draw technique, performs drilling
method, die-cast process, and sol-gel casting method, etc. Therefore, the proposed all circular-air-
hole PCF-based PBS with the conventional triangular lattice may be fabricated under the current
technology. Considering the good performance of the proposed PBS, we believe that it has great
potential applications in optical communication systems, such as coherent and polarization diversity
optical detection, and the polarization-division multiplexing communication.
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