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Real-Coefficient FGG-FG-FFT for the Combined Field
Integral Equation
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Abstract—This article proposes a new scheme of real-coefficient fitting both Green’s function and its
gradient with Fast Fourier Transform (RFGG-FG-FFT) for combined field integral equation (CFIE) to
compute the conducting object’s electromagnetic scattering, which improves original fitting both Green’s
function and its gradient with Fast Fourier Transform (FGG-FG-FFT) on efficiency. Firstly, based on
Moore-Penrose generalized inverse, an equivalent form of fitting matrix equation is obtained containing
the property of Green’s function’s integral proved by addition theorem. Based on this property, with
truncated Green’s function new fitting technique is presented for computing fitting coefficients with real
value expression, which is different from complex value expression by the original fitting technique in
FGG-FG-FFT. Numerical analysis of error shows that new fitting technique has the same accuracy,
but only one half of sparse matrices’ storage compared to the original fitting technique in FGG-FG-
FFT. Finally, the new scheme combining FGG-FG-FFT and new fitting technique is constructed. Some
examples show that the new scheme is accurate and effective compared to FGG-FG-FFT and p-FFT.

1. INTRODUCTION

Many researchers have studied efficient solvers for the integral equation (IE) in analysing electromagnetic
radiation or scattering problems. Among them, the method of moments (MOM) [1] is one of typical
numerical algorithms by discretizing the IE with basis functions into resultant matrix equation. FFT-
based algorithms employ FFT to speed up the matrix-vector products, needing to discretize IE on a
uniform Cartesian grid. The Adaptive Integral Method (AIM) [2] and precorrected-FFT (p-FFT) [3]
focus on the projections of the basis functions on the nodes of the uniform Cartesian. In the case of the
same grid spacing and expansion order, compared with AIM, p-FFT possesses higher accuracy because
the Green’s function is considered in the matching stage [4]. Different from the above two FFT-based
algorithms, integral equation Fast Fourier Transform (IE-FFT) [5] was proposed to represent the Green’s
function with its values on the nodes of the uniform Cartesian grid by interpolation. Subsequently, Xie
et al. [6] improved accuracy of IE-FFT by fitting both Green’s function and its gradient onto Cartesian
grid node, named as FGG-FG-FFT. However, in the case of the same grid spacing and expansion order,
FGG-FG-FFT presents less efficiency than IE-FFT because of computing method of fitting coefficients
and the complex value expression of fitting coefficients. Among these two reasons, the latter is the
major one, which not only has twice storage requirement, but also increases the complexity per iteration
compared to real value expression of fitting coefficients. Ref. [7] shows the useful fact that imaginary
part of fitting coefficients is obviously smaller than real part. However, mathematical deduction is not
provided.

In this paper, firstly based on Moore-Penrose generalized inverse, an equivalent form of fitting
matrix equation is obtained containing the property of Green’s function’s integral proved by addition
theorem [8]. Secondly, based on this property, with truncated Green’s function new fitting technique
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is presented for computing fitting coefficients. Fitting coefficients with new fitting technique are purely
real. Numerical analysis of error shows that compared to the original fitting technique in FGG-FG-
FFT, the new fitting technique has a similar accuracy, but only one half of sparse matrices’ storage.
Finally, a new scheme combining FGG-FG-FFT and new fitting technique for CFIE is constructed
to compute electromagnetic scattering. Some examples show that the new scheme with real value
expression of fitting coefficients possesses not only the same high accuracy as FGG-FG-FFT and p-
FFT, but also higher efficiency than FGG-FG-FFT and p-FFT due to their complex value expression
of fitting coefficients and projection coefficients, respectively.

2. FORMULATION

2.1. New Fitting Technique in RFGG-FG-FFT

The current distribution on the 3D arbitrarily shaped conductor can be obtained by finding the solution
of electric field integral equation (EFIE), and magnetic field integral equation (MFIE) [1]:
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where Einc and Hinc are the incident electric and magnetic field, respectively; J(r) is the surface
equivalent current; η0 and k0 are the wave impedance and the wave number in the free space; P.V.
is the principal value integral; g(r, r′) is the Green’s function in the free space with the form of
g(r, r′) = e(−jk0|r−r′|)/|r− r′|; subscript t denotes the tangent part; n̂ is the unit outer normal vector on
the object’s surface. Then choose Rao-Wilton-Glisson (RWG) [9] functions as the basis functions and
testing functions to formulate resultant matrix equation:

ZCFIEI = V (2)

with ZCFIE = aZEFIE + (1 − a)ZMFIE, whose impedance elements have the form of:
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in which Tm and Tn are the triangular patches of fm(r) and fn(r), respectively. According to the
interaction between basis functions, resultant impedance matrix can be split into two parts, in which
some are near-field interaction parts, and the others are far-field interaction parts [6]:

ZCFIE ≈ [
a

(
ZEFIE-near

MOM − ZEFIE-near
FFT

)
+ (1 − a)

(
ZMFIE-near

MOM − ZMFIE-near
FFT

)]
+aZEFIE-total

FFT + (1 − a)ZMFIE-total
FFT . (4)

As we know, if the distance between basis functions is less than near zone boundary dnear,
near-field interaction impedances computed by FFT-based algorithms present poor accuracy, so all
of FFT-based algorithms need the pre-correction of near-field interaction impedances. In Eq. (4),
ZCFIE-near

MOM − ZCFIE-near
FFT is precorrected matrix, in which ZCFIE-near

MOM and ZCFIE-near
FFT are near-field

interaction impedances computed by MOM and FFT-based algorithm respectively. ZEFIE
FFT and ZMFIE

FFT
are the approximation by FFT-based algorithms expressed as:

ZEFIE
FFT = jk0η0Π · GΠT − j(η0/k0)ΠdGΠT

d , ZMFIE
FFT = Πg · GΠT , (5)

where Π, Πd and Πg are sparse matrices composed of basis functions and fitting coefficients. G stands
for a triple Toeplitz on Cartesian grid. Superscript T identifies transpose operator. With this form,
matrix-vector products per iteration can be accelerated by FFT. Each iteration is only 8 FFTs, and the
whole computation complexity is reduced from O(N2) to O(N1.5 log N) [6].
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Similar to other FFT-based methods, FGG-FG-FFT also needs fitting cube Cm composed of
NC = (M + 1)3 grid nodes with the center being cm in which M is expansion order. Grid spacing is h
in three coordinate directions. Suppose rm to be the minimum radius of spherical surface enclosing Cm.
Rm is the radius of testing spherical surface Sm with the same center cm. Assuming Rm = rm + 0.05λ,
λ is the wavelength in free space. {rt}Te

1 are testing points locating on Sm, which are chosen according
to Ref. [10]. So Green’s function and its gradient can be expressed as:
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where {πr
u,Cm}Nc

u=1 and {ςr
u,Cm}Nc

u=1 are fitting coefficients. Fitting the gradient of Green’s function adopts
the one-step fitting scheme (OSFS) which is the optimal scheme for fitting the gradient on efficiency
and accuracy shown in [6]. In this paper, both of FGG-FG-FFT and RFGG-FG-FFT employ OSFS
for fitting the gradient. r and r′ are the position vector of field and source points, respectively. r is
surrounded by Cm, and ru is the grid node’s vector. For solving fitting coefficients, assume r′ = rt,
overdeterminant fitting matrix equation with the dimension of Te × NC is given:
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in which, [X]+ denotes the generalized inverse of [X]; fitting coefficients {πr
u,Cm}Nc

u=1 and {ςr
u,Cm}Nc

u=1

are determined by solving this fitting matrix equation, so sparse matrices Π, Πd and Πg can be decided,
the detailed description about FGG-FG-FFT can be found in [6].

During per iteration, the most time-consuming is matrix-vector multiplications concerning sparse
matrices composed of fitting coefficients and basis functions. Noticeably, fitting coefficients by AIM and
IE-FFT are real values, and those by FGG-FG-FFT and p-FFT are complex values, so AIM and IE-
FFT have higher efficiency, lower accuracy than p-FFT and FGG-FG-FFT under the same grid spacing
and expansion order. In essence, fitting technique in p-FFT and FGG-FG-FFT is near-matching [4].
Hence, a naive thought would be to ask if real values scheme and fitting technique can be combined to
obtain higher efficiency and accuracy. The answer is yes. Actually, mass of examples for Equation (7)
shows that: with Te getting more, imaginary part of fitting coefficient is not more than 1% of real part
of its own, which indicates feasibility of real fitting coefficient scheme. In practice, when testing points’
number on testing spherical surface approximates infinite and generalized inverse satisfies Moore-Penrose
conditions, fitting coefficients of FGG-FG-FFT and p-FFT approximate real values. For Equation (7),
adopting Moore-Penrose generalized inverse to compute [X]+, the solution of [X]+ is existent and
exclusive and simultaneously has the equivalent form of [X]+ = [XHX]+[XH ] in which superscript H

denotes Hermitian. Referring to [10], {rt}Te
1 are not mean distribution on testing spherical surface. In

practice, when {rt}Te
1 are mean distribution on testing spherical surface, with the number of {rt}Te

1
getting more and more, fitting accuracy is comparable to the method by [10]. When utilizing mean
distribution, testing points {rt}Te

1 have the equal weight wt = 4πR2
m/Te, which is the area of small cell on

testing spherical surface. Obviously, [X]+ can be expressed as [X]+ = [wtX
HX]+[wtX

H ]. Furthermore,
taking the limit as the number of testing points Te → ∞, we have:
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The resultant fitting coefficients almost equals those by Eq. (7). Then, we will give an important
property of Ai,j and Bp

i in the next section.
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2.2. The Property of Green’s Function’s Integral

Use the addition theorem:
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where T is translation matrix and L the number of modes. According to Gaussian quadrature formula,
{k̂p}K

1 are angular directions on Ewald sphere with the total number K = 2L2 satisfying the symmetry
to the center of Ewald sphere [11], and ωp is the Gauss weight.

Substitute Eq. (9) into Eq. (8) and define Ai,j, Bi,j as
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in which, K1 and K2 are relative to g(ri, rt) and g(rj , rt), respectively. Generally, K1 �= K2. The
integral term concerning T1 and T2 in (10) can be expressed as follows:∫
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where L = min {L1, L2}. Use the expansion of Pl in Equation (11) again:∫
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Obviously, this is pure real. Then, substitute Eq. (14) into Eq. (10):
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Here, Equation (15) has used the symmetry of k̂p and k̂q about spherical center. When K = max {K1,
K2} → ∞:

Ai,j = lim
K→∞

Āi,j , Bi,j = lim
K→∞

B̄i,j. (16)

Obviously, Ai,j and Bi,j are proved to be pure real when the test points approximate infinite on
testing spherical surface. This is the property of Green’s function integral and is also the supplementary
interpretation of real coefficient scheme in [7]. In practical application, we can use Āi,j and B̄i,j to
approximate Ai,j and Bi,j, and the fitting coefficients are real values, which can make computation
efficiency improved greatly.

2.3. RFGG-FG-FFT for CFIE

For translating the complex value expression of fitting coefficients in FGG-FG-FFT into the real
expression, new fitting technique is proposed as:

1). According to fitting matrix Equation (8), substitute Ai,j and Bp
i by their approximation Āi,j and

B̄i,j which are decided by truncated Green’s function having the number of modes L = kd+5 ln(π+kd),
in which d =

√
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which reflect the relative errors of fitting Green’s function and the gradient of Green’s function,
respectively. It is noticeable that in Eq. (8) with the truncated Green’s function [A]+ and [Bp] have
some common terms during the whole fitting process for all of the fitted points. [A]+ can be used
repeatedly because it only concerns common grid cube. However for different fitted points, [Bp] needs
to be computed respectively except for the common terms. As a consequence, the complexity during
computing fitting coefficients does not increase so greatly that consuming time during this process can
be neglected.
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Figure 1. Fitted field point in grid cube with M = 2, source point r′ = (0, 0, 0.3λ).
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Figure 1 shows a case for evaluating new fitting technique. It gives a set of Cartesian grid nodes
with expansion order M = 2 enclosing fitted field point, a fixed source point is located on z-coordinate
outside this cube, whose distance to the center is not smaller than near zone boundary dnear = (M +1)h.
Testing points are chosen on the spherical surface S. Rule of choosing grid cube for fitted field point
is that the nearest node to fitted field point in distance is the cube’s center, so the largest distance in
each coordinate (x, y, z) between fitted field and cube’s center is not more than 0.5h. Let fitted field
point move along this cube’s diagonal line (x = y = z) from its center to point of (0.5h, 0.5h, 0.5h).

Set h = 0.1λ (λ is wavelength in the free space), fixed point r′ = (0, 0, 0.3λ), rt = 0.3λ and
L = 11. Green’s function and three components (σ = x, y, z) of its gradient are given in Figs. 2(a)–2(d)
respectively. Because fitted field point moves along the diagonal line from (0, 0, 0) to (0.5h, 0.5h,
0.5h), its coordinate value is expressed as x = y = z (0 ≤ x ≤ 0.5h). In Figs. 2(a)–2(d), horizontal
coordinate x ranges from 0 to 0.05λ. Subscripts 1, 2 stand for new fitting technique, original technique
in FGG-FG-FFT respectively. FGG-FG-FFT still utilizes the original technique in Eq. (7). Generally,
when the testing points reach more than 10 times the fitting cube’s nodes, in FGG-FG-FFT fitting
error keeps stable even though grid spacing is different. So set the number of testing points Te = 338.
Results show that when grid spacing is small, real fitting coefficients by the new fitting technique have
almost the same relative error as complex fitting coefficient by original technique.
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of the Green’s function’s gradient, (c) y-component of the Green’s function’s gradient, (d) z-component
of the Green’s function’s gradient.
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This example gives the comparison of relative error under special condition that source point is
located right on z axis. If source points are located at any position outside of fitting cube, new fitting
technique still has high accuracy comparable to original technique. The source point distance gets
larger, and fitting error gets smaller.

3. NUMERICAL RESULTS AND DISCUSSION

Combine FGG-FG-FFT with new fitting technique to formulate RFGG-FG-FFT which is similar to
FGG-FG-FFT except for fitting technique. Set grid spacing h = 0.1λ or 0.2λ, expansion order M = 2,
and near zone boundary dnear = (M + 1)h. The iteration solver BiCGSTAB is adopted, and highly
efficient FFTW [13] library of OpenMP version is employed for parallel computing FFTs in per iteration.
The computing platform is AMD processor of 2.3 GHz with 64 kernels and 64 GB RAM.

3.1. A PEC Sphere

For comparing RFGG-FG-FFT to FGG-FG-FFT and IE-FFT [14], a PEC sphere with radius of 6λ
is illuminated by plane wave. Here is employing RWG basis functions [9] for discretizing surface with
123235 unknowns. In IE-FFT, (M + 1) = 3 order interpolation is adopted for Green function and its
gradient. Fig. 3 shows bistatic RCS curves with different grid spacing by the above three schemes.

For comparing accuracy of three schemes, the root of mean square error (RMSE) [6] is defined for
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Figure 3. Comparison of three schemes with (a) h = 0.1λ and (b) h = 0.2λ.

Table 1. Comparison of three schemes.

h(λ) Memory of sparse coefficients (MB) Total time (s) RMSE

0.1
RFGG-FG-FFT 251.88 1182 0.10
FGG-FG-FFT 510.47 1626 0.10

IE-FFT 251.86 1125 0.56

0.2
RFGG-FG-FFT 240.58 887 0.12
FGG-FG-FFT 490.84 1254 0.12

IE-FFT 240.58 854 1.15
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comparison (N is the number of unknowns of the recorded zenith).

RMSE =

√√√√ 1
N

N∑
m=1

∣∣∣(RCS/λ2)Calculated − (RCS/λ2)MOM
∣∣∣2. (18)

The results with three schemes are listed in Table 1. It is obvious that: (i) RFGG-FG-FFT and
FGG-FG-FFT almost have the same accuracy and are not sensitive to grid spacing, (ii) RFGG-FG-
FFT has the same storage requirement as IE-FFT due to real expression for fitting coefficients, (iii)
new scheme has comparable efficiency to IE-FFT, and improves computation efficiency by almost 50%
compared to FGG-FG-FFT.

3.2. A PEC Brick

Figure 4 shows a PEC brick with the size of 10λ × 3λ × 0.2λ. There are 11520 RWG functions on
discretizing surface. Comparisons of bistatic RCSs from RFGG-FG-FFT, FGG-FG-FFT and p-FFT

Figure 4. A PEC brick with the size of 10λ × 3λ × 0.2λ.

(a) (b)

Figure 5. The bistatic RCS curves of a PEC brick in yoz plane with M = 2, (a) h = 0.1λ, (b) h = 0.2λ.

Table 2. Comparison of three schemes.

h(λ) Memory of sparse coefficients (MB) Total time (s)

0.1
RFGG-FG-FFT 24.34 108
FGG-FG-FFT 50.68 189

p-FFT 50.21 195

0.2
RFGG-FG-FFT 24.78 85
FGG-FG-FFT 48.34 165

p-FFT 47.25 159
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are illustrated in Fig. 5. Incident wave travels forward in −z direction. The bistatic RCS curves are
calculated with grid spacing h = 0.1λ, 0.2λ shown in Figs. 5(a), 5(b) respectively. RMSE of three
schemes is compared to that of MOM. Results indicate that RFGG-FG-FFT and FGG-FG-FFT keep
the same, stable accuracy with different h, and is in good agreement with p-FFT. Simultaneously,
Table 2 indicates that RFGG-FG-FFT is more efficient than FGG-FG-FFT and p-FFT, for which
RFGG-FG-FFT adopts real value expression of fitting coefficients, whereas FGG-FG-FFT and p-FFT
adopt complex value expression for fitting coefficients and projections of basis function respectively. So
RFGG-FG-FFT is correct and effective.

4. CONCLUSION

This paper gives an equivalent form of fitting matrix equation based on Moore-Penrose generalized
inverse. Furthermore, the property of Green’s function integral is proved by addition theorem. Then a
new fitting technique is proposed. Numerical analysis of error shows that this new fitting technique keeps
high accuracy compared to original technique in FGG-FG-FFT. Eventually a new scheme of RFGG-FG-
FFT for CFIE to compute electromagnetic scattering is presented by combining FGG-FG-FFT with
new fitting technique. Numerical examples show that this scheme keeps high accuracy compared to
FGG-FG-FFT and p-FFT, realizes reduction of sparse matrices storage in FGG-FG-FFT, reaches 50%
close to storage requirement in IE-FFT, and improves computation efficiency by almost 50% compared
to FGG-FG-FFT. Like original FGG-FG-FFT, new scheme is not sensitive to grid spacing, so under
the condition of larger grid spacing, the new scheme can improve computation efficiency further.
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