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Application of Microwave Integrators for Interference Suppression

Lin-Chuan Tsai*

Abstract—In this study, a trapezoidal-rule integrator and inverting a differentiator are employed
to form the transfer function of an approaching integrator in the Z domain. The integrator was
implemented to verify the feasibility of the technique, and the integrator exhibited an operating
frequency of 1.45 to 6GHz. Adding microwave integrators to a receiver’s radio frequency (RF) circuits in
a communication link improves the signal-to-noise ratio (SNR). As a result, an experimental environment
was constructed in a wireless local area network (WLAN) band (2400 to 2483.5 MHz). In addition, the
RF transmitter emitted the main signal at 2.45 GHz, which included the high-frequency interfering
signals at 3.5, 4.5, and 5.5 GHz. The integrators and low-pass filters were implemented to perform
signal analysis of the RF signals. To compare the interference suppression of the integrators with the
interference suppression of the original and low-pass filters, the receiving power of the main signal and
the interfering signals from the different frequencies in the end of the receiver were analyzed. The
experimental results indicated that inserting integrators into RF circuits improved the SNR of the
communication link by up to 10 dB.

1. INTRODUCTION

Interference suppression issues have been extensively discussed in recent studies. To overcome the noise
interference generated by communication circuits, many interesting interference suppression methods
have been proposed [1–11]. In [1], joint suppression of two interferences was implemented in a
receiver design based on the criterion of the minimum mean-squared error (MMSE). In [2], interference
suppression was achieved through a zero-forcing algorithm that leveraged multichannel reception and
requires channel state estimates for the interfering signal. Stochastic network structures have been used
to demonstrate the average interference suppression performance. Several other interference suppression
methods have been proposed [3–6].

Code-division multiple access (CDMA) for interference suppression has been examined [7–11].
In [7], an interference suppression technique was presented to use partial knowledge of spreading
sequences to cancel a group of interfering signals. Knowledge of a complex scrambling sequence
was used to project the desired signal away from the interference in the in-phase/quadrature (I/Q)
complex plane. A novel low-complexity reduced-rank linear interference suppression technique was
described and analyzed for direct-sequence (DS) CDMA systems based on the set-membership joint
iterative optimization of received parameters [8]. Several other CDMAs have been proposed to suppress
interference [11].

Many interesting discrete-time signal processing (DSP) techniques have been examined in the
study of infinite impulse response (IIR) or finite impulse response (FIR) filter methods [12–16]. This
paper indicates that the cascade line and two-section shunt-open elements of equal-electrical-length
transmission lines can be expressed with a z variable in the discrete-time domain [17, 18]. Therefore,
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the basic transmission-line elements can follow the transfer function of an integrator developed in the
discrete-time domain. In particular, simple and accurate formulations are used to represent discrete-
time IIR processes of a discrete-time integrator. To verify the theoretical study, the integrator was
implemented in the microstrip format based on the physical length of each line section that had an
operating frequency from 1.45 to 6GHz. The experimental results, except for the results from the lower-
frequency band, were similar to the theoretical values. The integrators were placed at the input port of
the antenna in the receiver to accept the time integral of the received signals. This improved the weight
of the binary message embedded in the modulated carrier signal. The experimental results indicated
that inserting integrators into radio frequency (RF) circuits improved the signal-to-noise ratio (SNR)
of the communication link by 7 dB. The experimental results further validated the proposed scheme.
The integrators were simple and small, and thus could be practically implemented in communication
circuits.

2. TRANSFER FUNCTIONS OF INTEGRATORS IN THE Z DOMAIN

Many methods have been created for proposing integrators using IIR or FIR techniques in DSP studies.
The trapezoidal-rule integrator in the discrete-time domain is related to the complex-frequency variable,
s−1, as follows:

s−1 = H1(z) =
1 + z−1

c(1 − z−1)
, (1)

where c is a real constant, and z−1 represents a unit of time delay. The trapezoidal-rule integrator in
Eq. (1) represents a bilinear transformation of converting analog prototypes to discrete-time prototypes.
In particular, a zero exists at z = −1 (normalized frequency, π). A z variable in Eq. (1) is replaced
when the frequency domain response of the integrator is involved with the following relationship:

z = ejΩ, (2)

where Ω is the frequency angle (or normalized frequency) and 0 ≤ Ω ≤ π. An integrator can also be
obtained by inverting a differentiator, producing the following equation [17]:

H2(z) =
0.28 + 0.04648z−1

1 − z−1
. (3)

The amplitude responses of both Eqs. (1) and (3) as a function of normalized frequency are shown
in Fig. 1. If c = 5.56 and Ω = 0.1π, the amplitude responses of H1(z) are in a state of unity, and
the maximal value of the transmission-line network’s transmission coefficient is also in a state of unity.
Fig. 1 also shows the amplitude response of an ideal integrator, which is inversely corresponding to the
normalized frequency. Both Eqs. (1) and (3) deviate slightly from the value of an ideal integrator in
the frequency band. To obtain an integrator that better fits the ideal integrator over the all normalized
frequency bands, an approaching integrator is arranged as follows:

Hn(z) = 0.4 · H1(z) + 0.6 · H2(z) =
0.24 + 0.0999z−1

(1 − z−1)
. (4)

The frequency response of ideal integrators is

HI(z) =
1
jω

. (5)

The amplitude responses of both Hn(z) and the ideal integrator are shown in Fig. 2. The transfer
function of integrator Hn(z) can represent the ideal integrator in the frequency band (0 ≤ Ω ≤ 0.6π).
The integrators Hn(z) become infinite at Ω = 0. If the amplitude response must be complied in the
low-frequency band, the integrator is difficult to implement at Ω = 0. In particular, if an integrator
is implemented by employing the integrator that is 1, Hn(z) shows a value of 1 at the normalized
frequencies 0.145π. To facilitate the design, the transmission lines were set, and the maximal value
of the transfer function amplitude of transfer function Hn(z) was set to 1 for the frequency range,
0 ≤ Ω ≤ 0.145π. The remaining part of the transfer function in the range 0.145π ≤ Ω ≤ 0.6π satisfies
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Figure 1. Amplitude responses of H1(z), H2(z),
and ideal integrator.

Figure 2. Amplitude responses of both Hn(z)
and ideal integrator.

Eq. (4). The circuit obtained in these circumstances behaves as an integrator of the frequency range,
0.145π ≤ Ω ≤ 0.6π. With such a condition, the integrator in Eq. (3) compensates for the zero occurring
at the normalizing frequency (Ω = π). The frequency changes over the entire band, as shown in Eq. (2),
is equivalent to moving z variable along the unit circle, |z| = 1, in the complex Z plane. Equation (4)
shows that a zero occurs at z = −0.42, and this zero is not possible by employing a transmission-line
element. Zeroes happening on the unit circle, |z| = 1, can be implemented by employing two-section
shunt-open elements. In addition, the zero at z = −0.42 is far away from the unit circle, and it has
little effect on Hn(z) in the entire frequency range, 0 ≤ Ω ≤ π. To implement an integrator, the next
process is to obtain an equal-length transmission-line configuration, allowing its transmission coefficient
to fit transfer function Hn(z).

3. MEASUREMENT RESULTS

A two-port network is shown in Fig. 3, where a(1) and b(1) are the incident wave and reflected wave
at port one, respectively, and a(2) and b(2) are the incident wave and reflected wave at port two,
respectively. These waves are interrelated through the chain scattering parameters, Tmn, (m,n = 1, 2),
of a two-port network as follows: [

a(1)
b(1)

]
=

[
T11 T12

T21 T22

] [
b(2)
a(2)

]
. (6)

Figure 3. A two-port device.
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Figure 4. The configuration of a microwave
integrator.
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Table 1 shows basic transmission line element chain-scattering parameter matrices, Tmn, (m,n =
1, 2), of a cascade line element and a two-section shunt-open element in the Z domain. The Z domain
parameter is obtained by setting z = ejβili, where βi is the propagation constant, and li is the physical
length. Each cascade has z(−1/2) that gives a zero in z-domain when z = 0, and a two-section shunt-open
element provides two zeros located on the unit circle. If a transmission line consists of K (K is positive
integer) two-section shunt-open elements and L (L is positive integer) cascade line elements, then the
matrix element T11,overall(z) of the overall circuit is denoted as follows:

T11,overall(z) =

2K+L∑
i=0

diz
−i

K∏
k=1

(
1 + 2γkz

−1 + z−2
) L∏

l=1

z−L/2
(
1 − Γ2

l

) . (7)

Equation (7) shows that all di are real and are determined by the characteristic impedance of cascade
line and two-section shunt-open elements. If the output of the serial circuit is appropriately terminated,
we have a(2) = 0, and transfer function T (z) of such a transmission line of serial circuit is obtained as
follows:

T (z) =
b(2)
a(1)

∣∣
a(2)=0 =

1
T11,overall(z)

= z−L/2

K=1∏
k=1

(
1 + 2γkz

−1 + z−2
)

2K+L∑
i=0

Aiz
−i

, (8)

where Ai = di/(
∏L

l=1 (1 − Γ2
l )) is a function of the characteristic impedances of two-section shunt-open

elements and cascade-line elements. The term, 1 + 2z−1 + z−2, in the numerator in Eq. (8) is due to
a two-section shunt-open element, and the term, z−L/2, represents the delay factor of L cascade line
elements.

Table 1. Basic transmission line elements chain-scattering parameter matrices.
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To reduce the circuit size and perform the optimization, it might be easier to synthesize the
integrator circuit if two-section shunt-open stubs were used than the minimal requirement of the discrete-
time integrator. The synthesis algorithm step transforms both T (z) and Hn(z) into whole new forms.
The operation in this step divides both T (z) and Hn(z) by the terms, producing T (z) zeroes on the
unit circle in the Z plane. In other words, the T (z) numerator that produces the unit-circle zeroes
is removed from T (z) and appears in the denominator of Hn(z). It might be easier to synthesize the
integrator network if two-section shunt-open elements were used than that the minimal requirement of
the discrete-time integrator was used. To implement the integrator with cascade line and two-section
shunt-open elements, the electrical length of each element was set to 90◦ at the normalized frequency. In
this investigation, to construct microwave integrators, microstrip lines were used to follow transmission
line elements. The microstrip lines were assumed to be both dispersionless and lossless for the present
study. Because of the restrictions of the obtainable manufacturing method, the line widths of the
cascade line and the two-section shunt-open elements were confined to 0.1 mm. Therefore, the largest
value of all characteristic impedances of transmission line elements was confined to 160 Ω. Under such
circumstances, one two-section hunt-open element, as well as a cascade line element, may be selected as
the basic circuit. The next process is to match the coefficients of the denominators in Eq. (8), ensuring
that T (z) is as close to Hn(z) as possible. In Eq. (8), Ai is decided by the characteristic impedance of all
transmission line elements. By using the optimization process [19–21], the values of the characteristic
impedances of the transmission lines are adjusted according to the goal that the difference between
Eqs. (4) and (8) is minimized in the sense of mean square error (MSE). The optimization algorithm
showed that K = 2 and L = 3 when the characteristic impedances of transmission lines were obtained.
The illustration of the circuit used to synthesize th integrator is shown in Fig. 4. Fig. 5 shows the
frequency responses of T (z) and Hn(z). Microstrips were used to implement the integrator. Fig. 6
shows the photograph of the microwave integrator, which was built on an RT/Duroid RO4003C substrate
with a dielectric constant of εr = 3.55, loss tangent of tan δ = 0.0025, and thickness of 1.524 mm. The
total length of the integrator, excluding the 50-Ω reference lines on both sides, was 19.65 mm. The
characteristic impedances of the cascade line elements were L1 = 130Ω, L2 = 102Ω, and L3 = 106Ω,
and the two two-section shunt-open elements were K1(Z2) = 22Ω, K1(Z1) = 154Ω, K2(Z2) = 22Ω,
and K2(Z1) = 154Ω.

Figure 7 shows the measured and simulated results S21(f) and S11(f) of the integrators shown
in Fig. 6. The slight difference between the experimental results and the theoretical ones is due to
conductor loss, dielectric loss, as well as the restriction of manufacturing. The experimental results
of the circuit in Fig. 6 fit the theoretical values for the frequency range, 1.45GHz ≤ f ≤ 6 GHz. As

Figure 5. The magnitude function of Hn(z) and
the magnitude function T (z) of the microwave
integrator.

Figure 6. Physical layout of the microwave
integrator.
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mentioned in the previous section, the magnitude of S21(f) exhibits a value of unity for the frequency
range, 0GHz ≤ f ≤ 1 Hz. Therefore, the circuit in Fig. 6 behaves as an integrator for the frequency band,
1.45GHz ≤ f ≤ 6 GHz. The experimental results are still in good agreement with the theoretical values.
The integrator is a low-pass filter with close frequency dependence. To demonstrate the interference
suppression of the difference between the integrator and the conventional low-pass filter, a three-order
Butterworth low-pass filter was fabricated. Fig. 8 shows a photograph of the low-pass filter that was
built on the same substrate as the above mention. Fig. 9 shows the measured and simulated results of
S21(f) and S11(f) for the low-pass filter. Notably, both the Butterworth low-pass filter in Fig. 8 and
the microwave integrator in Fig. 6 have the −3-dB point at the same frequency in the attenuation band.
In addition, a three-order Butterworth low-pass filter distinguishes the magnitude responses of S21(f)
from the microwave integrator at higher frequencies. To show the impedance profiles of a conventional
low-pass filter, a Butterworth low-pass filter was constructed. The attenuation band of the filter was
−3 dB at 1.45 GHz and −10 dB at 2.85 GHz. The filter impedance profiles of a three-section line were
constructed as 23, 150, and 23 Ω, excluding the reference lines on both sides, which was 34.13 mm. To
compare the interference suppression of the integrators, original, and low-pass filter, the receiving power

Figure 7. Measured and simulated results of
S21(f) and S11(f) for a microwave integrator.

Figure 8. Physical layout of the low-pass filter.

Figure 9. Measured and simulated results of S21(f) and S11(f) for the low-pass filter.
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Figure 10. Experimental environment of SNR improvement.

Figure 11. Photograph of experimental environment.

of the main signals and interfering signals of the different frequencies in the end of the receiver were
analyzed. Fig. 10 shows the experimental environment for the transmitter and receiver. To examine the
integrator efficiency of the receiver SNR in the communication system, an experimental environment
was built. In the case of the transmitter, an Agilent E4421B was employed to generate the main
signal, transmitted by a dipole antenna at 2.45 GHz, which was built from the same substrate as that
mentioned, and the antenna gain is approximately 3 dBi. In addition, an Agilent E8257D generated
a CW Gaussian noise interfering signal at 3.5, 4.5, and 5.5 GHz, transmitted by a BBHA9120D horn
antenna. In the receiver, a BBHA9120D horn antenna was used to receive the main and interfering
signals in serial from the integrator and conventional low-pass filter. A photograph of the experimental
environment is shown in Fig. 11. In the case of channels with many fast fading cycles, the path loss
applies to the power averaged over several fading cycles. These can be constructed by applying a link
budget [22]:

PR =
PT GT GR

LT LLR
(9)

where PT is the transmitted power, PR the received power, GT the antenna gain for the transmitter,
GT the antenna gain for the receiver, LT the feeder loss of the transmitter, LR the feeder loss of the
receiver, and L the path loss. The BBHA9120D horn antenna gain is approximately 20 dBi, and the
feeder losses of the transmitter and receiver are approximately 6 dB. For the radio wave propagation,
the free space path loss model [23] is expressed as

L = 32.44 + 20 log10(d) + 20 log10(f), (10)
where 20 log10(d) is the free space path loss referenced to 1m, and f is the frequency in GHz. Under such
channel conditions, other interference signals (such as Bluetooth, ZigBee, and WLAN) were neglected.
Hence, the path loss from Eq. (10) is 92.44 dB. For example, PR is equal to −28.44 dBm when PT is set
at 1 W.
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The original, integrator, and low-pass filter signals were analyzed by an E4408B spectrum analyzer,
and the SNR improvement was calculated by dealing with the receiving power. At the receiver end,
the original is the measured result without adding an integrator or low-pass filter. Input SNR, output
SNR, and SNR improvement are expressed in Eqs. (11), (12), and (13), respectively [6]:

SNR at the input = 10 log10

E
(
s2
k

)
E (|zk − sk|2) (11)

SNR at the output = 10 log10

E
(
s2
k

)
E (εk − sk|2) (12)

SNR improvement = 10 log10

E
(|zk − sk|2

)
E (|εk − sk|2) , (13)

where sk is the power of the main signal, zk the power of the interfering signal, and εk the output signals
of the integrator and low-pass filter signals. For example, the input signal-to-noise-and-interference ratio

(a) (b)

(c)

Figure 12. (a) SNR improvement for the integrator at interfering signal 3.5 GHz. (b) SNR improvement
for the integrator at interfering signal 4.5 GHz. (c) SNR improvement for the integrator at interfering
signal 5.5 GHz.
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(SINR) is equal to 0 dB when the main signal power is set at 0.5 W, and the interfering signal is set at
3mW. In the receiver, the theoretical values of the main signal strength and interfering signal strength
are −43.45 dBm and −43.66 dBm, respectively. The experimental procedure required the transmitted
frequency of the main signal to be set at an FM modulation of 2.45 GHz with a fixed constant power
by changing the frequency and the interfering signal power, and calculating the SNR improvement
by using Eq. (13). Figs. 12(a), (b), and (c) show the results produced by the previously described
experimental environment. Fig. 12(a) shows the measured results for some of the cases. The measured
results indicated that the integrator improved the SNR by 7.07 dB for the low-pass filter when the
input signal-to-noise-and-interference ratio (SINR) was 0 dB at 3.5 GHz. The integrator improved the
SNR more than the low-pass filter in all cases. The integrator exhibited its optimal performance when
rejecting interference in certain conditions. For instance, the experimental results demonstrated that
the integrator improved the SNR by up to 8.23 dB for the low-pass filter when the input SINR was 0 dB
at 5.5 GHz. However, in certain conditions, the integrator improved the SNR by only 2 to 3 dB more
than the low-pass filter. The integrator exhibited this poor performance because the input SINR power
was −20 dB; the power of the main and interfering signals was weak; the integrator had a poor ability to
distinguish the main and interfering signals. In addition, the low-pass filter performance was inferior to
the integrator performance at 5.5 GHz because the low-pass filter generated amplitude responses with
periodic properties, which repeated a period at 6.77 GHz. As a result, the integrator improved the SNR
more than the low-pass filter at higher-frequency ranges. Furthermore, when the input SNR was 0 dB
at 5.5 GHz, the integrator improved the SNR by 8.23 dB more than the low-pass filter. Compared with
different input SINR frequencies, the SNR improvement difference between the integrator and original
increased by up to 5.22 dB at 3.5 GHz and 7.19 dB at 4.5 GHz.

4. CONCLUSION

This paper presents a microwave integrator based on microstrip transmission lines. In particular, the
Z domain representations of scattering characteristics of equal-length nonuniform transmission lines
facilitated the implementation of discrete-domain integrators in the microwave frequency range. To
compare the interference suppression of the integrators, original, and low-pass filter, the receiving
power of the main signals and the interfering signal of the different frequencies in the end of the
receiver were analyzed. Microwave integrators and low-pass filters in the same experimental environment
demonstrated that the microwave integrator signals improved the SNR better than the low-pass filter by
more than approximately 6 dB. The integrators generated the highest 8.23 dB SNR improvement when
the input SINR was 0 dB at 5.5 GHz. The main reason for this result is that the microwave integrators
should be able to keep the main signal while filtering out high-frequency interfering signals. As a
result, the microwave integrator increases the signal sensitivity of the receiver, improving the quality
of the received signal. The experimental results indicate that microwave integrators can improve a
communication link SNR.
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