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Diagonal Factorization of Integral Equation Matrices via Localizing
Sources and Orthogonally Matched Receivers

Robert J. Adams* and John C. Young

Abstract—A procedure is reported to determine accurate, invertible, block-diagonal factorizations
for matrices obtained by discretizing integral equation formulations of electromagnetic interaction
problems. The algorithm is based on the combination of localizing source/receiver transformations with
orthogonally matched receiver/source transformations. The resulting factorization provides a single,
sparse data structure for the system matrix and its inverse, and no approximation is required to convert
between the two. Numerical examples illustrate the performance of the factorization for electromagnetic
scattering from perfectly conducting elliptical cylinders of different electrical size.

1. INTRODUCTION

The development of efficient simulation tools for electromagnetic radiation, transmission, and scattering
problems has been an active area of research for many decades. A relatively recent focus has been the
development of sparse, direct solution methods for the linear systems obtained by discretizing time-
harmonic integral equation representations of EM interaction problems. Unlike iterative methods, direct
methods provide a fixed-cost solution for each excitation. This can provide substantial computational
savings relative to iterative methods for problems involving multiple right-hand sides. Sparse direct
methods also provide general-purpose preconditioners for fast iterative methods.

Multiple strategies have been used to develop sparse direct solvers, e.g., [1–7]. The set of approaches
considered here are based on the use of localizing functions [8–13]. Localization-based direct solvers
incorporate source functions having support in individual groups (of an underlying multilevel tree) that
localize their scattered fields to the group that contains the source. In one approach, localizing sources
have been combined with orthogonally matched receivers to obtain an upper-triangular factorization [10–
13]. In the following, this approach is extended to obtain a data-sparse, block-diagonal representation
of the system matrix. The new representation is easily inverted without fill-in or further approximation.
Numerical examples of TMz scattering from perfect conductors are used to illustrate the performance
of the factorization algorithm. A diagonal factorization algorithm for symmetric matrices is detailed
in [14].

2. BACKGROUND

Discretized integral equation formulations of linear, time-harmonic, electromagnetic interaction problem
can be represented as a matrix equation,

Zx = Fi. (1)

In this equation, x is an N × k matrix containing the coefficients (or degrees of freedom, DOF) of the
underlying bases used to represent the sources in the integral equation. The integer N is the number
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of DOF, and k is the number of excitation vectors. Fi is an N × k matrix determined from samples of
k excitation functions. The system matrix, Z, is determined using a moment method to discretize the
underlying integral operator [15].

As described in [12, 13], a multilevel tree is used to organize interactions on the simulation domain.
The number of levels in the tree is L, and tree levels are indexed from 1 to L. Level-1 is the coarsest
(root) level of the tree, and level-L is the finest level. The level index for a general level is level-l,
and individual groups at level-l are indexed as m(l). The level index (l) in m(l) will be suppressed
for simplicity when the level is clear from the context. In the following, a multilevel, data-sparse, H2
representation [16] is used to represent Z. The procedure used to construct the H2 representation is
discussed in [13].

2.1. Triangular Factorization

Different factorization algorithms can be developed using localizing transformations [8–13]. This section
briefly reviews a triangular factorization [10–12]. The proposed diagonal factorization is a modification
of this algorithm. In this paper, only non-overlapped localizing functions are used; that is, the support of
each localizing function is confined to a single group at a given level of the multilevel tree. (Overlapped
localizing functions are necessary for efficient computational performance in 3-D applications [13] and
are not considered in this paper.)

The multilevel, triangular factorization obtained using the localizing basis functions is (cf.
Equation (27) of [12]),

Z(NN)
l+1 = PlPH

l Z(NN)
l+1 ΛlΛ−1

l ≈
[

P(L)
l P(N)

l

] [
I Z(LN)

l

0 Z(NN)
l

] [
Λ(L)

l Λ(N)
l

]−1
, (2)

where l indicates the tree level. The original system matrix in Eq. (1) is obtained for l = L, Z = Z(NN)
L+1 .

The matrices Λl and Pl in (2) are square, permuted block-diagonal matrices (e.g., see Figure 1(b)
of [13]). Their diagonal blocks have a dimension equal to the number of remaining DOF in Z(NN)

l+1
associated with each level-l group, m(l). The superscripts (L) and (N) are used to indicate matrices
associated with localizing and non-localizing sources, respectively. The localizing source DOF are in
Λ(L)

l , and non-localizing DOF are in Λ(N)
l ; the latter are selected such that Λ(N)

l is orthogonal to Λ(L)
l ,

which improves the conditioning of Λl. The matrix Pl is unitary.
The approximation indicated in Eq. (2) is due to approximate source localization. The localizing

source functions in Λ(L)
l only localize their scattered fields, Z(NN)

l+1 Λ(L)
l , to order-ε, where ε is the desired

accuracy for the factorization. It is noted that in (2) and throughout this paper, all matrices Z(NN)
l

and Z(LN)
l are represented using an l-level H2 data structure [16]. The procedure used to efficiently

manipulate the H2 data structures to compute the localizing functions in Λ(L)
l is discussed in detail

in [12, 17]. All other matrices, including Λl and Pl above, and Xl and Yl below, are either block
diagonal or permuted block diagonal matrices.

An important property of Eq. (2) is that the submatrix Z(NL)
l = P(N)

l Z(NN)
l+1 Λ(L)

l ≈ 0 is negligible

to order-ε. This occurs because P(N)
l is constructed to be orthogonal (to order-ε) to the fields radiated

by the localizing DOF, Z(NN)
l+1 Λ(L)

l . In this sense, the receiving vectors P(N)
l are orthogonally matched

to the localizing sources, Λ(L)
l . This orthogonal matching provides the upper triangular structure of

Eq. (2), which enables the following approximate inverse,
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≈ ΛL
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(
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L . (3)

The inverse required in Eq. (3) is computed by applying Eqs. (2) and (3) recursively until level-2 is
reached. Z(NN)

2 is inverted via standard LU decomposition.
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3. DIAGONAL FACTORIZATION

The feature of (2) that yields the simple inversion formula (3) is the orthogonal pairing of the receivers
in P(N)

l and the localizing sources in Λ(L)
l . In the following, this aspect of (2) is extended to obtain

a diagonal factorization for asymmetric matrices. A diagonal factorization algorithm for symmetric
matrices is reported in [14].

Begin by defining a right transformation,

Xl =
[
Λl,R, P∗

l,R

]
(4)

and a left transformation,
Yl =

[
Λl,L, P∗

l,L

]
(5)

where * denotes complex conjugation. In these equations, the sub-matrix Λl,R is the sub-matrix Λ(L)
l of

Eq. (2), and Pl,L is the sub-matrix P(N)
l . Both Λl,R and Pl,L are obtained analyzing column blocks of

Z(NN)
l using the algebraic methods detailed in [12, 17]. The sub-matrices Λl,L and Pl,R are obtained by

performing the same algebraic analysis on row-blocks of Zl. (It is noted that Xl and Yl are permuted
block-diagonal matrices with the same structure as Λl and Pl above.)

The localizing, block-diagonal sub-matrices Λl,L and Λl,R can be expressed in terms of their diagonal
blocks as

Λl,L = diag
(
λ1

l,L, . . . ,λm
l,L, . . . ,λM

l,L

)
(6)

Λl,R = diag
(
λ1

l,R, . . . ,λm
l,R, . . . ,λM

l,R

)
(7)

where λm
l,L is the collection of localizing vectors in group-m for which the operation (λm

l,L)TZl(m(l), :) is
nonzero (to order-ε) only within columns associated with group-m. (The notation Zl(m(l), :) is used to
indicate the rows of Zl associated with group-m at level-l of the tree.) Similarly, λm

l,R is the collection of
localizing vectors in group-m for which the product Zl(:,m(l))λm

l,R is nonzero only within rows contained
by the same group-m at level-l of the tree.

The transformations Xl and Yl indicated by Eqs. (4) and (5) provide the following approximation

Zl+1 = Y−T
l YT

l Zl+1XlX−1
l ≈ Y−T

l

[
Bl 0
0 Zl

]
X−1

l , (8)

where the system matrix is obtained when l = L, Z = ZL+1. The superscript (NN ) in Eq. (2) is dropped
for convenience in (8) and in the following. The elements of Eq. (8) are,(

P∗
l,L

)T Zl+1Λl,R ≈ 0, (9)

(Λl,L)T Zl+1P∗
l,R ≈ 0, (10)

(Λl,L)T Zl+1Λl,R = Bl, (11)(
P∗

l,L

)T Zl+1P∗
l,R = Zl. (12)

The products (9) and (10) are O(ε) for the same reason that Z(NL) is approximately zero in Eq. (2).
Due to localization, the matrix Bl is block-diagonal (to order-ε):

Bl = diag
(
b1

l , . . . ,b
m
l , . . . ,bM

l

)
. (13)

The diagonal blocks are
bm

l =
(
λm

l,L

)T Zl (m(l),m(l))λm
l,R. (14)

Let nm
l,L and nm

l,R denote the number of localizing vectors in λm
l,L and λm

l,R. In computing the diagonal
blocks of Λl,L and Λl,R from the H2 representation of Zl+1 using the algebraic procedure of [12, 17],
the number of localizing vectors in λm

l,L and λm
l,R may be different due to the asymmetry of Zl+1. To

maintain square bm
l and Zl in Eq. (8), the number of localizing vectors retained in λm

l,L and λm
l,R is set

equal to the minimum of the initial number of vectors found for each group (i.e., min(nm
l,Lnm

l,R)).
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3.1. Error Control

Due to approximation, it is possible that the errors in the factorization of Eq. (8) may be larger than
the desired tolerance, O(ε), if the transformations Xl and/or Yl are poorly conditioned. It has been
observed that this situation can be avoided by ensuring that the diagonal blocks of the matrix Bl are
sufficiently well-conditioned relative to the tolerance.

An SVD of the diagonal blocks of Bl provides,

bm
l = um(l)σm(l)v

H
m(l) (15)

where σm(l) = diag(σ1, . . . , σk, . . . , σKm) is the diagonal matrix of singular values, and Km indicates
the number of localizing sources in group m(l). Let v̄m(l) (ūm(l)) denote the columns of vm(l) (um(l))
corresponding to singular values that satisfy

σk > σ1γ, (16)

where
γ = max

(
ε1/2, κ

−1/2
self

)
. (17)

In Eq. (17), ε is the factorization tolerance and κself is the condition number of the self-block of Zl+1

associated with group m(l) (i.e., the condition number of Zl(m(l),m(l)) ). Finally, let σ̄m(l) denote the
diagonal matrix of singular values associated with v̄m(l) and ūm(l), and let s̄m(l) denote the diagonal
matrix containing the square root of the singular values such that,

σ̄m(l) = s̄m(l)s̄m(l) (18)

The block-diagonal collection of the v̄m(l) (ūm(l)) for all level-l groups is denoted v̄l (ūl). Similarly,
the collection of the s̄m(l) is denoted s̄l. Updated versions of Eqs. (4) and (5) that provide better
conditioning are thus

X̄l =
[
Λ̄l,R, P̄∗

l,R

]
(19)

Ȳl =
[
Λ̄l,L, P̄∗

l,L

]
(20)

where Λ̄l,R = Λl,Rv̄ls̄−1
l and Λ̄l,L = Λl,Lū∗

l s̄
−1
l . The diagonal blocks of P̄l,R (or P̄l,L) are determined

from the null-space of the localized fields, Zl+1Λ̄l,R (or Λ̄T
l,LZl+1), in the manner described for P(N)

l of
Eq. (2) in [10, 12].

3.2. Multilevel Factorization

The updated version of Eq. (8) obtained using Eqs. (19) and (20) is,

Zl+1 ≈ Ȳ−T
l

[
I 0
0 Zl

]
X̄−1

l . (21)

As shown in the following numerical examples, the error-controlled factorization in Eq. (21) is
significantly more accurate than the factorization in Eq. (8). The multilevel approximate inverse
associated with Eq. (21) is,

Z−1
l+1 ≈ X̄l

[
I 0
0 Z−1

l

]
ȲT

l . (22)

The recursive expansion of the factorization in Eq. (21) is,

Z ≈ Ȳ−T
L Ȳ−T

L−1 · · · Ȳ−T
3 Ȳ−T

2

[
I 0
0 Z2

]
X̄−1

2 X̄−1
3 · · · X̄−1

L−1X̄
−1
L , (23)

and the recursive expansion of Eq. (22) is

Z−1 ≈ X̄LX̄L−1 · · · X̄3X̄2

[
I 0
0 Z−1

2

]
ȲT

2 ȲT
3 · · · ȲT

L−1Ȳ
T
L . (24)
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From Eqs. (23) and (24) it is observed that, in addition to providing a block-diagonal inverse
approximation, the diagonal factorization in Eq. (21) also provides a block-diagonal representation of Z
(each X̄l and Ȳl is a block-diagonal matrix at level-l, and Z2 is a square matrix with dimension equal
to the number of remaining, non-localized DOF). Note that Z and Z−1 have identical block-diagonal
structures. Thus, once the diagonal representation in Eq. (23) is determined, the inverse Eq. (24)
can be obtained without additional approximation or fill-in. In this sense, Eq. (23) provides a single,
explicit, data-sparse representation of both the system matrix, Z, and its inverse, Z−1. Although the
triangular factorization in Eq. (2) can be inverted via Eq. (3), the inverse requires back-substitution
and application of Z(LN)

l which is stored as an l-level H2 data structure, at each level of the solution
process. For this reason, when using Eq. (3), the memory required by the factorization exceeds the
memory used by the initial H2 representation of Z, and the solve process is slowed by the need to apply
an l-level H2 data structure at each level of the solve when applying Z(LN)

l .
In contrast, using the inverse Eq. (24), it is not necessary to store any off-diagonal data or perform

any back-substitution during the solution process. As shown below, the memory required by the diagonal
representation in Eq. (24) is actually less than that used by the initial H2 representation in some cases.

3.3. Integrated Factor and Solve (IFS)

An advantage of the diagonal representation in Eq. (24) is that, if the excitation Fi is known a priori,
an integrated factor and solve (IFS) can be used to reduce the overall memory requirement of the sparse
direct solver.

The IFS procedure proceeds as follows. At each level of the factorization, Ȳl can be applied to the
right-hand side vectors, Fi, as indicated by Eq. (24) and then deallocated. Similarly, at each level the
localizing submatrix of X̄l, Λ̄l,R, can be applied and then deallocated. The blocks P̄∗

l,R are the only
blocks of the diagonal factorization retained throughout the entire IFS process. Once the factorization
is completed, the block Z2 is factored and applied to the right-hand side vector(s), after which the P̄∗

l,R

are finally applied, proceeding from coarse to fine levels of the tree, to determine the solution vectors,
x.

4. NUMERICAL RESULTS

To illustrate the numerical properties of the diagonal factorization, consider the problem of TMz
scattering from perfectly conducting elliptical cylinders. The magnetic field integral equation (MFIE)
is used to formulate the problem. The matrix equation (1) is obtained from the MFIE using a point-
matching moment method with pulse basis functions [15] for the case of scattering from a pair of ellipses
separated by 0.1λ, each with an axial ratio of 4. The major axis, D, of the ellipses varies between 12λ
and 1536λ. The scatterer configuration for D = 1536λ is shown in Figure 1. In all cases considered, more
than ten basis functions are used per linear wavelength. Similar numerical experiments are reported for
symmetric and asymmetric matrices in [14].

The factorization algorithm outlined above relies on the determination of the localizing DOF used
to define the blocks Λl,R and Λl,L. As discussed elsewhere [12, 13], this is accomplished by first
building a data-sparse H2 representation of Z [16]. The methods used to efficiently manipulate the
H2 representation to determine the submatrices Λl,L, Λl,R, Pl,L, and Pl,R of X̄l and Ȳl are detailed
in [12, 17]. When the error control procedure is used, the modification indicated by Eq. (15) through
Eq. (20) is used to replace Xl and Yl by X̄l and Ȳl. In the following examples, the initial H2
representation of Z is constructed using a tolerance of 1E-6; the subsequent diagonal factorization
is performed using a tolerance of 1E-5.

Tables 1 and 2 report relative RMS matrix errors in the H2 data structure and the diagonal
factorization. Table 1 reports errors for a fixed D = 12λ; N is increased by increasing the density of the
discretization per wavelength. Table 2 reports the matrix errors for the cases of a fixed discretization
density; N is increased by increasing the electrical sizes of the ellipses.

In all cases in the tables, the H2 representation of Z is near the specified tolerance of 1E-6. The
error in the factorization is similarly well controlled when the proposed error control procedure is used;
the error is less than the factorization tolerance of 1E-5 in all cases. It is also observed that much larger
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Figure 1. Two-ellipse scattering configuration when D = 1536λ (N = 135112). The ellipses are
separated by 0.1λ at their point of closest proximity.

Figure 2. Memory used by H2 representation, diagonal factorization and integrated factor/solve (IFS)
procedure for fixed D = 12λ and increasing discretization density. Also shown are O(N) and O(N2)
reference lines.

factorization errors occur when the error control strategy is not employed. For this reason, the error
control method outlined above is used in all remaining examples.

Figure 2 displays the memory used for the H2 representation, for the factorization, and for the
integrated factor/solve (IFS) procedure for the same fixed major axis cases considered in Table 1. It
is observed that the memory requirements increase approximately linearly. Furthermore, the diagonal
factorization requires less memory than the H2 representation for all but the smallest case (N = 1056).
This suggests that for such cases it may be advantageous to develop a method to directly construct
the diagonal representation in Eq. (23) rather than first building the H2 structure as was done here.
Finally, it is observed that the peak memory required by the IFS procedure does not notably exceed
the peak memory required by the initial H2 data structure for these cases.

Figure 3 reports the memory requirements when the discretization density is fixed and the major
axis, D, increases (cf. Table 2). In these cases, the memory requirements all increase approximately as
O(N1.5), which is substantially less than the O(N2) cost to store the full matrix, Z. Unlike the cases
reported in Figure 2, the memory required by the diagonal factorization exceeds that used by the H2
representation. However, the IFS procedure limits the amount by which the factorization procedure
causes the peak memory to exceed that required to store the initial H2 representation. Using IFS, the
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Figure 3. Memory used by H2 representation, diagonal factorization, and IFS for fixed discretization
density and increasing major axis length. Also shown are O(N1.5) and O(N2) reference lines.

Figure 4. Diagonal factorization and solve times for cases of increasing discretization density with
fixed D = 12λ, and for cases of fixed discretization density with increasing D. The performance of an
optimized LU factorization is also shown.

increase caused by the direct solver only becomes notable for values of D larger than about 100λ.
Finally, Figure 4 indicates the time used to perform the factorization for the cases in Tables 1

and 2. (All computations were performed on an Intel Xeon X5450 3 GHz Quad-Core Processor.) The
figure also shows the time required to solve for a single right-hand side vector given the completed
diagonal factorization. In the case of a fixed electrical size and increasing discretization density, the
factorization and solution times scale approximately linearly, and the diagonal factorization substantially
outperforms LU factorization. However, in the case of a fixed discretization density with increasing D,
the factorization does not begin to outperform LU factorization until N exceeds about 16000.

4.1. Other Formulations

Electromagnetic scattering problems can be formulated using a variety of integral equations in addition
to the MFIE used here. It has been observed that the CFIE formulation [15] yields numerical results
that are essentially similar to those reported here for the MFIE. In the case of an EFIE, the factorization
errors (cf. Tables 1 and 2) are also similar. However, larger computational complexity has been observed



8 Adams and Young

Table 1. Relative RMS errors in Z of (1) using H2 representation and the diagonal factorization (23)
with and without error control (EC) procedure. The electrical size is fixed at D = 12λ and N is increased
by increasing the discretization density. Values > 1 indicate that the error exceeds 100 percent. The
number of quad-tree levels varies from L = 4 (N = 1056) to L = 11 (N = 135112).

D/λ (N ) H2 Factor with EC Factor w/o EC
12 (1056) 3.6E-7 1.8E-6 > 1
12 (2112) 9.8E-6 9.8E-6 > 1
12 (4222) 3.0E-7 1.6E-6 > 1
12 (8444) 2.9E-7 1.4E-6 > 1
12 (16890) 2.6E-7 1.3E-6 0.956
12 (33778) 2.5E-7 1.5E-6 0.664
12 (67556) 2.9E-7 1.2E-6 0.477
12 (135112) 2.8E-7 1.3E-6 0.412

Table 2. Same as Table 1 but with increasing electrical size (D) and fixed discretization density.

D/λ (N ) H2 Factor with EC Factor w/o EC
12 (1056) 3.6E-7 1.8E-6 5.2E-4
24 (2112) 3.4E-6 4.0E-6 > 1
48 (4222) 5.3E-7 1.7E-6 > 1
96 (8444) 3.6E-6 3.9E-6 > 1

192 (16890) 8.3E-7 1.6E-6 > 1
384 (33778) 4.2E-7 1.4E-6 > 1
768 (67556) 1.8E-6 2.2E-6 > 1

1536 (135112) 1.1E-6 1.9E-6 > 1

when the EFIE is used to solve the problems reported herein. This was previously observed in [13] for
the EFIE and is due to the well-known ill-conditioning of the EFIE. Fortunately, better conditioned
formulations are available, including the augmented EFIE [18, 19]. It has previously been shown
that the computational complexity of the factorization (2) is O(N log N) or better for an augmented
EFIE formulation in three dimensions [20]. The application of the new, diagonal factorization to such
formulations will be a subject of future investigation.

5. SUMMARY

A diagonal, data-sparse factorization strategy for asymmetric integral equation matrices has been
detailed, and a computationally efficient error control strategy has been proposed. The factorization
provides a single, sparse data structure for both the system matrix (23) and its inverse (24). There
is no fill-in or additional approximation required to convert between the diagonal representations of Z
and Z−1. Due to the diagonal nature of the representation, the solution procedure used to determine x
from Fi involves only explicit matrix multiplication.

The numerical properties of the algorithm have been illustrated for an MFIE formulation of
electromagnetic scattering from perfectly conducting elliptical cylinders. In cases for which the electrical
size is fixed and N is increased by increasing the discretization density, the computational costs of
the proposed algorithm scale approximately linearly. In such cases, the diagonal factorization uses
less memory than the original H2 representation of Z. This suggests that it may be beneficial to fill
the diagonal representation directly in some cases. When the discretization density is fixed and the
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electrical size is increased, the diagonal factorization generally uses more memory than the initial H2
representation of Z. However, the additional memory required by the diagonal factorization can be
reduced using an integrated factor/solve (IFS) procedure.

For three-dimensional surface integral equation applications with non-oscillatory kernels, the
computational complexity of the algorithm reported here is limited to O(N1.5) due to the use of non-
overlapped localizing functions [11, 12]. However, the factorization algorithm admits a straightforward
incorporation of the overlapped functions defined in [13]. These functions have been observed to yield
factorization complexities that scale as O(N log N) or better for surface integral equations in 3-D using
the triangular factorization of (2) [13, 20]. The incorporation of overlapped localizing functions within
the diagonal factorization outlined here will be a subject of future investigation.
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