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Mixed Signal-Based GLR Detector for FM Passive Bistatic
Radar Target Detection

Mohammad Zamani and Abbas Sheikhi*

Abstract—This paper addresses the CFAR target detection in FM-based passive bistatic radars as a
composite hypothesis testing problem, using the mixed signal model. The corresponding generalized
likelihood ratio test (GLRT) is derived. It has less computational requirements with respect to the
conventional GLRT-based detector, previously developed in the literature, due to the decrease in the
row dimension of the interference matrix. The proposed detector is computationally efficient for tracking
or short-range-radar applications in which a few range cells are surveyed. The theoretical and simulation-
based analysis of detection performance and a thorough discussion on the computational complexity
compared with that of the existing detectors are also provided.

1. INTRODUCTION

Passive bistatic radar (PBR) systems, using existing transmitters as transmitters of opportunity, have
been vastly studied in recent years [1–6]. Since the transmitted signal is not known for the PBR
systems, a dedicated channel referred to as the reference channel is used for the reception of the directly
transmitted signal. At least one surveillance channel is also utilized to receive the target echoes which
are contaminated by the noise and strong returns of direct signal and clutter/multipath [1, 2]. In general,
a proper interference cancellation method should be applied to the surveillance channel signal prior to
the computation of cross ambiguity function (CAF) in order to make target detection possible [1, 2]. The
CAF, as a matched filter, provides the required integration gain and is followed by the application of an
adaptive threshold such as the frequently used cell averaging constant false alarm rate (CA-CFAR) [1, 2].

Transversal adaptive filters such as the least mean squares (LMS) were the first interference
cancellation methods presented in the literature [1]. Despite their computational efficiency, they
are incapable of handling Doppler-spreading clutter scenarios appropriately. Later, the extensive
cancellation algorithm (ECA) based on the projection of the surveillance channel signal onto the
subspace orthogonal to the interference subspace was proposed [7] which significantly improves the
performance of interference cancellation with respect to the transversal adaptive filters [8]. The
sequential cancellation algorithm (SCA) as a sequential implementation of the ECA which progressively
discovers the strongest delayed and Doppler-shifted versions of the reference channel signal in the
surveillance channel signal to eliminate their effects was also developed in order to reduce the
computational load of the ECA [7]. The ECA and SCA were extended so that after clutter and direct
signal cancellation, the sequential detection of targets is performed, and hence the masking effects of the
strongest target echoes on weaker targets due to the low peak-sidelobe level of the CAF are reduced [7].
In [2], a batched implementation of the SCA known as “the multistage processing algorithm”, applied to
low Doppler resolution scenarios, was discussed which leads to an improved and faster target detection
and interference cancellation than the SCA [2]. While the previous mentioned works were intuitive
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in the case that no detection optimality or pseudo-optimality could be associated with them [9], a
solution for the problem of simultaneous interference cancellation and CFAR detection for the general
multi-target scenarios based on detection theory has been recently given in [9]. The work in [9] models
the detection problem as a composite hypothesis test, derives the corresponding generalized likelihood
ratio test (GLRT) and formulates the closed form expressions of detection and false alarm probabilities.
It uses an iterative algorithm called imperative target positioning (ITP) to implement the detector
in practice. It has also been shown that “the multistage processing algorithm” [2] due to the high
CFAR loss of its local CA-CFAR thresholding has an inferior detection performance than the GLRT
with embedded CFAR property, especially in close-targets scenarios [9]. It is mentioned that while the
ECA [7] or the GLRT [9] can potentially be used regardless of the type of the signal of opportunity,
for high-range-resolution PBRs based on high-bandwidth transmitted signals like the DVB-T (digital
video broadcast-terrestrial) in which the clutter is distributed in several hundreds of range cells and the
dimension of the interference subspace and the number of samples to be processed within the integration
time are large they are not practically applicable. Hence, they were mainly applied to FM-based PBRs
in the literature [9–11]. The GLRT, which is also proved to be the uniformly most powerful invariant
(UMPI) detector [10], has been generalized for multiband FM-based PBRs [10] and is rewritten using
the split received signal for the DVB-T-based PBR which is referred to as the GLRT-SS (GLRT with
split signal) [11].

The detection performance of the GLRT has been compared with that of “the multistage processing
algorithm” and the adaptive filter-based algorithms in [9–12] and [11, 12], respectively. According to
the results of [9–12], the GLRT whose only limitation is its high computational complexity has much
better detection performance than the existing methods. Hence, it is of a great interest to investigate
detection tests which have detection performances close to that of the GLRT with less computational
complexity. This is the main idea of this paper. In this regard, we investigate the problem of CFAR
target detection in FM-based PBRs using the mixing product (mixed signal) model. The mixing product
was previously used to implement the CAF to minimize the computational burden [13] and also to adopt
space time adaptive processing (STAP) methods to airborne PBRs [14–16]. We use this signal model
to derive a GLRT-based detector which is called M-GLRT throughout the manuscript to distinguish it
from the existing GLRT [9, 10]. As will be demonstrated in the next sections, while the computational
complexity of the GLRT does not depend on the length of surveillance range interval, the computational
complexity of the M-GLRT is directly related to this length, and is substantially reduced for tracking
or short-range-radar applications. In these cases, by a proper setting of the algorithm, the proposed
M-GLRT needs less computational requirements than the GLRT but with a negligible detection loss,
which is shown by the theoretical analysis and computer simulations.

The rest of the paper is organized as follows. Section 2 presents the signal model used to attain the
hypothesis test. The detector design and its theoretical performance analysis as well as computational
complexity are given in Section 3. Sections 4 and 5 are dedicated to the simulation results and conclusion,
respectively.

Throughout this paper, (.)T , (.)H , (.)∗, � and ⊗ represent the transpose, complex conjugate
transpose, complex conjugate, Hadamard product and Kronecker product, respectively. For an arbitrary
matrix X, its kth vector column and its entry in row b and column c are denoted by [X]k and [X]bc,
respectively. [x]k denotes the kth element of vector x. S-dimensional unit and zero vectors are
symbolized by 1S and 0S , respectively. The N -dimensional identity matrix is written as IN . ||x||
denotes the Euclidean norm of vector x.

2. SIGNAL MODEL

In this section, firstly the conventional signal model for PBRs according to [1–12] is introduced. Then,
the mixed signal model which is the case in this paper is discussed.

In a PBR, the reference channel antenna is steered toward the transmitter to receive the direct
signal. It is assumed that the multipath-free direct signal is available in the reference channel by some
preprocessing such as channel equalization [17]. The nth sample of the direct signal after baseband
demodulation is denoted by d(n). The surveillance antenna receives the signal containing targets,
clutter and the direct signal, received via its sidelobe or backlobe. It is assumed that the direct signal-
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to-noise ratio (DNR) in the reference channel is much larger than the DNR in the surveillance channel,
so that the thermal noise in the reference channel can be neglected [2, 9].

To formulate the surveillance channel signal, it is assumed that there are Nt targets with bistatic
sample delays ntk , k = 1, . . . , Nt (with respect to the direct signal), complex amplitudes atk and bistatic
Doppler frequencies ftk . The clutter is modeled as a large number of scatterers distributed from bistatic
sample delay (with respect to the direct signal) r = 0 to Nr − 1. Nc bistatic Doppler frequencies fci ,
i = 1, . . . , Nc around the zero Doppler frequency are also considered for the clutter scatterers [9] in the
general Doppler-spreading clutter case. The complex amplitude of the clutter scattrerer with bistaic
sample delay r and Doppler frequency fci is denoted by γci,r . The set of bistatic sample delays and
Doppler frequencies assumed for the clutter scatterers is defined as “the clutter region” [9]. Thus, the
surveillance channel signal, x(n), can be written as [9]:

x(n) =
Nt∑
k=1

atkd(n − ntk)ej2πftk
/fs(n−1) +

Nr−1∑
r=0

Nc∑
i=1

γci,rd(n − r)ej2πfci/fs(n−1) + ws(n), n = 1, . . . , N

(1)
where ws(n) is the nth sample of the thermal noise in the surveillance channel, fs denotes the sampling
frequency and the number of samples to be processed within the integration time (Ti) is N . It is
noted that the second term of Eq. (1) contains both the clutter and direct signal (corresponding to
r = 0, fci = 0). It is defined that

d = [ d(1) d(2) . . . d(N) ]T

ws = [ ws(1) ws(2) . . . ws(N) ]T

x = [ x(1) x(2) . . . x(N) ]T ,

(2)

as the vectors including the samples of d(n), ws(n) and x(n), respectively. The delayed version of d by
r samples is denoted by dr. It can be computed by Drd where D is a 0/1 permutation matrix that
applies one sample delay, and is defined by [9]:

D = {dij}i,j=1,...,N , dij =
{

1 i = j + 1
0 otherwise (3)

s(f) as the temporal steering vector corresponding to Doppler frequency f is defined as:

s(f) =
[

1 ej2πf/fs . . . ej2πf/fs(N−1)
]T (4)

So, the vector representation of Eq. (1) is given by:
x = Tat + Cγ + ws (5)

where
[T]k = dntk

� s(ftk), k = 1, . . . , Nt

at =
[

at1 at2 . . . atNt

]T

[C]k = dr � s(fci), k = rNc + i (r = 0, . . . , Nr − 1, i = 1, . . . , Nc)

γ =
[

γc1,0 γc2,0 . . . γcNc,0
γc1,1 . . . γcNc,1

. . . γcNc,Nr−1

]T

(6)

In other words, at contains the complex amplitudes of the targets, and γ is an NrNc-dimensional vector
containing the complex amplitudes of the clutter scatterers (corresponding to all combinations of Nc

Doppler frequencies and Nr sample delays) in such order that [γ]rNc+i = γci,r , r = 0, . . . , Nr − 1, i =
1, . . . , Nc. The columns of T and C are the delayed and Doppler-shifted replicas of the direct signal
which form a basis for Nt-dimensional targets and NrNc-dimensional clutter subspaces, respectively.

The mixing product (mixed signal) corresponding to sample delay (delay cell) m is defined as [13–
16]:

x̃(m) = x� d∗
m (7)

It mixes the surveillance channel signal x with the complex conjugate of the mth sample-delayed version
of the direct (reference) signal. Using Eq. (5) in Eq. (7) gives:

x̃(m) = (Tat + Cγ) � d∗
m + ws2(m) (8)
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where
ws2(m) � ws � d∗

m (9)

Let us define T2(m) and C2(m) such that [T2(m)]k = [T]k � d∗
m, k = 1, . . . , Nt and [C2(m)]k =

[C]k � d∗
m, k = 1, . . . , NrNc, then (8) is given by:

x̃(m) = T2(m)at + C2(m)γ + ws2(m) (10)

Since the maximum Doppler frequency of targets, denoted by ftmax , is much smaller than the sampling
frequency, the mixed signal is then applied to a low-pass filter (LPF) and subsampled by the subsampling
factor S [13–16] to yield ỹ(m) with Nd = �N/S� samples. This process which does not affect the range
resolution [14–16] can be implemented using the following low-pass filtering and subsampling (integrate-
and-dump filtering) matrix:

SNd×N =

⎛
⎜⎜⎝

1S 0S 0S . . . 0S

0S 1S 0S . . . 0S
...

. . . . . . . . .
...

0S 0S . . . . . . 1S

⎞
⎟⎟⎠

T

= (INd
⊗ 1S)T (11)

where:
ỹ(m) = SD−mx̃(m)=SD−m(T2(m)at + C2(m)γ+ws2(m))=T3(m)at+C3(m)γ+ws3(m),
SD−mT2(m) � T3(m)
SD−mC2(m) � C3(m)
SD−mws2(m) � ws3(m)

(12)

i.e.,

[ỹ(m)]b =
bS+m∑

k=(b−1)S+1+m

[x̃(m)]k, b = 1, . . . , Nd (13)

Nd-dimensional vector ỹ(m) is the subsampled mixed signal corresponding to sample delay m and it is
to be analyzed. Since the bandwidth of the LPF is ±fs/(2S) Hertz, S should be selected such that

ftmax � fs/(2S) (14)

to achieve negligible target signal-to-noise ratio (SNR) loss near cutoff frequency of the LPF. Since all
target-related and clutter-related terms of ỹ(m) share the same structure as a delayed and Doppler-
shifted replica of the direct signal followed by mixing, filtering and subsampling, it is sufficient to
investigate an arbitrary term such as the one related to the first target. This term which includes the
signal contribution of the first target in ỹ(m) is equal to at1 [T3(m)]1 = at1 [SD−mT2(m)]1. Since

[SD−mT2(m)]b1 =
N∑

k=1

[S]bk[D−mT2(m)]k1

=
N∑

k=1

[S]bkd(k + m − nt1)d
∗(k)ej2πft1/fs(k+m−1)

= ej2πft1/fsm
bS∑

k=(b−1)S+1

d(k + m − nt1)d
∗(k)ej2πft1/fs(k−1)

= ej2πft1/fsmej2πft1/fsS(b−1)
S∑

k=1

d(k+(b−1)S+m−nt1)d
∗(k+(b−1)S)ej2πft1/fs(k−1),

b = 1, . . . , Nd (15)
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it is concluded that:

at1 [T3(m)]1 = at1 [SD−mT2(m)]1 = a′t1v(ft1) � Ψ(m − nt1,−ft1)

[Ψ(m − nt1 ,−ft1)]b =
S∑

k=1

d(k + (b − 1)S+m − nt1)d
∗(k+(b − 1)S)ej2πft1/fs(k−1), b = 1, . . . , Nd

v(ft1) =
[

1 ej2πft1S/fs . . . ej2πft1S(Nd−1)/fs
]T

a′t1 � ej2πft1/fsmat1 (16)

v(ft1) is in the form of the temporal steering vector of length Nd with Doppler frequency of ft1 and
the reduced sampling frequency of fs/S. Ψ(m − nt1,−ft1) is an Nd-dimensional vector whose bth
element, i.e., [Ψ(m − nt1,−ft1)]b is the S-sample complex self-ambiguity function of the bth segment
of d computed at sample delay of m − nt1 and Doppler frequency of −ft1 . The magnitude of the S-
sample complex self-ambiguity function corresponding to each of the segments has a correlation peak
at sample delay-Doppler frequency pair of (0, 0) with the half-power Doppler correlation lobe width of
±fs/(2S) Hertz and the half-power delay correlation lobe width of fs/B samples, where B denotes the
transmitting signal bandwidth [13].

If m = nt1 , Eq. (16) simplifies to at1 [T3(m)]1 = a′t1v(ft1) � Ψ(0,−ft1). The envelope of the direct
signal whose kth sample is |d(k)|2 is constant for FM signal: |d(k)|2 = A. Using this representation,
Ψ(0,−ft1) is given by:

[Ψ(0,−ft1)]b =
S∑

k=1

|d(k + (b − 1)S)|2ej2πft1/fs(k−1), b = 1, . . . , Nd

= A
S∑

k=1

ej2πft1/fs(k−1) � l(ft1), b = 1, . . . , Nd →

Ψ(0,−ft1) = l(ft1)1Nd

(17)

According to Eq. (14), it can be shown that |l(ft1)| ∼= AS. Hence, if m = nt1 , we have:

at1 [T3(m)]1 = a′t1v(ft1) � Ψ(0,−ft1) = a′t1 l(ft1)v(ft1) = a′′t1v(ft1),

|a′′t1 | = |a′t1 l(ft1)| = |at1 |AS
(18)

which is a pure complex tone with the target Doppler frequency (v(ft1)) and proportional to the target
complex amplitude. In the general case if m 	= nt1 , according to Eq. (16) the contribution of the first
target to ỹ(m) is a modulated tone with an Nd-dimensional vector whose elements depend on the range
profile of different segments’ S-sample complex self-ambiguity functions.

The above discussion for the first target’s signal contribution can be concluded as:
“ỹ(m) is the summation of several pure tones corresponding to the targets and clutter scatterers at

sample delay m, noise, and modulated tones due to the targets and clutter scatterers located at other
sample delays.”

ỹ(m) = a′′tjv(ftj ) +
Nt∑

k=1,k �=j

a′tkv(ftk) � Ψ(m − ntk ,−ftk)

+
Nc∑
i=1

γ′′
ci,m

v(fci) +
Nr−1∑

r=0,r �=m

Nc∑
i=1

γ′
ci,r

v(fci) � Ψ(m − r,−fci) + ws3(m) (19)

where it is defined that γ′
ci,r

= γci,re
j2πfci

/fsm and γ′′
ci,m

= γ′
ci,m

l(fci), and it is assumed that the jth
target is located at sample delay m in the clutter region. From Eq. (19), to compute C3(m) for all
m, m = 1, . . . ,M the total number of distinct columns (tones or modulated tones) to be computed is
Nc(M + Nr). In this paper, the presence of a target at sample delay m in the presence of all these
terms is to be investigated by processing ỹ(m). To derive the detector, the statistical properties of the
noise component of ỹ(m), i.e., ws3(m) is required. As the thermal noise of the surveillance channel, i.e.,
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ws is a complex WGN [9] with level of σ2 and according to Eqs. (7) and (12) all the transformations
applied on the surveillance channel signal to derive ỹ(m) are linear, ws3(m) will also have a zero-mean
complex Gaussian distribution whose covariance matrix is given by:

E{ws3(m)ws3(m)H} = E{(SD−mws2(m))(SD−mws2(m))H}
= SD−mE{ws2(m)ws2(m)H}(D−m)HSH

= SD−m(E{wswH
s } � (d∗

mdT
m))(D−m)HSH

= σ2SD−mdiag(d∗
mdT

m)(D−m)HSH = ASσ2INd
� σ′2INd

(20)

in which diag performs the matrix diagonalization, and E{.} is the statistical expectation. Hence,
ws3(m) is a complex WGN with variance of σ′2, i.e., N(0Nd

, σ′2INd
).

3. DETECTION ALGORITHM

Without loss of generality, the detection of a target with unknown complex amplitude at, known sample
delay m and known Doppler frequency ft in the presence of other targets, clutter and noise is modeled
as a composite hypothesis test using Eq. (12) and the results of Eqs. (18) to (20), given by:{ H0 : a′′t = 0

H1 : a′′t 	= 0
(21)

or, equivalently { H0 : ỹ(m) = U(m)θ + ws3(m)
H1 : ỹ(m) = a′′t v(ft) + U(m)θ + ws3(m)

(22)

where

θ = [γT [aT
t ]α]T

U(m) = [C3(m) [T3(m)]α]

ws3(m) d∼ N(0Nd
, σ′2INd

)

(23)

θ contains the complex amplitudes of the clutter scatterers and the interfering targets and is considered
as a complex deterministic and unknown vector. a′′t and σ′2 are complex deterministic and unknown
scalars. Since the clutter region is known a priori, C3(m) is a known matrix whose columns span the
clutter subspace in the mixed signal model. α denotes the indices of other (interfering) targets. So,
the columns of U(m) span the interference (clutter and interfering targets) subspace and as mentioned
before are in the form of a pure tone or modulated tone. For now, we assume that the number of the
interfering targets and their sample delays and Doppler frequencies are known such that U(m) is a
known Nd× (NcNr +Nt−1) full column rank matrix which requires that Nd > NcNr +Nt−1 � P . So,
the number of samples for the subsampled mixed signal, i.e., Nd, is chosen larger than the dimension
of the interference subspace, i.e., P . The method to sequentially determine the coordinates of the
interfering targets is discussed later.

The hypothesis test given by Eq. (22) is the same as the conventional hypothesis test presented
in [9, 10] except that the target signal and the interference matrix are modified based on the mixed
signal model. We use the GLRT for this hypothesis test due to the unknown parameters a′′t θ and σ′2
as derived in [9, 10]:

LM−GLRT (ỹ(m)) =
|v(ft)HP⊥

U(m)ỹ(m)|2
||P⊥

U(m)v(ft)||2||P⊥
U(m)ỹ(m)||2

H1
> η (24)

where P⊥
U(m) = INd

− U(m)(U(m)HU(m))−1U(m)H is the orthogonal projection onto the subspace
spanned by columns of U(m), and η is chosen according to the desired probability of false alarm, i.e.,
pfa. This detector which is derived based on the mixed signal model by exploiting the GLRT is denoted
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by M-GLRT. To derive the analytical detection performance of the M-GLRT, it can be shown that
Eq. (24) is statistically equivalent to [9, 10]:

L′
M−GLRT (ỹ(m)) = Nd − (P + 1)

1
LM−GLRT (ỹ(m))

− 1

H1
> η′,

(25)

and in a similar way to [9, 10], it can be shown that:

L′
M−GLRT (ỹ(m)) d∼

{
F1,Nd−(P+1) under H0

F ′
1,Nd−(P+1)(δ) under H1

(26)

where F1,Nd−(P+1) is a complex F distribution with 1 numerator complex degree of freedom and
Nd− (P +1) denominator complex degrees of freedom. F ′

1,Nd−(P+1)(δ) denotes a non-central complex F

distribution with 1 numerator complex degree of freedom, Nd− (P +1) denominator degrees of freedom
and non-centrality parameter δ = |a′′

t |2
σ′2 ||P⊥

U(m)v(ft)||2. Hence, the exact detection performance can be
formulated by:

pfa = QF1,Nd−(P+1)
(η′)

pd = QF ′
1,Nd−(P+1)

(δ)(η
′)

(27)

where
η = η′/(η′ + Nd − (P + 1)), (28)

QF1,Nd−(P+1)
(η′) and QF ′

1,Nd−(P+1)
(δ)(η′) are the right-tail probabilities of F1,Nd−(P+1) and F ′

1,Nd−(P+1)(δ),

respectively and pd denotes the probability of detection. According to Eqs. (27) and (28), the threshold
is independent of the unknown parameters and hence the CFAR property of the M-GLRT is satisfied.
Using Eq. (27), it is seen that pd is an increasing function of δ which can be interpreted as the output
SNR in this paper, i.e., SNRo. Since the input SNR, i.e., SNRi, is equal to |at|2A/σ2, the SNR gain
of the detector will be δ/SNRi = ||P⊥

U(m)v(ft)||2S.
If there exists no clutter scatterer or interfering target, the SNR gain is equal to ||INd

v(ft)||2S =
NdS. On the other hand, due to the idempotent property of the orthogonal projection matrix [9, 18] it
has either 0 or 1 eigenvalues, and it can be shown that [9, 18]:

0 ≤ ||P⊥
U(m)v(ft)||2S ≤ ||v(ft)||2S = NdS (29)

So, in the presence of the interference the SNR gain is lower than the interference-free case, and we
define the interference loss (IL) as follows:

IL =
NdS

||P⊥
U(m)v(ft)||2S

=
Nd

||P⊥
U(m)v(ft)||2

(30)

If the testing target coexists in the clutter region and interfering targets locations, P⊥
U(m)v(ft) = 0

and IL = ∞. The coordinates close to that of the interference are also suffered by high IL. In other
locations far enough from them, ||P⊥

U(m)v(ft)||2 ∼= Nd which leads to negligible IL. So, the detector
has a proper interference cancellation and target detection capability.

The derivation of the M-GLRT in Eq. (24) requires that the clutter region, number of interfering
targets and their coordinates and hence U(m) are known. For clutter, this assumption is reasonable;
but, for interfering targets it is not a practical one. So, initially the interference matrix consists of only
the clutter region signals. The M-GLRT is evaluated for each sample delay-Doppler frequency pair in
the desired sample delay-Doppler frequency plane outside the region of interference, and its maximum
is compared with the predetermined detection threshold to find the strongest target. The coordinate of
this target, which is an interfering target for the next targets, is used to update the interference matrix
in the M-GLRT to cancel its effect and estimate the coordinate of the next strongest target. This
procedure is repeated so that the coordinates of all targets are estimated sequentially. This is referred
to as the ITP algorithm as in [9–11].
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3.1. Implementation Issues of the ITP Algorithm

Since the M-GLRT should be computed many times (for every sample delay-Doppler pair) as mentioned
above, some techniques are used to reduce its computational complexity:

1) The term ||P⊥
U(m)v(ft)||2 in the denominator of Eq. (24) can be approximated as a constant

value for targets whose coordinates are far from the interference region. We use this approximation for
the whole detection plane to reduce the computational complexity [9–11].

2) The numerator of Eq. (24) for each m and a set of testing Doppler frequencies can be computed
using the fast Fourier transform (FFT). We consider the number of FFT points to be Nf = 2Nd

corresponding to a set of testing Doppler frequencies spaced with half of Doppler resolution, i.e., 1/(2Ti).
Hence, the approximated version of the M-GLRT used in the ITP algorithm is given by:

lM−GLRT (ỹ′(m)) =
FFT (ỹ′(m), Nf ) � [FFT (ỹ′(m), Nf )]∗

||ỹ′(m)||2 , m = 1, . . . ,M (31)

where
ỹ′(m) � P⊥

U(m)ỹ(m), (32)

and sample delay M is corresponding to the maximum bistatic range of interest.
3) According to the math analysis in [10], P⊥

U(m)ỹ(m) in each iteration of the ITP algorithm can be
computed using the previous iterations’ results to avoid multiplication and inversion of larger matrices.

Hence, the detailed ITP algorithm for the M-GLRT detector using the idea of [10, 11] is given by:
Step 1 : Set l = 0 and for all m U0(m) = C3(m), R0(m) = (C3(m)HC3(m))−1 and ỹ′

−1(m) =
ỹ(m).

Step 2 : For all m cancel the interference by:

ỹ′
l(m) = P⊥

Ul(m)ỹ
′
l−1(m) = ỹ′

l−1(m) − Ul(m)Rl(m)Ul(m)H ỹ′
l−1(m) (33)

Step 3 : Compute llM−GLRT (ỹ′
l(m)),m = 1, . . . ,M using Eq. (31).

Step 4 : The coordinate corresponding to the maximum value of llM−GLRT (ỹ′
l(m)) over m and ft

is the estimation of the coordinate of an interfering target if the exact M-GLRT given by Eq. (24), i.e.,
LM−GLRT evaluated at this coordinate exceeds the threshold η, given by (28). Otherwise, the algorithm
stops. If we denote this maximum by ĉ and the corresponding coordinate by (m̂, f̂t), the exact M-GLRT
evaluated at this coordinate is equal to ĉ/||P⊥

U(m̂)v(f̂t)||2 where P⊥
U(m̂)v(f̂t) is computed by [10]:

P⊥
U(m̂)v(f̂t) =

[
l∏

s=0

P⊥
Us(m̂)

]
v(f̂t) = v(f̂t) −

l∑
s=0

Us(m̂)Rs(m̂)Us(m̂)Hv(f̂t) (34)

Since Nd � P , it can be shown that the probability of false alarm does not change considerably with
respect to the number of interfering targets and hence the threshold can be set a priory based on the
desired probability of false alarm with an assumed maximum number of targets [9–11].

Step 5 : Set l = l + 1 and register the extracted coordinate at the previous step as the estimated
coordinate of the lth interfering target, i.e., (m̂, f̂t)l. Produce the lth interfering target matrix, i.e.,
T3,l(m) (for all m) using (m̂, f̂t)l with a proper Nb-cell mask around it for compensating any inaccuracy
in the estimation. It is noted that each column of T3,l(m)Nd×Nb

as in Eq. (12) is a delayed and
Doppler-shifted version of d based on the estimated and mask coordinates, followed by mixing, filtering
and subsampling.

Step 6 : Compute and store the matrices Ul(m) and Rl(m) (for all m), defined as:

Ul(m) = T3,l(m) −
l−1∑
s=0

Us(m)Rs(m)Us(m)HT3,l(m) (35)

Rl(m) = (Ul(m)HUl(m))−1 (36)

Step 7 : Iterate Steps 2–6 until the algorithm stops.
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By the end of the ITP algorithm, the unknown targets’ parameters are estimated, and the exact
threshold to set the desired false alarm probability and T3(m) = [ T3,1(m) T3,2(m) . . . T3,Nt(m) ]
can be computed. As a confirmation stage and to reduce the false alarms, each of the targets is considered
as a testing target, while other targets (and the masks around them) are considered as interfering targets.
Then, we employ the exact M-GLRT given by Eq. (24) using U(m) = [C3(m) [T3(m)]α].

3.2. Computational Complexity Analysis

In this section, the M-GLRT is compared with the conventional GLRT and GLRT-SS in terms of
computational complexity. The GLRT for the conventional signal model, given by Eq. (5), evaluated
at sample delay-Doppler pair of (m, ft) can be written as [9, 10]:

LGLRT (x) =
|(s(ft) � dm)HP⊥

Ux|2
||P⊥

U(s(ft) � dm)||2||P⊥
Ux||2 (37)

where U = [C [T]α ]N×P . The approximated version of Eq. (37) used in the ITP algorithm is given
by [9, 10]:

lGLRT (x,m) =
FFT (d∗

m � P⊥
Ux, Nf ) � [FFT (d∗

m � P⊥
Ux, Nf )]∗

||P⊥
Ux||2 , m = 1, . . . ,M (38)

where a decimation filter can be applied before the FFT computation [9, 10].
The GLRT-SS is another representation of the GLRT where the direct and surveillance channel

signals are divided into K batches. The clutter matrix C and the targets matrix T are also generated
as C = [ C1T

C2T
. . . CKT ]T and T = [ T1T

T2T
. . . TKT ]T based on the sub-matrices

corresponding to the different batches denoted by Ck and Tk, k = 1, . . . ,K, respectively [11].
Table 1 lists the operations with the required complex additions and products for the lth iterations

of the ITP algorithms of the GLRT, GLRT-SS and M-GLRT detectors. In this table, P0 is defined
as P0 � NrNc. It is noted that for the M-GLRT, since the operations are performed for each sample
delay m individually, M as the total number of surveillance sample delays appears in the computational
complexity expressions. But, for the GLRT and the GLRT-SS the main complexity does not depend
on M .

4. SIMULATION RESULTS

In this section, several simulations are performed to show the effectiveness of the proposed M-GLRT
and investigate its detection performance and computational complexity. The M-GLRT can be applied
to all PBR systems using any signal of opportunity. Here, we choose FM radio broadcast signal as
the transmitting signal for the simulations. The sampling frequency and the integration time are
fs = 192 kHz and Ti = 1 s, respectively. It is assumed that the input DNR in the reference and the
surveillance channels are 65 dB and 45 dB, respectively. It can be assumed that the clutter scatterers
for FM-based PBRs are distributed in the bistatic ranges between 0 km and 55 km, and their input
clutter-to-noise ratios (CNRi) vary in the range of 5 dB to 35 dB [2, 9]. Hence, in the simulations,
we consider ten clutter scatterers according to Table 2. The clutter region for the cancellation is
also considered to be the first 37 sample delays corresponding to 56 km and Doppler frequencies of
{−0.5,−0.25, 0, 0.25, 0.5} Hz. In the ITP algorithm and the confirmation stage, the mask coordinates
around each interfering target coordinate (m̂, f̂t) is comprised of three sample delays {m̂, m̂ ∓ 1}
and seven Doppler frequencies {f̂t, f̂t ∓ q(fs/S)/(6Nf )}, q = 0, 1, 2, 3 equivalent to total Nb = 21
range-Doppler cells which is shown to be adequate for compensating the target parameter estimation
error [9, 10]. The maximum bistatic Doppler frequency of interest is ftmax = 100 Hz and the detection
threshold is set for pfa = 10−6.

4.1. Evaluation of Detection Performance

In the first simulation scenario, the interference loss defined in Eq. (30) is investigated for the proposed
detector. An interfering target is placed at bistatic range of 25 km and Doppler frequency of 20 Hz with
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Table 1. Complexity (in terms of complex additions and products) of operations for the lth iterations
of the ITP algorithms of the GLRT, GLRT-SS and M-GLRT.

Operation of GLRT

- - - - - - - - GLRT-SS

Complexity

of GLRT/GLRT-SS
Operation of M-GLRT Eq.

Complexity

of M-GLRT

- - Produce x̃(m) (M times) (7) MN

- -
ỹ(m) = SD−mx̃(m)

(M times)
(13) M(N − Nd)

Clutter matrix

generation, U0 = CN×P0

- - - - - -

Uk
0 = Ck, k = 1, . . . , K

P0N

Clutter matrix

generation for all m,

U0(m) = C3(m)

(19) (P0 + NcM)(3N − Nd)

R0 = (CHC)−1 P 2
0 (2N − 1) + 1.3P 3

0
R0(m)=(C3(m)HC3(m))−1

(M times)
MP 2

0 (2Nd − 1) + 1.3MP 3
0

a = UH
l yl−1 (y−1 = x)

- - - - - - -

a =
K∑

k=1
UkH

l yk
l−1

l = 0, P0(2N − 1) a = Ul(m)H ỹ′
l−1(m)

(M times)

(ỹ′
−1(m) = ỹ(m))

(33)

l = 0, MP0(2Nd − 1)

l > 0, Nb(2N − 1) l > 0, MNb(2Nd − 1)

b = Rla
l = 0, P0(2P0 − 1) b = Rl(m)a

(M times)
(33)

l = 0, MP0(2P0 − 1)

l > 0, Nb(2Nb − 1) l > 0, MNb(2Nb − 1)

c = Ulb

- - - - -

ck = Uk
l b

l = 0, N(2P0 − 1)
c = Ul(m)b

(M times)
(33)

l = 0, MNd(2P0 − 1)

l > 0, N(2Nb − 1) l > 0, MNd(2Nb − 1)

yl = yl−1 − c N
ỹ′

l(m) = ỹ′
l−1(m) − c

(M times)
(33) MNd

d = decimate(d∗
m � yl, S)

e = FFT(d, 2Nd) (M times)

MN + M(N − Nd)

+3MNd log2(2Nd)

d = FFT(ỹ′
l(m), 2Nd)

(M times)
(31) 3MNd log2(2Nd)

a = ||yl||2 2N − 1
a = ||ỹ′

l(m)||2

(M times)
(31) M(2Nd − 1)

llGLRT(yl, m) = e � e∗/a

(M times)

- - - - -

llGLRT-SS(yl, m) = e � e∗/a

4MNd

llM−GLRT (ỹ′
l(m)) = d � d∗/a

(M times)
(31) 4MNd

- - ĉ/||P⊥
U(m̂)v(f̂t)||2 (34)

P0(2Nd − 1) + P0(2P0 − 1)

+Nd(2P0 − 1) + l×
[Nb(2Nd − 1) + Nb(2Nb − 1)

+Nd(2Nb − 1)] + (l + 1)Nd

lth target matrix

generation, TlN×Nb

NbN
lth target matrix generation,

T3,l(m)Nd×Nb
(M times)

(12) NbN + M(2N − Nd)Nb

Ul = Tl −
l−1∑
s=0

[UsRs

×UH
s Tl]

- - - - -

Uk
l = Tk

l −
l−1∑
s=0

[Uk
sRs

×
K∑

i=1
UiH

s Ti
l ]

P0(2N − 1)Nb+P0(2P0−1)Nb

+N(2P0 − 1)Nb + (l − 1)×
[(2N − 1)N2

b + (2Nb − 1)N2
b

+N(2Nb − 1)Nb] + lNNb

Ul(m) = T3,l(m) −
l−1∑
s=0

[Us(m)

×Rs(m)Us(m)HT3,l(m)]

(M times)

(35)

{P0(2Nd−1)Nb + P0(2P0−1)Nb

+Nd(2P0 − 1)Nb + (l − 1)×
[(2Nd − 1)N2

b + (2Nb − 1)N2
b

+Nd(2Nb − 1)Nb] + lNdNb}M

Rl = (UH
l Ul)

−1 N2
b (2N − 1) + 1.3N3

b

Rl(m) = (Ul(m)HUl(m))−1

(M times)
(36) MN2

b (2Nd − 1) + 1.3MN3
b
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Table 2. Specifications of clutter.

Scatterer number 1 2 3 4 5 6 7 8 9 10
Sample delay 1 4 8 12 16 16 20 24 28 31
Doppler, Hz 0 0 0.25 0 0 −0.25 0 0 0.5 0
CNRi, dB 35 33 25 25 20 15 15 10 10 5

Figure 1. Two-dimensional plot of the
interference loss.

Figure 2. pd versus SNRi for the M-GLRT
(with different values of S) compared with that
of the GLRT for pfa = 10−6.

SNRi = −10 dB. Fig. 1 shows the interference loss in the range-Doppler plane for subsampling factor
S = 160. As can be seen, at coordinates corresponding to that of the clutter region and the interfering
target IL is very high (about 84 dB) which is enough in practical situations. Also, in other coordinates
far enough from them IL is negligible (about 0.7 dB).

For this scenario, a testing target is placed at bistatic range of 50 km and Doppler frequency of
35 Hz far from the interfering target. The Monte Carlo simulation-based and the theoretical detection
performances of the confirmation stage for the M-GLRT are shown in Fig. 2 for S = 80, S = 160 and
S = 320. As can be seen, the theoretical and simulation results match with each other. It is seen that
the increase of S leads to a degraded performance. Since for an acceptable performance it is required
that Nd � P , we recommend S = 160 for our FM-based PBR simulation. It is reminded that selecting
lower values of S such as S = 80 may not be suitable since the computational complexity is increased
as will be seen later. In this figure, the theoretical detection performance of the GLRT is also depicted.
For S = 160, there is a negligible detection loss (about 0.7 dB) in the detection performance of the
M-GLRT compared with that of the GLRT.

In the next simulation, a more difficult multi-target scenario is considered. In this scenario, targets
1 and 2 are close in range with the same Doppler frequency, and targets 2 and 3 are close in Doppler
with the same range. The specifications of targets are listed in Table 3. The ITP algorithm and then the
confirmation stage are employed and the detection probabilities of both the M-GLRT (with S = 160)
and the GLRT versus the input SNR are plotted in Fig. 3 for all targets. To compute the testing target’s
probability of detection for a range of input SNRs, the input SNRs of other targets are chosen according
to Table 3. As can be seen, the M-GLRT detects all targets well and compared with the GLRT it has
at most 1.5 dB detection loss at pd = 0.8 for targets 1 and 2.

4.2. Computational Complexity Comparison

The number of ITP iterations for the M-GLRT and GLRT is generally the same as that of the targets,
i.e., Nt. Using Table 1, the computational complexity of the ITP algorithm for the GLRT, i.e., CGLRT ,
divided by that of the M-GLRT, i.e., CM−GLRT versus M , is shown in Fig. 4 for S = 160 and three
different values of Nt. It can be seen that for any number of targets the M-GLRT is less computationally
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Table 3. Specifications of targets in the second scenario.

Target number T1 T2 T3

Bistatic Range, km 7.03 17.97 17.97
Bistatic Doppler, Hz 22.00 22.00 14.50

SNRi,dB 12 −14 −32

Figure 3. Detection performance comparison
of the M-GLRT and the GLRT for pfa = 10−6

where Tk denotes the kth target in the second
scenario (S = 160).

Figure 4. Ratio of CGLRT to CM−GLRT versus
M(the maximum sample delay of interest) for
S = 160.

intensive than the GLRT especially for short-range-radar applications (small values of M). For example,
if M = 30 equivalent to bistatic range of 45 km, the ITP algorithm of the M-GLRT is approximately
four times faster than that of the GLRT. Table 4 lists the approximated CGLRT /CM−GLRT for different
values of S and M = 30. Using Fig. 2, the approximated detection loss of the M-GLRT with respect to
the GLRT at pd = 0.8 is also given in this table. As can be seen, there is a trade-off between detection
performance and computational complexity depending on S.

Table 4. Trade-off between detection performance and computational complexity depending on S for
M = 30.

Subsampling
factor, i.e, S

Computational load saving factor of
the M-GLRT, i.e., CGLRT /CM−GLRT

Detection loss of
the M-GLRT, dB

80 2.3 0.3
160 4 0.7
320 6.6 1.6

5. CONCLUSION

In this paper, the GLR detector in the presence of direct signal, interfering targets, clutter and noise
based on the mixed signal model is proposed. The detection probability of the proposed detector is
derived theoretically and evaluated in the simulations. It is shown that its detection performance is
slightly degraded compared with that of the conventional GLRT, but it can be several times faster
depending on the maximum surveillance range of a PBR. Like the conventional GLRT, the proposed
detector is shown to be capable of handling multi-target scenarios appropriately and hence is superior
to the ad-hoc methods which are not designed based on detection theory and suffer from high detection
losses in these scenarios.
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