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Precise Finite Difference Analysis of Lorentz Force Acting on Metal
Nanoparticle Irradiated with Light

Takashi Yamaguchi1, *, Mizue Ebisawa1, and Shinichiro Ohnuki2

Abstract—A finite difference method in the frequency domain is evaluated to clarify characteristics
of the Lorentz force exerted on a metal nanoscale particle by light irradiation. Numerical results are
compared with exact values obtained from Mie theory to show that applying a smoothing algorithm
to the surface of a nanoparticle increases the accuracy of the simulation. Analysis of the Lorentz force
exerted between two spheres aligned closely indicates that strong forces cause the spheres to attract
each other at the plasmon resonant frequency. It was also noticed that application of the smoothing
algorithm was indispensable in order to achieve the above result.

1. INTRODUCTION

Metal nanoparticles have a key role in the development of biosensors [1, 2] and color materials [3–
5] owing to their unique optical characteristics, such as strong absorption and scattering, caused by
localized surface plasmon resonance (LSPR) at certain wavelengths. The wavelength of LSPR is mainly
determined by the shape of the particles, the type of the metal, and the refractive index of the medium
surrounding the particles [6]. Thus, aggregation of the particles, which can be identified by an increase
in the particle size, changes the resonant wavelength normally towards the longer wavelength end of the
spectrum. In the case of biosensing, since target analytes, such as biomolecules attached on a particle’s
surface, combine with the particle, we can detect them via a shift in the resonant wavelength. For
use of these particles as color materials, control of their aggregation state is important to realize an
expected color. We confirmed experimentally that a dispersion liquid of silver nanoparticles changes
its color gradually due to aggregation when LED light at the plasmon resonance frequency impinges.
Approaches that induce aggregation of the particles can be roughly divided into two categories —
chemical and non-chemical methods [7]. Our interest, in this study, is in a non-chemical approach that
uses the Lorentz force generated by light irradiation behaving as a dominant attracting force between
the particles positioned at some distance each other [8–10]. The Lorentz force is also crucial in fine
manipulations of particles by light. Although light commonly pushes any object forward, but it is
possible to induce backward and lateral forces under certain conditions of the light source and the
medium of the particles [11–13].

The Lorentz force acting on a particle is derived from electromagnetic fields inside and at the
surface of the particle [14]. Mie’s theory gives us a rigorous solution when the particle is represented
as spheres [13], but numerical simulations are needed to investigate the relation between the Lorentz
force and aggregation for multiple particles of arbitrary sizes, shapes, materials, and locations. Several
techniques have been reported to analyze electromagnetic fields and the Lorentz force under various
geometric configurations in both the time and frequency domains. Fujii [15] reported the particle size
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dependency of the Lorentz force exerted on a metal cluster, touching two spheres, using the finite-
difference time-domain (FDTD) method. Shalin et al. [16] investigated the motion of a nanoparticle
placed on a plasmonic V-groove waveguide and driven by a light beam performing the finite-element
method (FEM). Xiao and Chan [17] analyzed optical forces in arbitrarily shaped two-dimensional
cylinders by applying the boundary-element method [18] and described the effect of their surface
roughness on force enhancement. Chaumet and Rahmani [19] formulated a method based on the coupled
dipole to compute the optical forces and torques on an object that has an arbitrary shape, permittivity,
and permeability. In this study, we considered the finite difference in frequency domain (FDFD) method,
in which Maxwell’s equations, expressed in the frequency domain, are spatially discretized by using the
central difference method. There were two reasons for this. Firstly, we need to know about the intensity
of the forces in a steady state, because the velocity of light is much faster than that of the motion of
particles. Secondly, the cubic cells in Yee’s algorithm are very convenient for dealing with analysis models
in which objects continuously change their position and direction with time. The FDFD method takes
little computational time to generate a mesh compared with other techniques using an unstructured
mesh.

In this study, improvement of the accuracy of the FDFD simulation, by smoothing of the boundary
between a particle and a surrounding medium, was confirmed through analyses of the Lorentz force
acting on a sphere, which is obtained from a volume integral of electromagnetic fields, and whose
exact solution can be obtained from Mie theory. The dependence of the Lorentz force on the
incident wavelength showed that the force exerted on a particle, or two particles, was enhanced by
electromagnetic fields at the wavelength of LSPR.

2. FDFD ALGORITHM FOR ANALYSIS OF LORENTZ FORCE

To treat an incident wave propagating in an arbitrary direction simplistically, we used Maxwell’s
equations expressed in the frequency domain, in which electromagnetic fields (E,H) are separated
into incident (Ei,Hi) and scattered (Es,Hs) fields [20] as follows:

∇× Es (r) + jωμ (r)Hs (r) = jω {μsr − μ (r)}Hi (r)
−∇× Hs (r) + jωε (r)Es (r) = jω {εsr − ε (r)}Ei (r) (1)

where ω is the angular frequency of the incident wave; μ and ε are the permeability and permittivity of
the particle, respectively; μsr and εsr are those of the surrounding medium. In general, the value of ε for
metal is a complex value in the visible light region. The time factor is given by ejωt. The permeabilities,
μ and μsr, were fixed at μ0, the permeability of free space, throughout this paper. In Eq. (1), the
incident fields, Ei and Hi, are given values, as an initial condition of the simulation and the scattered
fields, Es and Hs, are unknowns that we want to obtain. Discretizing Eq. (1) with the finite-difference
approximation yields simultaneous linear equations, which can be solved by using various well-known
numerical techniques, such as iterative or direct solvers.

The time-averaged Lorentz force F acting on each particle is calculated from a volume integral of
Maxwell’s stress tensors, T̃ e and T̃ m, over the particle [14]:

F =
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The superscript ∗ denotes the complex conjugate. As Eq. (2) consists of just the optical constants of the
surrounding medium and the total electromagnetic fields, we can compute the force F after an FDFD
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simulation of electromagnetic fields is finished. The integral in Eq. (2) is implemented as a summation
of the divergence of Maxwell’s stress tensors at each cell in the analysis region, discretized spatially
by using the finite-difference approximation. In Yee’s cell, the electromagnetic fields are placed at the
center of each node and surface, as usual, while all the components of the force are collocated together
at the corners.

In the FDFD simulation, the surface of a spherical object, in this case the boundary between a
particle and its surrounding medium, modelled with cubic cells, becomes stepwise, unfortunately. This
poor modelling decreases the accuracy of the volume integral in Eq. (2), especially when the intensity of
electromagnetic fields becomes large near the surfaces, as in plasmon resonance. To avoid this accuracy
reduction, we applied a subpixel smoothing technique, which was developed for the FDTD method [21],
to the FDFD method. Although this technique is applicable to both isotropic and anisotropic media [22],
in this section we discuss isotropic complex permittivity considering the dispersibility of metals. The
modified permittivity is defined by

ε̃ (r) =
[〈ε−1 (r)〉 {n (r) ⊗ n (r)} + 〈ε (r)〉−1 {1− n (r) ⊗ n (r)}]−1 (4)

where 〈·〉 denotes the average over the volume that encloses the field component in question and is equal
to that of the cell; n is the vector normal to the boundary between the particle and the surrounding
medium at each cell. The boundary was assumed flat in each cell, and we computed the average and
the harmonic average of permittivity by dividing a cell into 1000 subcells. Applying this averaged
permittivity allows to change continuously the particle size regardless of the cell size but blurs the
surface of the particle and makes the integral range unclear in (2). In our simulation, if the center of
a cell was inside the object, we added the cell into the integral range regardless of the value of the
permittivity.

3. NUMERICAL RESULTS

We first analyzed the Lorentz force acting on a silver sphere of radius a = 15 nm, in free space, for
various wavelengths. In our experiment of color change, silver nanoparticles were dispersed in water.
However, the resonant wavelength in both cases of free space and water is existed in the blue region and
the color of the dispersion liquid redshifts by aggregation, thus we used the condition of free space to
simplify the analysis model. The complex permittivity of silver was calculated from the Lorentz-Drude
model [23, 24]. The spatial discrete intervals Δx, Δy, and Δz were each 1.5 nm. The incident field was a
plane wave polarized in the y-direction and propagated in the positive z-direction. The un-split perfectly
matched layers [25] of 10 cells enclosed the analysis region as an absorbing boundary condition. We
implemented a FDFD code, in which the BiCGStab(l) method [26] was applied as an iterative solver,
using the general-purpose computing on graphics processing units (GPGPU) technology in a manner
similar to that of FDTD [20]. The order, l, of BiCGStab(l) was 7. Under this analysis condition, the
Lorentz force, F , is comprised of only the z-component, which corresponds to the direction in which
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Figure 1. Lorentz force acting on silver sphere against wavelength.
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Figure 2. Cell size dependence of FDFD simulations.

the incident wave travels. Figure 1 shows the Lorentz force, Fz, normalized by ε0a
2 against incident

wavelength, λ. As is shown, the Lorentz force was enhanced near λ = 370 nm by LSPR in both the exact
solution and the results of the FDFD simulations. The good agreement of the dotted line with the solid
line within all the wavelength range indicates that the accuracy of the FDFD method was increased
significantly by the effect of the smoothing technique. The norm of the relative error was reduced from
1.26 × 10−1 to 3.92 × 10−3. In Figure 2, the FDFD results, both with and without the smoothing,
are plotted versus cell size. The incident wavelength was fixed at 372 nm, the peak wavelength of the
rigorous solution. All other conditions were the same as in the above simulation. From the dependence
of cell size, the relative error, even at the 2.5 nm cell size, can be smaller than that of the standard
FDFD at the 0.3 nm cell size when using the smoothing approach. Unlike scattered fields at a certain
distance from the surface, the stairstep approximation of a curved face has a significant negative impact
on the analysis of the Lorentz force. This improvement in accuracy would be quite effective when we
analyze a large field in which several particles aggregate.

When two metal nanoparticles come within close proximity of each other, a strong attractive force
is generated between them by interactions of LSPR. The FDFD method is a powerful way to deal
with arbitrarily shaped particles, but here we considered simply a two sphere case to show clearly the
difference from the single sphere case above. Figure 3 shows the comparison of the standard FDFD
and the FDFD with the smoothing algorithm applied in the analysis of the normalized attractive force,
|Fy|/(ε0a

2), acting on the two silver spheres placed separately at a distance of 3 nm. The analysis
conditions were the same as in the case of a single sphere. In this setup, the Lorentz force acts strongly
in the y-direction, which corresponds with the polarization direction of the incident wave and the aligned
direction of the objects. As is clear from Figure 3, the results of the two methods differed significantly
more than in the case of a single sphere, thus the smoothing of boundaries must be applied when
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Figure 3. Attractive force generated between two spheres placed separately at distance of 3 nm.
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(a) with smoothing (b) without smoothing

Figure 4. Distribution of the electric field intensity |E|2.

several particles aggregate. We confirmed that the characteristics computed by using FDFD applied
the smoothing algorithm were stable independent from the cell size and can be considered as reference
solutions. Figure 4 depicts the distribution of the electric field intensity, |E|2, on the y-z plane passing
through the centers of the spheres. The incident wavelength was assumed to be the same as the resonant
wavelength of each method. As is shown, large energy was confined between the particles in both cases,
but its distribution in Figure 4(a) was narrower than that in Figure 4(b) because of the accurately
modelled curved surface.

4. CONCLUSION

It was found that the Lorentz force acting on metal nanoparticles could be computed accurately by
using the FDFD method with a subpixel smoothing technique. The numerical results showed that the
Lorentz force was enhanced at the plasmon resonance frequency. When two spheres aggregated, the
advantage of the smoothing was significantly increased.
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