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A Rank-(L,L,1) BCD based AOA-Polarization Joint Estimation

Algorithm for Electromagnetic Vector Sensor Array

Yu-Fei Gao and Qun Wan*

Abstract—This paper investigates an angle of arrival (AOA) and polarization joint estimation
algorithm for an L-shaped electromagnetic vector sensor array based on rank-(L,L, 1) block component
decomposition (BCD) tensor modeling. The proposed algorithm can take full advantage of the
multidimensional information of electromagnetic signal to obtain the parameter estimation more
accurately than the matrix-based method and the existing tensor decomposition method. In addition,
the algorithm can accomplish pair-matching of estimated parameters automatically. The numerical
experiments demonstrate that even under the conditions of low SNR and limited snapshots, the proposed
algorithm can still steadily achieve high detection probability with low estimation error, which is
important for practical applications.

1. INTRODUCTION

Electromagnetic vector sensor (EMVS) is a kind of antenna element which can detect electromagnetic
wave with different polarization forms and fully acquire information carried by the wave. Many
researches have been presented to study the problem of parameter estimation of EMVS array [1–3].
However, the existing methods are based on vector or matrix modeling, which are inappropriated
to the received signal of EMVS array with inherent multidimensional structure. Recently, tensor-
based methods have received attention in signal processing [4]. Compared with vector or matrix
modeling, tensor modeling is more suitable to multidimensional signals [5, 6]. In the past decade,
tensor decomposition has been widely applied to EMVS array signal processing [7–9]. However, the
existing tensor-based methods for EMVS array are mostly based on canonical polyadic decomposition
(CPD) model. This model has the advantage of decomposition uniqueness, but the decomposition
factors must satisfy rank-1 condition, which may not be true in practice [10]. It is expected that a
new tensor framework needs to be developed. In 2008, De Lathauwer proposed a tensor decomposition
model, i.e., block component decomposition (BCD), which is able to overcome the shortcoming [11, 12].
The BCD-based tensor methods can not only maintain the uniqueness of decomposition, but also relax
the requirement for rank constraint [13, 14]. To the best of our knowledge, there has been little public
research on the application of BCD in EMVS array. Besides, the angle pair-matching is a challenging
problem in parameter estimation for array signal processing. Since rank-(L,L, 1) BCD method possesses
a blind estimation feature, it can solve such a problem suitably. Motivated by the background above,
this paper proposes a rank-(L,L, 1) BCD-based parameter estimation algorithm for EMVS array.

The rest of this paper is organized as follows. Section 2 describes the received signal model of EMVS
array based on rank-(L,L, 1) BCD modeling. Section 3 develops the AOA-polarization estimation
algorithm. Section 4 presents numerical simulations to verify the proposed algorithm. The last section
concludes this paper.
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2. RANK-(L,L,1) BCD MODELING FOR EMVS ARRAY

This paper adopts an L-shaped EMVS array [15], as shown in Fig. 1, which consists of a couple of
orthogonal uniform linear arrays (ULA), and each has M sensors. For partially polarized electromagnetic
waves [1, 2], the received signal model can be expressed as

x (t) = (Ax � B) sT (t) + nx (t) , (1)

z (t) = (Az � B) sT (t) + nz (t) , (2)
where � denotes the Khatri-Rao product [4]; Ax = [ax,1,ax,2, . . . ,ax,K ] ∈ C

M×K is the steering
matrix of the subarray along x-axis, defining the spatial frequency αk = −2πd

λ cos φ′
k, where λ is

the wavelength of source signal and d the array element spatial interval. Then we have ax,k =
[1, ejα1 , ejα2 , . . . , ej(M−1)αK ]T . B = [b1, . . . , bK ] ∈ C

6×K is the polarization steering matrix, in which
bk = Θkgk, Θk ∈ R

6×2 is the orientation matrix depending on AOA, and gk = [cos γk, sin γke
jηk ]T is

the amplitude-phase vector, where γ ∈ [0, π/2] is the auxiliary polarization angle and η ∈ [−π, π] the
polarization phase difference [3]. s(t) ∈ C

1×K is the source signal vector and nx(t) ∈ C
M×1 the additive

white Gaussian noise (AWGN) vector. The signal model of the subarray along z-axis is consistent with
the form of x-axis. Without loss of generality, the argument t is omitted in the following discussions for
simplicity.
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Figure 1. L-shaped array configuration of EMVS array.

Combining the measurement of both subarrays [2], the received signal model can be expressed as

y =
K∑

k=1

Ak ⊗ bk · sT
k + n, (3)

the operator ⊗ denotes Kronecker product; Ak = blockdiag(ax,k,az,k), where blockdiag(·) denotes a
block diagonal matrix. For N snapshots, Eq. (3) can be written as

Y = (A �b B)ST + N , (4)
where �b denotes the Khatri-Rao product in block form [12]. A = [A1, . . . ,AK ]; S = [S1, . . . ,SK ],
Sk = [sT

k (1), . . . , sT
k (N)]T . N is the corresponding AWGN matrix. Note that Eq. (4) is the rank-

(L,L, 1) BCD model [11], where L = 2. In this paper, the calligraphic capital letter is utilized to
indicate tensor data, then the received signal model can be rewritten as

Y =
K∑

k=1

(
SkA

T
k

) ◦ bk + N , (5)
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where Y ∈ C
N×2M×6 is the received signal in tensor form, and the mode-1 matricization is Y , i.e.,

Y = [Y](1), in which mode is considered as the order of tensor data [4]. Based on EMVS array signal
model, the decomposition uniqueness of Eq. (5) should be investigated.
Definition 1 Essentially unique for rank-(L,L, 1) BCD

The rank-(L,L, 1) BCD described in Eq. (5) is called essentially unique, if the factors {S,A,B}
satisfy the following conditions, 1. Sk and Ak can be post-multiplied by Γk and (ΓT

k )−1, respectively,
where Γk ∈ CL×L is a nonsingular matrix; 2. corresponding to condition 1, all factors can be arbitrarily
scaled; meanwhile, their product remains unchanged.
As concluded in [11], the conditions of decomposition uniqueness can be derived as: I. min(N, 2M) ≥
LK; II. B does not contain proportional columns. Considering the definition of B described in received
signal model, condition II is satisfied. Since L = 2 in this paper, when K ≤ �min(N, 2M)/2	, the
uniqueness of Eq. (5) will be valid.

3. AOA-POLARIZATION ESTIMATION ALGORITHM

Considering the rank-(L,L, 1) BCD model in Eq. (5) with additive noise, the proposed algorithm
acquires the estimation of factor matrices A and B from the received signal Y and obtain the estimation
of spatial frequency {αk}K

k=1 and polarization amplitude-phase vector {gk}K
k=1. This paper adopts the

minimum mean square error (MMSE) criterion [12],

min
Âk,b̂k

∥∥∥Y − Ŷ
∥∥∥2

F
, k = 1, 2, . . . ,K,

s.t. Ŷ =
K∑

k=1

(
ŜkÂ

T
k

)
◦ b̂k,

(6)

where ‖ · ‖F denotes the Frobenius norm. To solve the above problems, the alternating least squares
(ALS) is introduced [12, 16, 17]. With fixed two components of S,A,B in each iteration, the remaining
one is updated by least squares approach, then the same scheme is repeated in turn until the convergence
condition is satisfied.

For the array manifold configuration given in this paper, Ak can be parted as Ak = [AT
k,1,A

T
k,2]

T ,
where Ak,1 = [ax,k,0], Ak,2 = [0,az,k]. Because the BCD estimation result and steering matrix have
the same column space [11], Âk can be parted as Âk = [ÂT

k,1, Â
T
k,2]

T in the same way. Giving the SVD
of {Âk,m}2

m=1, i.e., Âk,m = Uk,mΣk,mV H
k,m, the left singular vector uk,1 corresponding to the maximum

singular value can be obtained. Take the first and last (M − 1) rows of uk,1, denoted as ua and ub,
to construct Uab = [ua,ub]. Applying eigenvalue decomposition of UH

abUab, i.e., UH
abUab = WΛW H ,

where

W =
[
w1,1 w1,2

w2,1 w2,2

]
∈ C

2×2, (7)

yields the estimation of spacial frequency α̂k = ∠(−w1,2

w2,2
), where ∠(·) denotes the phase angle of a

complex variable. Thus the estimation of the arrival angle on the array along x-axis can be obtained,
φ̂′

k = arccos(−α̂kλ
2πd ). The same method can be used to get the estimation of the elevation angle θ̂k.

Then the azimuth angle φk can be estimated directly, φ̂k = arccos( cos φ̂′
k

sin θ̂k
). Since Âk includes the

steering vector information on both subarrays, and the type-2 BCD possesses the uniqueness [13], the
estimations of azimuth and elevation angles accomplish the matching pairing automatically.

After obtaining the polarization steering matrix by ALS and the estimation of AOA, the polarization
amplitude-phase vector can be obtained. Consider bk = Θkgk, where Θk is calculated by substituting
(φ̂k, θ̂k), then we have ĝk = Θ†

kb̂k. Consequently, the estimations of auxiliary polarization angle and
polarization phase difference are ⎧⎨

⎩
γ̂k = arctan

∣∣∣∣ ĝk (2)
ĝk (1)

∣∣∣∣
η̂k = ∠ (ĝk (2))

(8)
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4. NUMERICAL EXPERIMENTS AND DISCUSSION

In this section, several numerical experiments are presented to verify the effectiveness of the proposed
algorithm and compare its performance with the existing methods. It is assumed that the L-shaped
array consists of two ULAs, and each has M sensors. The number of signals is K; the snapshots is N ;
the Monte-Carlo independent trials is L.

4.1. Implementations of AOA-Polarization Estimation

4.1.1. Different SNRs

The simulation parameters are set as: M = 5,K = 2, N = 200; the array element interval is λ
2 ; two

groups of AOAs are (φ1, θ1) = (100◦, 65◦), (φ2, θ2) = (80◦, 115◦), and the corresponding polarization
parameters are (γ1, η1) = (25◦,−30◦), (γ2, η2) = (75◦, 40◦). The SNR is set as −3 dB ∼ 15 dB and
Monte-Carlo trials L = 500. The AOA estimation results are shown in Fig. 2(a). The estimation results
of auxiliary polarization angles and phase difference are shown in Fig. 2(b). The simulation results
show that the higher precision of parameter estimation can be obtained by means of the algorithm
proposed in this paper. Even under the situation of low SNR, the AOAs, auxiliary polarization angles
and auxiliary polarization phase difference can still be fully distinguished, which demonstrates the
anti-noise robustness of this algorithm.
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Figure 2. AOA and polarization scatterplots under different SNRs, by 500 Monte-Carlo trials. (a)
(φ1, θ1) = (100◦, 65◦), (φ2, θ2) = (80◦, 115◦). (b) (γ1, η1) = (25◦,−30◦), (γ2, η2) = (75◦, 40◦).

4.1.2. Different Snapshots

This group of simulations assign the snapshots N ∈ [5, 1000]. The SNR is fixed at 5 dB. The remaining
parameters are the same as those in Section 4.1.1. The simulation results of AOA are shown in Fig. 3(a).
The results for the auxiliary polarization angles and phase difference can be seen in Fig. 3(b). The
results indicate that the algorithm developed in this paper has higher angular resolution, even under
the situation of limited snapshots.

4.2. Performance Comparison with Other Methods

To inspect distinct features from other algorithms, the comparison of the proposed algorithm and two
existing algorithms has been conducted, by which the performance can be measured by two indicators,
root mean square error (RMSE) and detection probability. The algorithms of comparison include the
classic subspace method MUSIC [9, 18] and CPD-based algorithm [19].
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Figure 3. AOA and polarization scatterplots under different snapshots, by 500 Monte-Carlo trials. (a)
(φ1, θ1) = (100◦, 65◦), (φ2, θ2) = (80◦, 115◦). (b) (γ1, η1) = (25◦,−30◦), (γ2, η2) = (75◦, 40◦).

4.2.1. RMSE

We first investigate the RMSE which is defined as
√

1
L

∑L
l=1(εφ(l)2 + εθ(l)2 + εγ(l)2 + εη(l)2), where

εφ(l) = 1
K

∑K
k=1 |φ̂k(l) − φk|, εθ(l) = 1

K

∑K
k=1 |θ̂k(l) − θk|, εγ(l) = 1

K

∑K
k=1 |γ̂k(l) − γk| and

εη(l) = 1
K

∑K
k=1 |η̂k(l) − ηk|, in which φ̂k(l), θ̂k(l), γ̂k(l), η̂k(l) are the estimated values of the k-th

group signal parameters at the l-th Monte-Carlo trial. The Cramer-Rao lower bound is defined as√
1
K

∑K
k=1(CRB(φk) + CRB(θk) + CRB(γk) + CRB(ηk)), where CRB(φk), CRB(θk), CRB(γk) and

CRB(ηk) are the diagonal elements of CRB matrix [1, 7], corresponding to the parameters φk, θk, γk, ηk,
respectively. The RMSE curves versus SNRs and snapshots are shown in Fig. 4(a) and Fig. 4(b),
respectively.

The simulation result in Fig. 4(a) reveals that RMSE of the proposed algorithm is always smaller
than the reference methods within the entire SNR interval. The reason is that the tensor-based method
takes full advantage of the multidimensional information of received signal. This inherent feature makes
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Figure 4. RMSE comparison, by 500 Monte-Carlo trials. (a) Versus different SNRs. (b) Versus
different snapshots.
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the two tensor-based algorithms have a better estimation performance than the matrix-based subspace
algorithms, e.g., MUSIC, which can only make use of one-dimensional information. So far as the
comparison between the two tensor-based algorithms, the performance of BCD is better than CPD. As
the analysis in Section 3, the former gives the united steering matrix Ak directly and finishes the pair
matching of estimated parameters automatically.

The RMSE curves in Fig. 4(b) demonstrate that both the tensor-based methods are better than
the classic subspace method with different snapshots. From the analysis in Section 4.2, the uniqueness
condition of BCD modeling for EMVS array is �min(N, 2M)/2	 ≥ K. For this group of experiments,
M = 5,K = 2. Consequently, the uniqueness condition is met so long as N > 4. Besides, according
to the analysis results of the detection probability in Section 4.2.2, even with limited snapshots, BCD
can still maintain a higher level of detection probability. This is a main reason of its better error
performance than other reference methods.

4.2.2. Detection Probability

The detection probability represents the success rate of pair matching between the two groups of signal
parameters for EMVS array. We compare the detection probabilities among three methods and carry
out two groups of simulation experiments for different SNRs and snapshots, which are shown in Fig. 5(a)
and Fig. 5(b), respectively.
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Figure 5. Detection probability comparison, by 500 Monte-Carlo trials. (a) Versus different SNRs.
(b) Versus different snapshots.

The graph in Fig. 5(a) demonstrates that detection probability curves coincide gradually with
the SNR increasing and split obviously apart as the SNR decreasing, which implies the performance
difference between individual methods under low SNR conditions. The proposed algorithm gives the
highest detection probability of all the three methods. For instance, when SNR = −3 dB, the detection
probability of the proposed algorithm is 93%, which is increased by nearly 39% relative to the value
(67%) of MUSIC algorithm and by nearly 16% relative to the value (80%) of CPD algorithm. This
result should be attributed to that BCD algorithm can jointly estimate the steering vectors of the
both subarrays and accomplish the pair matching automatically, which makes BCD possess a better
estimation performance even under a severe noise situation.

The variation of the curves in Fig. 5(b) is similar to the situation for different SNRs. It can be seen
that the proposed algorithm has the highest success rate of pair matching among all compared methods,
especially under small snapshot conditions. For instance, at snapshot 5, the detection probability of
the proposed algorithm is 97%, which is increased by nearly 33% relative to the value (73%) of MUSIC
algorithm and by 10% relative to the value (88%) of CPD algorithm. Besides, the detection probability
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of the reference methods are severely impacted by snapshots, e.g., the detection probability of MUSIC
varies rapidly as the snapshots increases. In comparison, the impact of the snapshots is quite slight on
the proposed algorithm for which the detection probability curve varies evenly throughout the entire
snapshots interval. This feature implies that the algorithm is more suitable for the practical applications
with real-time requirement.

5. CONCLUSION

In this paper, the BCD tensor modeling for parameter estimation of EMVS array is investigated. For the
fully polarized signal, a rank-(L,L, 1) BCD based algorithm is developed to achieve AOA-polarization
joint estimation. This algorithm can make the most of the multidimensional information of the received
signal and automatically accomplish pair-matching of estimated parameters. Two groups of numerical
experiments are conducted to verify the effectiveness of the algorithm. The results show that both the
estimation accuracy and detection probability of the proposed algorithm are superior to the subspace
method and CPD method. The algorithm maintains robust performance under severe conditions such
as low SNR or limited snapshots, which has significance in practice.
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