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A Fast Explicit FETD Method Based on Compressed Sensing
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Abstract—Linear equations must be solved at each time step as the explicit finite element time-domain
(FETD) method is used to solve time dependent Maxwell curl equations, which leads to a huge amount
of computational cost in a long period time simulation. A new scheme to accelerate the iteration solution
for matrix equation is proposed based on compressed sensing (CS), in which a low rank measurement
matrix is established by randomly extracting rows from mass matrix. Meanwhile, to reduce the number
of measurements required, a sparse transform is constructed with the help of prior knowledge offered by
the solution results of previous time steps. Numerical results of homogeneous cavity and inhomogeneous
cavity are discussed to validate the effectiveness and accuracy of the proposed approach.

1. INTRODUCTION

Finite element time-domain method (FETD) is an efficient tool for solving electromagnetic scattering
problems, since it combines the advantages of time-domain techniques with the versatile spatial
discretization options of the finite element method (FEM) [1]. It is easy to use FETD to handle multi-
scale geometry and acquire information over a wide frequency band. Sorts of FETD methods have been
proposed in recent years, an explicit method that directly solving Maxwell curl equations utilizes the
electric field E and magnetic flux intensity B as simultaneous state variables has been mentioned in [2, 3].
This mixed method can also be considered as a generalization of the finite-difference time-domain
(FDTD) method for unstructured grids. Due to its potential effect to simulate free space conveniently
by introducing perfectly matched layer [4] and conserve energy over long period time in conjugation
with symplectic method [5], more attention has been devoted to it. However, the computation of
interpolation coefficients of global variables E and B has to solve two matrix equations at each time
step in this approach, which makes the calculation extremely expensive in a long period time simulation.
Although reference [6] offered an improved scheme that only one matrix equation is required to be solved,
this defect still limits its development and application.

Compressed sensing (CS) [7], as a current research focus in signal processing, has been introduced
into biological engineering, communication engineering, image processing and electromagnetic field [8],
etc. In CS theory, a signal can be captured at a rate significantly below the Nyquist rate if it has a
sparse representation in a suitable transform domain, and then it can be exactly reconstructed using
recovery algorithms [9]. By means of this theory, some useful schemes are developed to solve partial
differential equations (PDEs) problems with the help of sparse approximations [10, 11].

Motivated by these early theoretical frameworks, a novel FETD method improved by CS (CS-
FETD) is proposed to accelerate solution for the matrix equations of the mixed FETD method. The
implementation of CS for this new scheme can be described by three steps: (1) establish a measurement
matrix by randomly extracting some rows from mass matrix; (2) construct a new basis based on
redundant dictionary that offered by the prior knowledge included in solutions of previous time steps;
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(3) exactly reconstruct the solutions by recovery algorithms. Differently shaped homogeneous cavity
and inhomogeneous cavity are analyzed to show the effectiveness and accuracy of this new fast FETD
method.

2. THEORY AND IMPLEMENTATIONS

2.1. Explicit FETD Method

The coupled first-order time dependent Maxwell curl equations in source free region are considered as

ε
∂

∂t
E = ∇× (

μ−1B
)

(1)

∂

∂t
B = −∇× E. (2)

To achieve the FETD solution of Equations (1) and (2), the computational domain is assumed
to be discretized by a FEM mesh with a triangle faces and d edges. The linear system of ordinary
differential equations for TEz problems are yielded by Galerkin FEM, in which Whitney 1-form vector
basis function is used to discretize electrical field intensity and Whitney 2-form vector basis function is
used to discretize magnetic flux intensity, such as

[T ]d×d

∂

∂t
{e}d×1 = [C]Ta×d [K]a×a{b}a×1 (3)

∂
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{b}a×1 = −[C]a×d{e}d×1 (4)

where {e} and {b} are the interpolation coefficients of E and B, respectively, and [C] is the Curl
operator. [T ] is the 1-form mass matrix with the material property function ε is used to represent the
dielectric properties, and [K] is the 2-form mass matrix with the material property function μ−1 is used
to represent the magnetic permeability. a and d define the dimension of mass matrix. Applying the
leap frog method to (3) and (4) with a stable time step Δt, one can obtain

[T ]d×d {e}n
d×1 = [T ]d×d {e}n−1

d×1 + Δt [C]Ta×d [K]a×a {b}n−1/2
a×1 (5)

{b}n+1/2
a×1 = {b}n−1/2

a×1 − Δt[C]a×d {e}n
d×1 . (6)

2.2. Implementation of CS-FETD Method

The mathematical model of CS can be formulated as

[Φ]m×k{X}k×l = [Φ]m×k[Ψ]k×k{α}k×l = [S]m×l (7)

in which {α} is the sparse representation coefficients of original signal {X} with the sparse basis [Ψ],
and [Φ] is the measurement matrix. m, k and l are the dimensions of these matrices, in general, k is
much larger than m. The approximation of {α} is computed by a L-minimization problem as

{â} = min
∥
∥{a}k×l

∥
∥

L
s.t.

(
[Φ]m×k[Ψ]k×k

) {â}k×l = [S]m×l. (8)

The process of CS discussed above is a regular application in signal processing and other fields.
To implement CS in FETD method, some changes must be made in its procedure and they can be
described as follows:

Step 1: At the beginning of the simulation, {e} is calculated by the traditional FETD method.
Step 2: CS is implemented into FETD when the electromagnetic wave propagation covers the whole

computation area. Based on (5) (the right side of (5) is denoted as {V }), an improved matrix equation
can be obtained as [

T ′]
f×d

{e}d×1 =
{
V ′}

f×1
(9)

in which [T ′] is formed by extracting f rows from [T ], and {V ′} represents the corresponding elements
extracted from {V }. An interesting discovery is that, as FETD is applied, all the {e} calculated at each
time step have strong correlation and redundancy. Hence, a ready-made sparse basis named [epre] can
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Figure 1. The variation of matrix equation (5) before and after the electromagnetic wave propagation
covers the whole computation area.

be obtained as shown in Fig. 1, which is constituted of the column vectors of {e} obtained from previous
time steps. In other words, the matrix is an existing redundant dictionary for {e} at the time step that
is currently being calculated. Take [T ′] as the measurement matrix, Equation (9) at the i + 1th time
step can be transformed as [

T ′]
f×d

[epre]d×i

{
e′

}
i×1

=
{
V ′}

f×1
(10)

in which {e′} represents the sparse projection of {e} in [epre]. Especially, sparse basis is required to be
updated over time. Fig. 1 shows the performance of Step 2.

Step 3: An appropriate recovery algorithm is applied to compute approximate value of {e} by
{
ê′

}
= min ‖{e}‖Ls.t.

([
T ′] [epre]

) {
ê′

}
=

{
V ′} (11)

{ê} = [epre]
{
ê′

}
. (12)

The complexity of CS-FETD is mainly decided by recovery algorithms after the application of CS.
Taking orthogonal matching pursuit (OMP) technique as an example, the complexity is O(Sdf) [12],
where S is the number of iteration steps. The complexity of traditional FETD by using the conjugate
gradient (CG) algorithm to solve the matrix Equation (5) is O(Pd2), where P is similar to S. In general,
S � P and f � d, so that the proposed method is more efficient. Although the complexity of FETD
can be decreased in virtue of the property that mass matrix is sparse and symmetric, CS-FETD also
has the obvious advantage under the same conditions.

3. NUMERICAL RESULTS

To illustrate the effectiveness and accuracy by the proposed method, some resonant frequency problems
of 2-D cavity with perfectly conducting walls in TEz case are provided.

Figure 2. A rectangle cavity (0.02m × 0.01m) discretized with 497 edges and 316 triangle faces.
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3.1. Rectangle Cavity

Using the FEM mesh, the rectangle cavity is described in Fig. 2, and the dimension of mass matrix is
497 × 497 and the time step is set to be Δt = 1ps. For simplicity we set ε = μ = 1.

For the purpose of comparison, the issue is simulated with both the conventional FETD and CS-
FETD methods. The resonant frequencies are acquired from the time domain outcome after certain time
steps by fast Fourier transform. Fig. 3 shows that the error between CS-FETD and conventional FETD
solutions can be ignored when the number of rows extracted randomly from [T ] is greater than 45. Fig. 4
shows values of {e} by using two approaches. Clearly, The CS-FETD with 50 extracted rows can obtain
an accurate solution. Meanwhile, the resonant frequencies and computing time comparison are also
described in Table 1. These comparison results demonstrate that CS-FETD has a high accuracy with
relative error less than 0.1%, moreover requires only about half of the physical time of the conventional
explicit formulation.

Figure 3. Relationship between recovery error
and number of extracted rows at 2000th time step.

Figure 4. The interpolation coefficients of all
edges at 1500th time step.

Table 1. Resonant frequencies of rectangle cavity.

f/d NO. steps Physical Time TE10 TE01, TE20 TE11

FETD 497/497 20000 3.914e3 s 7.500 15.000 16.667
CS-FETD 50/497 20000 2.146e3 s 7.500 15.000 16.658

3.2. Circular Cavity

Similar design principles are applied in the circular cavity case shown in Fig. 5. The dimension of mass
matrix is 843 × 843 and the time step is set to be Δt = 0.9 ps.

Figure 6 shows the recovery error changes from 1000th to 2400th time step with 70 rows extracted
randomly from mass matrix. Fig. 7 depicts interpolation coefficients on certain an edge from 200th to
2400th time step with the same measurement times. Comparisons of computational results and physical
time are shown in Table 2.

Table 2. Resonant frequencies of circular cavity.

f/d NO. steps Physical Time TE11 TE21 TE01

FETD 843/843 20000 5.142e3 s 8.778 14.587 18.267
CS-FETD 70/843 20000 2.964e3 s 8.767 14.565 18.264



Progress In Electromagnetics Research M, Vol. 55, 2017 165

Figure 5. A circular cavity (r = 0.01 m) discretized with 843 edges and 546 triangle faces.

Figure 6. The changes of recovery error. Figure 7. The changes of interpolation
coefficients.

Figure 8. A inhomogeneous cavity with four different dielectric properties areas.

3.3. Inhomogeneous Cavity

In this section, the rectangle cavity offered in the first example is divided into four areas with different
dielectric properties. The inhomogeneous cavity depicted in Fig. 8 contains 540 edges and 344 triangles
by FEM mesh. The time step is set to be Δt = 1.1 ps.

Figure 9 shows that the accuracy of the computational results by CS-FETD can be satisfied when
the number of extracted rows is greater than 40. The variation of recovery error from 1200th to 2600th
time step with 50 extracted rows is depicted in Fig. 10. The resonant frequencies of this inhomogeneous
cavity are shown in Fig. 11. The effectiveness can be observed by the contrast of computing time listed
in Table 3. The advantages of the CS-FETD scheme are further confirmed by these charts.
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Table 3. Computing time of inhomogeneous cavity.

f/d NO. steps Physical Time
FETD 540/540 20000 4.179e3 s

CS-FETD 50/843 20000 2.347e3 s

Figure 9. Relationship between recovery error
and number of extracted rows at 3000th time step.

Figure 10. Recovery error changes.

Figure 11. Comparison of resonant frequencies.

4. CONCLUSION

An improved scheme for accelerated FETD method based on CS theory is proposed, in which a low
rank measurement matrix is extracted from mass matrix in FETD at each time step, and recovery
algorithm is used instead of traditional iterative solution of matrix equations. Meanwhile, with the help
of redundant dictionary formed by prior knowledge included in solutions of all previous time steps, the
matrix dimension can be reduced drastically.

Numerical results have shown that the proposed method can reduce computing time without
accuracy loss. Especially, it is worth mentioning that the proposed scheme can also be used to accelerate
other time domain methods as there is a matrix equation to be solved.
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