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Inversion of an Inductive Loss Convolution Integral
for Conductivity Imaging

Joe R. Feldkamp*

Abstract—Electrical conductivity imaging in the human body is usually pursued by either electrical
impedance tomography or magnetic induction tomography (MIT). In the latter case, multiple coils are
almost always used, while nonlinear reconstruction is preferred. Recent work has shown that single-coil,
scanning MIT is feasible through an analytical 3D convolution integral that relates measured coil loss
to an arbitrary conductivity distribution. Because this relationship is linear, image reconstruction may
proceed by any number of linear methods. Here, a direct method is developed that combines several
strategies that are particularly well suited for inverting the convolution integral. These include use of
a diagonal regularization matrix that leverages kernel behavior; transformation of the minimization
problem to standard form, avoiding the need for generalized singular value decomposition (SVD);
centering the quadratic penalty norm on the uniform solution that best explains loss data; use of KKT
multipliers to enforce non-negativity and manage the rather small active set; and, assignment of the
global regularization parameter via the discrepancy principle. The entire process is efficient, requiring
only one SVD, and provides ample controls to promote proper localization of structural features. Two
virtual phantoms were created to test the algorithm on systems comprised of ∼ 11, 000 degrees of
freedom.

1. INTRODUCTION

Electrical conductivity is a property that varies considerably throughout the human body [1]. Thus,
an ability to image its spatial variability could be useful from a diagnostic standpoint. Various disease
states may cause the conductivity to differ from that exhibited in normal tissue [2, 3]; or, the appearance
of growths and other obstructions [4] could alter the way that induced electrical currents behave so that
the obstruction becomes visible. Two methods for producing these images in medical applications have
appeared over the past few decades — one of them electrical impedance tomography [5], and the other,
magnetic induction tomography [6] (MIT). The latter approach offers the considerable advantage of
being non-contact as well as noninvasive. Nearly all MIT research has been based upon a multiple coil
system placed in the vicinity of the conductive target. One coil functions as a source that interacts
with the target, while any other functions as a detector, responding both to the primary field as well
as the perturbation of the field due to the target’s presence. This multi-coil approach is inherently
nonlinear, involving a forward problem that must numerically solve Maxwell’s equations prior to image
reconstruction — and do so for each position of the coil array. Given that the forward problem is
nonlinear, it has been stated that nonlinear image reconstruction is a necessity in order to achieve
satisfactory results [7].

More recently, an alternate approach has been evaluated that requires the use of only one coil [8, 9],
whose interaction with nearby conductive objects is manifested as an inductive loss, resulting from the
secondary field generated by induced eddy currents [10]. The coil under consideration consists of closely-
spaced parallel layers of concentric circular loops, all connected in series. Since electrical conductivity is
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quite low in biological targets (� 5 S/m), rather high excitation frequencies (∼ 10 MHz) are needed in
order to produce a measurable loss in such coils (∼ 1 ohm) and still maintain high signal to noise ratio.
To leverage the usefulness of measured coil loss information, an analytical model was developed that
expresses a linear relationship between inductive loss in coils consisting of circular loops and an arbitrary
electrical conductivity distribution. The key assumptions behind the model are that permeability and
permittivity are spatially uniform; conductivity is small (� 10 S/m); excitation frequency is sufficiently
low that quasi-static field conditions hold; and, that spacing between coil loops residing in different
planes is sufficiently small that they essentially share a common plane. The model has been validated
numerous times experimentally [8, 9, 11], showing that it is indeed quantitative when permittivity is
uniform, and that linearity is preserved even when permittivity shows large sudden spatial variation
beyond what is present in biological systems. Furthermore, the analytical model is easily written as a
3D convolution integral that does not require calibration, facilitating its use for image reconstruction.

Because there is just one coil, a scan operation is needed that repeatedly relocates the coil in the
vicinity of the target such that the EM field of the coil can intercept the target in a large number of
non-redundant ways. With inductive loss written as a convolution integral that convolves the electrical
conductivity distribution with a sampling function (kernel), a sufficiently detailed scan should contain
adequate information to enable computation of the desired electrical conductivity distribution. The
advantages of this approach include reduced hardware complexity, since only one coil has to be managed;
and, given the fact that the convolution integral shows a linear relationship between loss and the full
conductivity distribution, image reconstruction is made easier.

Nevertheless, image reconstruction has remained challenging, mostly because of the rapid decay of
the EM field in a coil’s vicinity. But this is also true of coils used in any form of MIT and appears as a
similar challenge in other forms of tomography, such as diffuse optical tomography where light scattering
greatly attenuates the propagation of light into and out of a sample medium [12]. In our previous work
with single coils, inversion proceeded by first discretizing the convolution integral on a finite element
mesh that spans the space of the conductive target, so that coil loss �b can be predicted through a
simple matrix operation acting on the unknown conductivity vector �x: �b ≈ Ã�x. Most commonly, the
number of measurements is far smaller than the number of unknowns, necessitating the use of regularized
least squares analysis. A solution was pursued by Tikhonov regularization that increasingly penalized
those solutions having higher gradient norms. The usual “normal” equations were developed and then
passed to an open source solver that imposed non-negativity on the solution via an active set approach
developed by Haskell and Hanson [13]. An optimal value for the regularization parameter was chosen
using an L-curve technique. Not only was the process inefficient, solutions showed excessive smoothing
and were prone to misplace structural features in those circumstances where coil loss measurements
were restricted to locations close to a target — both issues were found to be aggravated by instrumental
noise.

Here, several individually known techniques are combined in a novel way that accomplishes inversion
in a manner that is particularly well-suited to the coil-loss convolution integral. An invertible diagonal
regularization matrix is chosen that uses the integral’s kernel function to guide how individual solution
components ought to be weighted in the penalty term; the penalty term itself is quadratic about
a uniform conductivity solution that is simply the single conductivity value that best predicts the
measured coil loss vector; since the regularization matrix is invertible, the penalized objective function
can be put into “standard form”, paving the way for methods based upon singular value decomposition
(SVD) rather than GSVD — generalized SVD; non-negativity is enforced by a combination of Karush-
Kuhn-Tucker (KKT) multipliers and active set methodology so that the number of iterations tends
to be small; since the measurement error norm is known from experiment, the discrepancy principle
is used to help guide selection of the global regularization parameter — essentially, the regularization
parameter is stepped through a partial sequence of the singular values, progressing from largest to
smallest, until solution error norm is near to, but not less than the measurement error norm. Only one
SVD computation is required to complete the inversion. Solving for the KKT multipliers associated
with the active set is efficient since the system is symmetric and much smaller in size than the number
of degrees of freedom for the entire problem. Overall, the inversion is efficient, does not over smooth
the image and allows sufficient flexibility to aid improved localization of structural features.
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2. SVD NNLS APPLIED TO MIT CONVOLUTION INTEGRAL

The discretized convolution integral (next section) leads to a prediction of coil loss measurements from
a conductivity vector �x consisting of n conductivity values on a finite element (FE) mesh. For the
application to single-coil MIT, coil loss measurements �b are obtained at m scan positions in the vicinity
of a conductive target. Coil loss prediction is given by the vector Ã�x, where the matrix Ã is m×n and
consists of components that are determined according to coil position and orientation. Measurements
are expected to be few in number, such that m < n, giving an underdetermined system.

Because conductivity is non-negative, we require that xi ≥ 0 for each i. Since scanning inevitably
produces many similar measurements, the matrix Ã is expected to be ill-conditioned (large condition
number). Thus, we attempt to find the best conductivity by minimizing a penalized 2-norm, subject to
non-negativity:

min
1
2

∥∥∥Ã�x −�b
∥∥∥2

2
+

1
2
τ2

∥∥∥D̃
(
�x − �β

)∥∥∥2

2
s.t. �x ≥ 0 (1)

Problem in Equation (1) is made more flexible, without requiring additional computational effort,
by permitting each node to be penalized independently of the others. This is accomplished via the
invertible, diagonal regularization matrix D̃, with diagonal entries dj > 0. In order for the weights
in the diagonal matrix to produce some benefit to the solution process, guidance on selection of the
components of D̃ is essential — we return to this issue later. For now, we mention that the model
might inherently weight some members of the solution set more so than others, so that D̃ offers an
opportunity to compensate. Furthermore, if some solution members tend to contribute very little to a
predicted bi, or should have little impact on the error norm (first term of Equation (1)), then these could
be penalized heavily to ensure a given xi remains well inside an expected interval through appropriate
assignment of βj and dj.

Commonly, �β = 0, but here we take advantage of the fact that the solution will typically lie within
some interval 0 ≤ xi � 5 S/m rather than an unbounded domain. For example, electrical conductivity
within human tissues [1] is usually less than ∼ 5 S/m, suggesting that �β ought to be set somewhere
inside this expected interval — leading to a “shifted penalty”, as we characterize it here. Thus, the
regularization term not only promotes a well-conditioned problem with a unique solution [14], but leads
to a greater penalty when xi �= βi. If the regularization parameter τ is made large compared to the
largest singular values of Ã, then solutions tend to be heavily localized around �β [15]. Thus, �β is set
> 0 so that the number of negative xi values is reduced when constraints are absent, while τ is set to a
non-zero value within the range of the singular values associated with Ã. Non-negativity is addressed
using an active set method, but is made more efficient as a result of the shifted penalty, which tends
to reduce the number of needed constraints, and thus the size of the active set. We proceed with these
definitions to transform minimization problem in Equation (1) into standard form:

�z = D̃�x ; �ζ = D̃�β (2)

Minimization problem in Equation (1) becomes:

min
1
2

∥∥∥ÃD̃−1�z −�b
∥∥∥2

2
+

1
2
τ2

∥∥∥�z − �ζ
∥∥∥2

2
s.t. �z ≥ 0 (3)

Except for the shifted penalty, problem in Equation (3) is now in standard form [16], showing how
matrix Ã is actually pre-processed by D̃−1, which is meant to balance the role of each component
of the solution, provided there is some meaningful approach to accomplishing that. As long as the
computational cost is acceptable, getting to standard form is also feasible using square regularization
matrices other than D̃, provided they are not singular [17]. The primary benefit of getting to standard
form, initially proposed by Eldén [18], is improved solution efficiency.

SVD† is now applied to the matrix product appearing in Equation (3), as follows:

ÃD̃−1 = Ũ S̃Ṽ T (4)
† LINPACK, 1979



96 Feldkamp

Orthogonal matrices and singular values are modified due to the pre-multiplication of Ã by the inverse
of D̃ with the intention that solution components have a more equitable chance to contribute to the
measurement vector in a noisy environment. To continue our development, we make the additional
assignments:

�z = Ṽ �y; �b = Ũ�b′; ζ = Ṽ �β′ (5)

Substitution of Equation (5) into Equation (3) leads to a form for the minimization problem especially
suitable for our MIT inversion problem since it is readily amenable to straightforward algebraic solution:

min
1
2

∥∥∥S̃�y −�b′
∥∥∥2

2
+

1
2
τ2

∥∥∥�y − �β′
∥∥∥2

2
s.t. �x or �z ≥ 0 (6)

After expanding the convex objective function in Equation (6) and adding non-negativity constraints
for some select members of the solution set, {xl(k); k = 1, 2, . . . ,K}, i.e., the active set, we have the
Lagrange objective function:

L
(
�y,�λ

)
=

1
2

r∑
i=1

(
siyi − b′i

)2 +
1
2

m∑
i=r+1

(
b′i

)2 +
1
2
τ2

n∑
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(
yi − β′

i

)2 +
K∑

k=1

λkxl(k) (7)

Here, we assume that r ≤ m < n, where the matrix Ã has rank r; when r = m (usually), the second
term on the right side is absent. Constraints, enforced via the KKT multipliers {λk}, are only applied
to those {xl(k)} belonging to the active set — note the mapping implied by the subscript that identifies
the correct solution component index associated with the kth constraint. To establish an initial active
set, L(�y,�λ) is first minimized without constraints while �β is chosen to deliberately reduce the size of
the active set. Nodes with negative conductivity values are identified and placed into the active set
for the first iteration following initialization. At each new iteration, KKT multipliers are examined, so
that a constraint is released when positive, but maintained when negative. Of course, those nodes not
in the active set continue to be examined and placed into the active set if their values are found to be
negative.

Optimality equations are written for each of the unknowns in Equation (7), which requires that we
set the partial derivative of L with respect to each of the yj to zero. These may be solved for the {yj}
in terms of the KKT multipliers:

yj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sjb
′
j + τ2β′

j −
K∑

k=1

λkVl(k)j/dl(k)

s2
j + τ2

; j ≤ r

τ2β′
j −

K∑
k=1

λkVl(k)j/dk

τ2
; r < j ≤ n

; k → l mapping (8)

The complementarity conditions, which directly enforce non-negativity on members belonging to the
active set, are simpler:

xl(q) =
n∑

j=1

Vl(q)j

dl(q)
yj = 0; q → l mapping implied (9)

Substitution of Equations (8) into Equation (9) allows us to obtain the KKT multipliers from a relatively
small set of linear equations:

K∑
k=1

Pqkλk =
n∑

j=1

Vl(q)j

dl(q)
y0

j ; q = 1, 2, . . . ,K(∼ 1500) � n(∼ 11, 000) (10)

The elements for the symmetric matrix, Pqk, are:

Pqk =
1

dl(q)dl(k)

n∑
j=1

Vl(q)jVl(k)j

s2
j + τ2

; sj = 0 if j > r; q, k = 1, 2, 3, . . . ,K (11)
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The vector components of �y0 are just the unconstrained solution, obtained by setting all KKT multipliers
to zero in Equation (8). Equation (10) is solved using an LDLT decomposition method, and is kept
smaller in size if �β is chosen within the expected solution interval and the regularization parameter τ is
kept nearer to the larger singular values in the set {sj}. By choosing τ nearer the middle of the set of
singular values, the current solution approach behaves similarly to a truncated SVD method [15] since
those singular values which are much smaller than τ have little or no effect on the solution (filtering)
— note that all singular values are used here and regularization is controlled by choice of τ rather than
truncation. Since the active set may change “membership” with each iteration, matrix P̃ has to be
recomputed, but only for those components new to the active set.

Subsequent to solving Equation (10), the KKT multipliers are returned to Equation (8) to get the
new solution (either �z or �x). At that point, both the new solution and KKT multipliers are examined
in order to establish a new active set for the next iteration. Though not following the same active set
method developed by Haskell and Hanson [13], which adds or drops only one constraint per iteration,
we expect similar behavior — i.e., convergence in a finite number of steps [[19], p. 114]. In fact, for the
MIT application we consider in the next section, convergence is typically obtained after 5 to 7 iterations
— determined by the attainment of a stable active set, with KKT conditions satisfied.

This algorithm requires a choice for �β, which establishes a location where the penalty term is zero
— optionally, individual components of the penalty may be forced to zero at customized locations,
without requiring that the full penalty term is zero at a common location. Though many approaches
to setting this vector are worth investigating, here we choose a uniform solution to Equation (1) with
penalty term dropped. This sets all solution components to an identical value, β0, which is easily found
by minimizing the error residual with respect to β0:

β0 =

m∑
i=1

bi

n∑
j=1

Aij

m∑
i=1

⎛
⎝ n∑

j=1

Aij

⎞
⎠

2 (12)

For our MIT application, β0 becomes the conductivity of a target treated as having no structure, but
rather characterized by uniform conductivity. Certainly, it is possible to consider modifications to �β as
the iteration process continues — for example, using a previous solution, or even an average of two prior
solutions, with the idea that the next solution in the sequence is more penalized as it departs further
from a prior solution [20, 21]. This is not explored here — we just use Equation (12) as a “zero order”,
uniform solution.

To complete the algorithm, a value for the global regularization parameter τ is needed. This value
is chosen using the so-called discrepancy principle [17], which requires that some reasonable estimate is
available for the error associated with the measurement vector �b:∥∥∥�b −�btrue

∥∥∥ ≈ ε (13)

Since this is something that we have measured for our application as the technology has progressed,
the error ε is available. Thus, the regularization parameter τ is decreased along a sequence tracking the
singular values arising from the SVD of Equation (4), usually jumping several singular values at a time,
until the following condition is approximately met:∥∥∥Ã�x −�b

∥∥∥ ≈ ε (14)

The rationale for this stopping condition is that it would be unacceptable for the model to predict a
measurement vector having greater precision than what is available via experiment. In other words, the
quality of the measured data does not support further decrease in τ . There is minimal computational
burden involved here since once the model matrix is built and the SVD is obtained, there is no need to
redo them. Furthermore, starting from a τ value which has been set to the largest and then proceeds to
smallest singular values (i.e., toward less filtering) leads to a sequence of systems for the KKT multipliers
that start out very small and gradually grow in size toward the stopping condition (13) or (14). When
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ε becomes very small (much smaller than what is currently available via experiment), the solution step
for KKT multipliers may become burdensome.

3. 3D CONVOLUTION FOR SINGLE-COIL, SCANNING MIT

Previously [8, 9], we have shown that the loss δZ in a planar coil consisting of circular concentric loops
of wire is related to the electrical conductivity distribution of the target placed in the vicinity of the
coil by:

δZ =
μ2ω2

4π2

∑
j,k

√
ρjρk

∫
d3x

σ(�r )
ρ

Q1/2 (ηj)Q1/2 (ηk) (15)

Arguments for the circularly symmetric toroid (or ring) function Q1/2 lie in the interval 1 < η < ∞ and
are related to field position by:

ηj =
ρ2 + ρ2

j + z2
c

2ρρj
; ηk =

ρ2 + ρ2
k + z2

c

2ρρk
(16)

Using any suitable fixed laboratory coordinate system, other symbols in Equations (15) and (16) are
defined by:
σ(�r): Electrical conductivity (real part) at field position: �r = x, y, z,
ρk: Cylindrical radial distance from coil axis to wire loop ‘k’,
ρ: Cylindrical radial distance from coil axis to field point,
zc: Perpendicular distance from coil plane to field point,
μ: Magnetic permeability — considered uniform,
ω: Angular frequency.

Assumptions leading up to Equation (15) have been discussed in earlier work. Equation (15),
which we have called a mapping equation since it relates a coil loss measurement at a particular coil
position and orientation to an entire electrical conductivity distribution, is actually a 3D convolution.
This is made clear by recasting Equation (15) into the frame of the coil center — with the coil’s Z-axis
perpendicular to the coil plane, while the coil’s X-axis and Y -axis lie within the coil plane. Letting the
vector �c locate the coil center relative to the lab frame origin, and the vector �rc locate the field point in
the coordinate system (CS) of the coil, we have the revised form for Equation (15):

δZ(�c) =
∫

σl

(
�c + R̃�rc

)
G (�rc) dxcdycdzc =

∫
σl (�r)G

(
R̃T (�r − �c)

)
dxdydz (17)

A subscript, designating “lab”, has been attached to the conductivity as a reminder that the argument
still evaluates to a vector in the lab frame, with the orthogonal rotation matrix R̃ mapping the vector
�rc from coil frame to lab frame. While arriving at Equation (17), we have made use of the fact that the
determinant of the Jacobian transformation matrix is unity. In Equation (17), we have also made use
of the definition:

G (�rc) =
μ2ω2

4ρπ2

∑
j,k

√
ρjρkQ1/2 (ηj)Q1/2 (ηk) (18)

The function G(�rc) is recognized as the kernel of the convolution integral and is rapidly evaluated
through use of a hypergeometric series for the toroidal functions [22] — the two forms in Equation (17)
are equivalent, though the second is used here. Note that if the coil does not rotate relative to the lab
frame as it is moved around, then the rotation matrix is just the identity matrix.

A variety of ways exist to discretize the convolution integral, and we continue to explore alternatives
inasmuch as computation of the model matrix Ã becomes time consuming for very large meshes. For
our purposes here, we just use a finite element representation of the target and evaluate the convolution
integral element-wise. This is accomplished by expanding the electrical conductivity into the usual
superposition of shape functions. Here, we use a linear basis set on deformed prismatic elements [[23],
Fig. 3.10], with 9-point integration over each element.
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4. SETTING “WEIGHTS” IN REGULARIZATION MATRIX D̃

As mentioned, the diagonal matrix D̃ provides an opportunity to selectively penalize contributions from
individual solution components, and single coil MIT gives us an excellent example of how this can be
used to our advantage. Its use here is motivated by successful application of a position-dependent
regularization in diffuse optical tomography [12]. Essentially, the kernel function in the convolution
integral naturally weights regions of space according to their contribution to the measured coil loss.
Thus, plots of the kernel function, either along the coil’s Z-axis or radial axis are helpful in guiding how
the components of D̃ are chosen. Here, kernel function plots (or sampling function) are given for two
different coil designs to illustrate how “sampling” of space is dependent on coil geometry. The first, coil
‘R’, consists of five circular concentric loops in each of two layers (ten total) — spacing is 0.5 mm, so
that all loops are considered to effectively lie in the same plane. The loops have radii of 4, 8, 12, 16
and 20 mm. Coil ‘R’ inductance was shown previously to be 2.155 µH, and is used in all calculations for
this work. A second coil ‘Y ’ consists of 4 layers of loops, all set at a radius of 20 mm, with a spacing of
∼ 0.3 mm between layers — again, spacing is considered to be sufficiently small that they are considered
to be in the same plane. Coil ‘Y ’ inductance is easily computed to be ∼ 1.8µH (used here only for
comparison purposes; a later publication will consider coil Y ).

In a plane parallel to either coil, located at a distance of 5mm from the coil plane, the kernel
function is plotted as a function of radial distance from the coil axis in Figure 1(a). Note that coil ‘R’
gives a broader or smoother sampling of space while coil ‘Y ’ tends to be more focused. However, in
either case, since a coil scan primarily moves the coil in the plane of the coil and with minimal rotation,
good sampling of space is achieved by collecting coil loss values on an appropriate lattice of points
nominally parallel to the target (e.g., Latin Hypercube). It is likely that coil ‘Y ’ would benefit from
more data collection given its “tighter” sampling field. If in-plane sampling provides good “coverage”,
which is reasonable in the absence of any obstructions that would inhibit such scanning, there is likely
no particular reason to base weights upon these plots.

The situation is different for out-of-plane sampling during a scan. Obviously, the coil cannot be
located inside the target to collect data, so it is imperative to understand how the kernel function varies
with distance, normal to the coil plane. This is shown in Figure 1(b).

Regardless of coil type, the decay with Z-distance in Figure 1(b) is nearly exponential, except in
the immediate vicinity of the coil plane. Figure 1(b) indicates that greater weight or importance is
given to those points nearest to the coil plane, giving them an advantage in a noisy environment, so
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Figure 1. (a) Normalized plots of kernel for two coil types showing spatial weighting radially from the
coil axis; plots are obtained in a plane parallel to the coil plane and separated by 5 mm. (b) Normalized
plots of the kernel for two coil types showing how spatial weighting varies with distance from the coil
plane; plots are obtained at a radial distance of 15 mm from coil axis.
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that the solution from any inversion scheme will tend to favor points closest to the coil plane if nothing
is done to relieve the bias. A simple procedure to help mitigate the bias applies an exponential decrease
of the regularization weights in D̃ as solution components become associated with points farther from
the coil plane, or target boundary:

dj = exp (−ηzj/zmax) (19)

Finite element mesh thickness is given as zmax, while zj is distance from target boundary to node
location, and η is a decay parameter meant to control the extent of bias mitigation. The other option is
to directly use the curves shown in Figure 1(b), though distance-scaled to some extent. Both are tested
here.

5. TARGET MIT PHANTOMS

Two virtual phantoms are used for algorithm testing under conditions that adjust regularization and
noise. Phantoms consist of buried thick strips of altered conductivity — one with low conductivity strips
(∼ 0.0 S/m) immersed in a higher conductivity matrix (∼ 1.0 S/m); a second with higher conductivity
strips immersed in a lower conductivity matrix. In the first, two thick strips of very low conductivity
material, embedded in background material of 1.0 S/m, are located within a 16.5 cm × 16.5 cm × 3.0 cm
slab phantom as shown in Figure 2 — these low-conductivity strips are defined by regions having
conductivity beneath 0.1 S/m. The two strips each run parallel to the Y -axis, located at X = 4.5 cm
and X = 12.0 cm; and with Z = 1.0 cm in either case. Using the definition that strip conductivity is
< 0.1 S/m, then strip thickness is ∼ 1.8 cm, while strip width for each is ∼ 3.8 cm. Separation between
strips is ∼ 4.5 cm. Outside of a small region where conductivity is near 0.0 S/m, a squared Gaussian
function blends the low conductivity strip with the bulk region at 1.0 S/m. The second phantom is
just the inverse of the first, consisting of buried higher conductivity material (1.0 S/m) embedded in
low conductivity matrix. Plotted images use a standard “black body radiation” color scheme and scale,
spanning from black (0%) to red (40%) to yellow (80%) and finally white (100%) at full scale — unless
noted otherwise.

(a) (b)

Figure 2. Virtual phantoms used to test algorithm performance — left (a) phantom consists of buried,
high-conductivity strips (1.0 S/m); right (b) phantom consists of buried, low conductivity strips.

To generate coil loss data associated with a virtual phantom, Equation (15) is used — giving loss
in a coil of type ‘R’ (Section 4). The sample-containing space shown in Figure 2 is subdivided into 10
layers of equal thickness. For numerical integration, the total number of prismatic elements is set to
41,180 and integration on any element follows a 9 point quadrature rule. Integrations are done for each
of 486 coil locations above the slab, on a 9 × 9 × 6 lattice. Coil loss is computed for 81 locations on
each of the six horizons on a regular grid. Odd layers, starting with the first, all share the same grid,
while even numbered horizons share a common grid that is shifted by half a grid interval from the odd
numbered horizons — see Figure 3. Sampling horizons are equally spaced from each other over a span of
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Figure 3. (a) Odd-Even sampling pattern over phantom; (b) 16.5 × 16.5 cm FE mesh — extruded to
3.0 cm thickness.

6.0 mm above the slab. The first sampling horizon keeps the coil parallel to the slab and spaced 2.0 mm
above the slab. All other sampling horizons allowed for random coil tilt, with axis tilted as much as 5
degrees from vertical, which alters the height of coil center. Allowing for coil tilt when the coil is clear
of the slab better mimics an actual hand scan where coil tilt is unavoidable.

The phantoms shown in Figure 2 provide an effective test of the algorithm’s ability to resolve
structure over its 3.0 cm depth. Resolving lateral, or XY structure should be less difficult since both
strip separation and width are ∼ 1 coil diameter. However, as Figure 1(b) suggests, resolving a correct
conductivity profile to a depth of 3.0 cm appears more challenging since sampling level at a depth of
1.5 cm has already fallen to 5% of the maximum found at the target boundary, with coil ‘R’.

Since all real measurements are contaminated by noise, Gaussian-distributed noise is added to
virtual coil loss measurements over each phantom. A base level of noise is added to all “pristine” data
to match the noise level of current instrumentation. However, in one additional experiment, Gaussian
noise is increased 5× to correspond to older instrumentation. Experimental coil loss is obtained through
measurement of the real part of coil admittance Yre while in the vicinity of coil resonance. Admittance
change relative to a free space admittance measurement is used to get coil loss [8]:

Rloss = ω2L2δYre (20)

Older instrumentation measured admittance with a precision of ±0.12µS, while newer instrumentation
measures admittance with a precision of ±0.025µS. Further processing of experimental data with
Savitzky-Golay denoising yields a precision level of ±0.01µS in current instrumentation, which
corresponds to a loss precision of ±0.000286 ohms — using a frequency of 12.5 MHz and inductance
equal to 2.155 µH. This amount of loss uncertainty is used to compute a Gaussian noise component that
is added to each of the 486 computed virtual loss values. The coil loss uncertainty can also be used
to provide an error bound, and stopping condition as previously discussed, for Equation (13) or (14).
Since there are 486 coil loss “measurements”, the loss uncertainty for a single solution component is
multiplied by

√
486, giving an error norm for Equation (14) of 0.0063 ohms. In one instance, noise is

increased 5× to assess its effect on image reconstruction.

6. IMAGE RECONSTRUCTION RESULTS

To build the model matrix from coil position information, the second integral of Equation (17) was
discretized into 20,080 elements over eight layers of equal thickness. As with the forward calculation to
get virtual data, 9 point integration was used on each element. Image reconstruction requires selection
of a particular value for the global regularization parameter τ , chosen here from among the set of
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(a)

(b) (c)

Figure 4. Image reconstructions for phantom having buried high conductivity (1 S/m) strips in a low
conductivity (∼ 0 S/m) background; slice (a) normal to Y -axis; slice (b) normal to X-axis, X ∼ 4.5 cm;
slice (c) normal to Z-axis; β0 ≈ 0.267 S/m from (12) to set shift.

singular values, which decrease monotonically from a maximum value at j = 1 to a smallest value at
j = 486 (number of measurements, in this case). For the phantom consisting of two buried strips of
1.0 S/m material, j = 220 was selected, which gave an error norm of 0.0047 ohms, close to the target
of 0.0063 ohms. The non-dimensional decay parameter discussed in Equation (19) was set to 1.0, as
suggested by exponential fits to the ‘R’ curve in Figure 1(b). Convergence is obtained after 6 iterations
of the active set method. Three image slices are shown in Figure 4 — a transverse slice midway along
and normal to the Y -axis, a longitudinal slice normal to the X-axis at X ∼ 4.5 cm, and finally, a
Z-normal slice at Z ∼ 1.5 cm (midway along the Z-axis). To facilitate comparison, these same slice
locations are used in all images that follow.

Each slice in Figure 4 indicates that image reconstruction from 486 measurements does a reasonably
good job of faithfully representing the original phantom in Figure 2. Conductivity spans from 0.0 to
∼ 1.0 S/m, as it should; conductivity stays near 0.0 S/m in the space separating the two strips, from the
top of the phantom all the way to the bottom; and, features are arranged in spatially correct position.
Of particular importance, variation of structural features with respect to depth track rather well those
of the actual phantom, suggesting that the diagonal regularization matrix is performing as intended.

As stated, setting the decay parameter in Equation (19) to 1.0 was based upon Figure 1(b) data.
Of interest is the effect of setting it to zero (equal weighting), which is shown in a single slice, normal
to the Y -axis (transverse to strips) in Figure 5. The image in Figure 5 is also based upon setting τ
equal to singular value j = 220, with resulting error norm = 0.0059 ohms (near the stopping condition).
Comparing the transverse slices of Figures 4 and 5, we note that when solution components are equally
weighted in the penalty term (η ≈ 0, Equation (19)), conductivity in between or to either side of the
strips struggles more so to stay near zero over the complete depth of the field compared with the case
when decay parameter is set to 1.0. The effect is perhaps more noticeable inside the strips, where
in Figure 5, conductivity is considerably higher near the upper portions of the strips. If the decay
parameter is increased to η ≈ 1.5, conductivity inside the strips is skewed more toward the bottom,
suggesting that 1.0 was near optimal.

The second phantom is perhaps more challenging for image reconstruction, since now, the algorithm
has to “see through” the higher conductivity matrix just to reveal the low conductivity strips. Because
there is so much matrix material at 1.0 S/m, at least compared to the strips of the first phantom, the
variation in signal (coil loss) as the coil completes its scan is less, and the noise we have added would
tend to have the effect of corrupting the natural variation in coil loss. For this second phantom, our
stopping condition led to a τ value equal to the 210th singular value, similar to before, and a similar
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Figure 5. Slice transverse to 1.0 S/m strips, corresponding to transverse image in Figure 4 — except
that now, the decay parameter = 0, impairing depth resolution; note that conductivity is skewed upward
too much inside strips compared to the corresponding slice in Figure 4 that sets η = 1.

(a)

(b) (c)

Figure 6. Image reconstructions for phantom having buried low conductivity (∼ 0 S/m) strips in a
high conductivity (1.0 S/m) background; slice (a) normal to Y -axis; slice (b) normal to X-axis; slice (c)
normal to Z-axis; β0 ≈ 0.73 S/m from (12) to set shift.

error norm value as well. Figure 6 shows slice locations that correspond to those of Figure 4, but with
an expected image inversion of the electrical conductivity distribution. Remarkably, the longitudinal
slice along the length of the low-conductivity strip cleanly reveals the thin layer of high conductivity
material just above the strip’s entire length.

The reconstructed images shown in Figure 6 for buried low conductivity strips again do a reasonable
job of faithfully matching the features of the actual phantom shown in Figure 2. Though not apparent
in the slices of Figure 6, very few locations inside the full 3D image exhibit conductivity near the
maximum of ∼ 1.31 S/m shown on the side scale — just a spot near a corner of the upper boundary
where sampling is least adequate. Thus, most regions outside the strips are near the 1.0 S/m maximum
conductivity, as expected. Perhaps most satisfying is the ability to depth-resolve the slab, especially the
electrical conductivity distribution inside the strips and in the space between them. Depth-resolving
the regions of the slab nearer the sides is more problematic since the scan includes fewer coil loss values
there.

To further understand how noise impacts the image reconstruction process with this algorithm, noise
was increased 5× for the phantom comprised of low conductivity strips buried in 1.0 S/m background,
to an admittance precision of ∼ ±0.05µS. This is 5× the noise level of newer instrumentation in
current testing, and corresponds to a coil loss uncertainty of ∼ ±0.00143 ohms, or a target error norm
of ∼ 0.0315 ohms (for 486 measurements). Image slices are shown in Figure 7, and may be directly
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(a)

(b) (c)

Figure 7. 5× higher noise version of Figure 6. Phantom has buried low conductivity (∼ 0 S/m) strips
in a high conductivity (1.0 S/m) background; slice (a) normal to Y -axis; slice (b) normal to X-axis;
slice (c) normal to Z-axis; β0 ≈ 0.73 S/m from (12) to set shift.

compared to those in Figure 6 — color transition levels for red and yellow are set to match those in
Figure 6 to aid direct comparison (though the difference is barely noticeable).

As expected, this algorithm is not immune to noise — note that geometrical distortions start to
develop, which are perhaps most noticeable in the Z-normal slice (image (c)) where strips become
wavy. Nevertheless, features continue to be correctly located and readily identifiable relative to the true
objects shown in Figure 2. There may be a tendency to want more smoothing. However, we believe it is
best to allow the effects of noise to appear in an MIT image reconstruction since even though additional
smoothing will help to suppress noise, further smoothing will also remove genuine features or structure
from the MIT image.

Finally, we briefly consider a different weighting scheme than the exponential weights proposed in
Equation (19). As suggested in Section 4, “Setting Weights”, we could directly use the sampling curves
plotted in Figure 1(b) — though the Z coordinate needs to be scaled since using the plotted curves “as
is” would tend to overemphasize deeper locations. Weights are based on the kernel function given in
Equation (18):

dj = G (ρ, zscale) ; zscale = ηzj/zmax, (21)

The scaling parameters have the same significance as before — we just have a different function than
exponential. An important difference is that we have to choose a distance from the coil axis for creating
weights. Here, the chosen distance is simply the location where G would be maximum along the
radial direction — see the plot in Figure 1(a), ∼ 1.5 cm (coil ‘R’). Image reconstruction based upon
Equation (21) sets the decay parameter η ∼ 0.3, and with stopping conditions as previously described,
singular values having index equal to 220 and 210 were used for buried 1.0 S/m and 0.0 S/m strips
respectively.

Clearly, the images shown in Figures 8(a)–(b) do not appear much different than the corresponding
images given in Figures 4(a) and 6(a). There is a greater tendency for the “kernel-weighted” images to
better preserve the square cross sections of the strips — though the exponential weighting parameters
could possibly be tweaked to achieve a cross section similar to those in Figures 8(a)–(b).

Figure 8(c) plots the same image as in Figure 8(a), but using the older algorithm described in [8].
Comparison of Figures 8(a) and 8(c) readily shows that the newer algorithm more faithfully preserves
the square cross section of the conductive strips, while the older algorithm excessively “rounds” the
corners. Furthermore, the image produced by the older algorithm appears distorted. This deficiency
of the older algorithm has often been noted in real phantoms as well. However, the most important
difference is efficiency, with the new algorithm requiring ∼ 50× less CPU time — and on just a single
core.
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(a)

(b)

(c)

Figure 8. (a)–(b) Weights based upon the kernel function given in (18), though scaling as prescribed
by (21) — these slices may be compared with the alternative exponential scaling illustrated by the
transverse slices shown in Figures 4 and 6 ((a) images); (c) image reconstruction corresponding to (a),
but using the method previously reported by Feldkamp [8].

7. DISCUSSION AND CONCLUSIONS

The regularization or penalty term used here departs from what was used previously in this particular
application of single-coil MIT. Before, the regularization matrix consisted of the three components
of the conductivity gradient, computed for each element, so that rapidly varying solutions became
more heavily penalized as τ increased. Also, an L-curve approach was used to determine a suitable
value for the regularization parameter, which worked well but contributed to increased computational
overhead. Compared to the images produced by this newer algorithm, the prior approach caused too
much smoothing, so that geometrical feature accuracy tended to be less — as noted in Figure 8(c).
Furthermore, there were localization issues that could not be corrected, as they are here by appropriate
use of the penalty shift and penalty weights applied individually to solution components. Also, the prior
formulation was not put into “standard form”, as we have done here. As a result, the newer algorithm
is much more efficient, running ∼ 50× faster than our older algorithm — even though the new method
is run on a single core while the old method ran on 12 cores.

There is no L-curve to prepare as an aid to image selection. The global regularization parameter is
set to gradually smaller singular values from the available sequence of singular values until the stopping
condition is met. There is minimal overhead in doing this since the model matrix and SVD only need to
be computed once. Furthermore, the sequence of solutions starts with choice of a larger singular value,
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which very quickly provides a solution and opportunity to check status, and then gradually progresses
to the stopping condition. As the stopping condition is approached, the time to acquire a solution
becomes longer, as expected due to increasing size of the active set — which is itself a consequence of
reduced filtering. The image reconstructions performed in this work took ∼ 7 minutes on a single core
of a Mac Book Pro (2013 build). Nearly half of that time was used to compute the model matrix Ã.

In our application, the diagonal regularization matrix imposed a higher penalty at those points
nearest the boundary of the target, where proximity to the coil was highly likely during the course
of a scan. Such an approach is necessary since otherwise, near-boundary nodes would have an
outsized advantage during image reconstruction — a direct result of their greater immunity to coil
loss measurement noise compared with nodes located at greater depth within a target. The situation
is not unlike that encountered in CT X-ray where particular pathways through a medium lead to much
greater beam attenuation than others, so that in the absence of compensation, artifacts can develop.
Indeed, a diagonal “weighting” matrix has been proposed for CT image reconstruction, resembling what
is used here, that applies weights to the residual error norm in accordance with the intensity of signal
that exits the target [24]. Our weighting strategy works well provided that points very distant from any
one of the locations where the coil visits aren’t permitted to exhibit unusually high conductivity values.
Though not encountered here, this potential problem could be managed by creating a space or region
outside of some “preferred zone” that encompasses the space we really care about, and specifically
setting a very high penalty for those outer locations. That would have the desired effect of forcing
the solution outside of the “preferred zone” to remain close to some known average conductivity and
therefore contribute little if anything to the predicted measurement.

This new algorithm has already been put to work on laboratory phantoms, either biological in
origin or derived from agarose and fat. In a recent example reported by Feldkamp and Quirk [25], a
cross-cut veal shank was scanned with modified older instrumentation and configured so that IR optical
tracking could seamlessly provide coil position and orientation data [26] while acquiring inductive loss.
Image reconstruction with the algorithm reported here was shown to faithfully reveal the structure of
the veal shank — bone, fat seams and muscle partitions.

As already noted, efficiency is greatly improved in this algorithm compared to its predecessor,
though is highly dependent upon maintaining a relatively small active set. Though not an issue as of
yet, very large active sets could potentially arise in specimens comprised primarily of fat, which has a
conductivity near zero. In such cases, it may be that use of an L1 penalty term could provide a superior
path for inversion of the convolution integral considered here. Indeed, the work of Fang et al. [27]
provides encouraging results in an MIT setting, suggesting that inversion of the convolution integral
might indeed be better accomplished by L1 regularization.
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