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A Logarithmic Version of the Complex Generalized Smith Chart

Pablo Vidal-Garćıa* and Emilio Gago-Ribas

Abstract—Based on the complex analysis of the Lossy Transmission Line Theory, which involves
the result of a Generalized Smith Chart, whose new version arises when trying to characterize the
wave impedance along the Transmission Line by means of analytical complex functions. Among these
functions, the complex logarithm of the reflection coefficient leads to the logarithmic-reflexion coefficient-
plane and its parameterized version, the Logarithmic Generalized Smith Chart. This plane is specially
useful for characterizing the Transmission Line along its extension. To validate these results, some
examples will be presented providing physical interpretations to the behaviour of a lossy TL and pointing
out some practical applications.

1. INTRODUCTION

The Complex Transmission Line Theory (CTLT) [1], based on the complex variable analysis, has
demonstrated its usefulness characterizing the Transmission Line (TL) parameters as well as providing
physical behaviors of the TL when losses are taken into account [1, 2], leading to a rigorous
characterization which overcomes the limitations inherent to the usual Transmission Line Theory (TLT)
and also providing new uses of losses in RF circuit design. However, it is common that the more accurate
and deeper the lossy characterization and used models are, the more difficult is to analyze the parameters
on the TL. In order to avoid these complexities, the CTLT makes use of the: (i) normalizations
of the TL parameters that allow to group TLs with common properties — e.g., TLs with the same
conductor/dielectric losses — represented by ‘universal’ curves; (ii) graphical characterizations which
reduce the analysis to geometrical operations in the complex planes associated to each parameter; and
(iii) transformations between these planes seen as conformal complex mappings.

One of the most used maps in the TLT is the transformation between the reflection coefficient ρ-
plane and the wave impedance Zn-plane, Zn = Z/Z0, Z0 ∈ ℜ, which leads to the usual Smith Chart (SC)
for the lossless case [3, 4], and some extended versions which show practical usefulness when analyzing
different circuits [6, 7]. The CTLT generalizes this transformation when losses are included by means
of the Generalized Smith Chart (GSC) [5]. This case assumes the normalization Zn = Z/|Z0| which
recalls the importance of φZ0 in the analysis of lossy TLs because of the parameter which determines
the particular GSC depending on losses [1, 5]. Since the GSC is useful for characterizing the TL point
by point — e.g., the transformations between ρ and Zn in single points along the TL — some lacks
appear in the analysis along the lossy TL in which the parameter γ — and in particular φγ — describes
the behavior of ρ along its extension.

To avoid such limitations and to afford the study of the wave parameters along the TL by means of
fully geometrical operations, a logarithmic version of the GSC (log-GSC), in which φγ directly appears,
is proposed in this paper. In Section 2, the characterization of Zn(l) in terms of complex functions
will be justified by explaining the bases of the log-GSC depicted in the ρlog-plane. In Section 3, the
relevant transformations between planes ρ and Zn and ρlog-plane will be reviewed emphasizing the direct
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54 Vidal-Garćıa and Gago-Ribas

geometrical transformations concerning ρ and ρlog in the study along the TL. Finally, some examples
involving the ρlog-plane will be presented in Section 4 providing physical interpretations associated to
losses in the TLT.

2. THE BASES OF THE log-GSC

2.1. Zn as Complex Function of ρlog

Let us begin with the the well-known general equation of Z along the TL,

Z(l) = Z0
ZL cosh(γl) + Z0 sinh(γl)

Z0 cosh(γl) + ZL sinh(γl)
, (1)

with Z0, ZL = Z(l = 0) and γ complex, and l = 0 represents the position at the load (the end of the
TL), as usual. Eq. (1) is intrinsically difficult to characterize, so the usual alternative study is done by
means of

ρ(l) = ρLe
−2γl with ρL = ρ(l = 0) = mLe

jφρL =
ZL − Z0

ZL − Z0
, (2)

which describes Z(l) in terms of ρ(l) through the linear fractional transformation

Z(l) = Z0
1 + ρ(l)

1− ρ(l)
. (3)

Last equation is quite simpler to analyze than that in Eq. (1). In addition, the normalization Zn as
defined above, which generalizes the behavior of Z [1], allows the study of ‘universal’ curves of Zn

keeping the definition of ρ and reducing the parameterization to φZ0 ,

Zn(l) = ejφZ0
1 + ρ(l)

1− ρ(l)
. (4)

The particular analysis performed in [1] parameterizing Zn in its real (Z ′
n = a) and imaginary (Z ′′

n = b)
parts leads to the GSC [1, 5]. Taking the modulus, m, and phase, p, of the reflection coefficient in
Eq. (2) and connecting both by solving l leads to the well-known logarithmic spiral,

|ρ| = m =mLe
α
β
(φρL

−p)
with p ≤ φρL , (5)

in which let Zn(l) be represented by parametric equations given by geometrical intersections between
m- and p-circumferences [1]. Now, the alternative analysis based on complex analytical functions is
done by substituting Eq. (2) in Eq. (4) and using the complex analytical functions log(◦) and coth(◦),
leading to:

Zn(l) = ejφZ0
1 + elog(ρL)−2γl

1− elog(ρL)−2γl
= ejφZ0

e−[ 1
2
log(ρL)−γl] + e

1
2
log(ρL)−γl

e−[ 1
2
log(ρL)−γl] − e

1
2
log(ρL)−γl

= −ejφZ0 coth

[
1

2
log(ρL)− γl

]
= −ejφZ0 coth

[
1

2
log(mL)− αl + j

(
1

2
φρL − βl

)]
︸ ︷︷ ︸

ρlog

(6)

Notice that the argument of coth(◦) separates the effects of losses and propagation with the real and
imaginary parts affecting mL and φρL , respectively. The argument of the function coth(◦) is named
ρlog defined as,

ρlog ≡ 1

2
log (ρ) =

1

2
[log (|ρ|) + jφρ] , to

{
Re {ρlog} < mL

Im {ρlog} < φρL

, (7)

forming a conformal map in the branch cut of log(◦) chosen by fixing φρlog ∈ [0, π[ (see Fig. 4). Since
coth(◦) is an entire complex function, ρlog may be seen as the variable in which losses and propagation
along the TL are described in terms of the initial and final points. Notice also from Eq. (6) that ρlog is
a line in the ρlog-plane parameterized by l (see Fig. 4). Thus, the analysis along the TL performed in
this plane, i.e., the log-GSC, is more affordable than in the GSC.
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Table 1. Summary of the main transformations between complex ρ-, ρlog- and Zn-planes.

ρ-plane ρlog-plane

(a)
|ρ| = m ρ′log = 1

2
log(m), m ∈

]
0, c0

1−s0

]
ρ′′log ∈

{
π
2
− 1

2
sin−1

(
1−m2

2mt0

)
if t0 ̸= 0, m ≥ c0

1+s0

[0, π[, otherwise

φρ = p ρ′log ∈
]
−∞, 1

2
log

(
−t0 sin(p) +

√
1 + t20 sin

2(p)
)]

ρ′′log = p
2
, p ∈ [0, π[

ρlog-plane
Zn-plane

(b)

General Equation Parametric Circumferences, (center): radius

ρ′log = a

(
Z′

n + c0
(e2a)2+1

(e2a)2−1

)2

+

(
Z′′

n + s0
(e2a)2+1

(e2a)2−1

)2

=

(
2e2a

(e2a)2−1

)2

(
−c0

(e2a)2+1

(e2a)2−1
,−s0

(e2a)2+1

(e2a)2−1

)
: 2e2a∣∣∣(e2a)2−1

∣∣∣
ρ′′log = b

(
Z′

n + c0
tan(2b)

)2

+
(
Z′′

n − s0
tan(2b)

)2

=
(

1
sin(2b)

)2 (
− c0

tan(2b)
, s0
tan(2b)

)
: 1

| sin(2b)|

Zn-plane ρlog-plane

(c)Z′
n = a ρ′log = − 1

2
log

a cos(2ρ′′log)−s0 sin(2ρ′′log)+
√

1−
(
s0 cos

(
2ρ′′

log

)
+a sin

(
2ρ′′

log

))2

a+c0

 ρ′′log ∈ [0, π[

Z′′
n = b ρ′log = − 1

2
log

 b cos(2ρ′′log)−c0 sin(2ρ′′log)+
√

1−
(
c0 cos

(
2ρ′′

log

)
+b sin

(
2ρ′′

log

))2

b−c0

 ρ′′log ∈ [0, π[

(a) (b)

Figure 1. Graphical analysis of the modulus and phase from (a) the ρ-plane to the ρlog-plane — an
example of the curves in Table 1(a) when φZ0 = 25◦ and (b) from the ρlog-plane to the Zn-plane.

3. COMPLEX TRANSFORMATIONS BETWEEN PLANES

Once the log-GSC has been introduced together with the relations between ρ and Zn by means of Eqs. (7)
and (6), respectively, the graphical analysis is done by parameterizing the real and imaginary parts,
as well as the modulus and phase of each parameter and geometrically studying the resulting curves
(the same metodology used in [1] and [5]). The most important transformations may be summarized
as follows.

3.1. Analysis of Zn from ρlog

This analysis leads to representing Zn along the TL, studying the reflection coefficient from ρlog instead
of ρ and avoiding the use of Eq. (5). Solving ρlog from Eq. (6),

ρlog =
1

2
log

(
1 + Zne

jφZ0

1− Zne
jφZ0

)
, (8)
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Figure 2. Graphical analysis of the real and
imaginary parts from the Zn-plane to the ρlog-
plane conforming the log-GSC.

Figure 3. Example of a procedure to relate both
the ρ- and the ρlog-planes.

and parameterizing the real and imaginary parts of ρlog, leads to the results in Table 1(b) and Fig. 1(b).
The ρ′′log-curves in Fig. 1(b) are π

2 -periodically overlapped, whereas ρ′log-curves tend to point O when
their values decrease. Both are sloped by φZ0 and geometrically connected by φγ in the ρlog-plane when
studying them along the TL.

3.2. Analysis of ρlog from ρ

This analysis is carried out parameterizing the modulus and phase of ρ as indicated in Table 1(a). Main
curves locating points O and A-E in the ρ-plane have been transformed into the ρlog-plane as shown in
Fig. 1(a). Notice that the ρlog-plane is left-opened when approaching to point O leading to the idea of
being possible to add equal length-scales along the TL.

3.3. Analysis of ρlog from Zn: The log-GSC

Parameterizing the real and imaginary parts of Zn in Eq. (6) leads to the expressions summarized in
Table 1(c) and depicted in Fig. 2. The complexity of the parameterized expressions in Table 1(c) leads
to the use of the GSC instead of the log-GSC when composing impedances graphically.

4. EXAMPLES OF USE

Some examples using the log-GSC are presented then in order to remark the usefulness which provide
for the analysis of the wave parameters along the TL, operating together with the ρ- and Zn-planes.

4.1. Graphical Procedure to Relate ρ- and the ρlog-planes

The convenience of using the ρlog-plane instead of the ρ-plane has been seen in the analysis of the wave
parameters along the TL.

However, the use of ρlog-plane lacks some facilities provided by the GSC, e.g., the simplicity of
curves — circumferences [1] —- parameterizing impedances from the Zn-plane. Thus, a direct graphical
procedure to relate ρ- and ρlog-planes becomes very useful. In this sense, each plane will support the
other emphasizing its own usefulness. In Fig. 3, an intuitive procedure to transform ρ- and ρlog-planes is
presented in the same graph. Modulus transformations are depicted in red and magenta, whereas phase
transformations are coloured in blue and green, and supported by the eye-pattern curves 1

2 log(ρ) and
ρ = 1 added in solid magenta and green, respectively. Remarkable point transformations are between
A-E and O and their primes, and may be seen turning the page clockwise by following the dashed lines.
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Figure 4. An example of the graphical analysis along the TL using of the ρlog- and Zn-planes.

The example in Fig. 3 shows the ρlog-plane usefulness through the characterization of ρ along the TL
leading to adding wavelength scales easily and highlighting some a priori hidden physical interpretations.
Notice that the ρlog-plane has been folded, which is possible since φρ ≥ 0 and φρ ≤ 0 regions do not
overlap each other in the ρlog-plane with the exception of their common boundary. Thus, the maximum
and minimum in the folded ρlog-plane (denoted by B’ and C’) are located in the same point. This
compact representation may be useful when trying to relate the log-GSC and the GSC.

4.2. Analysis along the TL

In Fig. 4, the spiral of Eq. (6) in the Zn-plane has been obtained going over the straight line which
represents the TL in the ρlog-plane, as well as adding regular scales in terms of λ. Notice that, since
TL losses are fixed, the curve in the ρlog-plane keeps up the angles φZ0 and φγ . To the truly physical
realizability of the TL, these angles have to fulfil the following conditions,

0 ≤ φγ + φZ0 ≤ π

2
and

0 ≤ φγ − φZ0 ≤ π

2
,

(9)

because of the normalized lossy model proposed [1]. Through the double condition in Eq. (9), the values
of r and g are fixed, so the inverse characterization of the TL in terms of the line parameters may be
rapidly deduced from the ρlog-plane (see the next example concerning matching impedances with lossy
TLs).

4.3. Impedance Matching with Lossy TLs

By means of this example, the most practical use of the ρlog-plane and lossy TLs matching the impedance
ZM from any impedance at the load ZL is pointed out.

The analysis in Fig. 5 follows the procedure: (i) by fixing an arbitrary φZ0 (e.g., φZ0 = 25◦), ρlogL
and the desired ρlogM are located in the ρlog-plane. From this plane, (ii) a straight line representing the
TL length is drawn up linking these points directly, so φγ is obtained (φγ = 63.435◦ in the example).
The phases verify Eq. (9), so the TL is physically realizable assuming the line parameters (r = 0.027
and g = 1.260 in the example). With this parameterization, the analysis in both the ρ- and Zn-planes
is completed by transforming the curves from the ρlog-plane (the concrete values of the example are
shown in Fig. 5). It is important to remark how the analysis from the ρlog-plane makes the impedance
matching easier by means of a complete graphical process. Notice also that the solution achieved is
not unique because of the arbitrary selection of φZ0 and the direct line linking ρlogL and ρlogM , which
provides the shortest TL but not the only one possible. In any case, the analysis in the ρlog-plane also
leads to checking the physical realizability in Eq. (9).
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Figure 5. Graphical analysis of the matching procedure from the impedance ZL = 2 + 2j to the real
impedance ZM = 1.5 by using a TL with φZ0 = 25◦ and φγ = 63.435◦.

5. CONCLUSION

A new version of the Smith Chart has been introduced in this paper. The ρlog-plane containing the
log-GSC has demonstrated its usefulness when trying to analyze the wave parameters along the TL. In
this sense, some examples of use have been presented taking advantage of the graphical and geometrical
analysis along the TL which the ρlog-plane gives special emphasis to. Splitting the analysis of lossy TLs
in propagative and evanescent in the ρlog-plane may be specially important in power balance analysis
as well as in the construction of graphical transformations between planes. In addition, by means of the
analysis in the ρlog-plane, some practical uses of TLs have been shown taking advantage of the losses
when studying them rigorously, alternative to the classical matching techniques based on lossless TLs.
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2. Gago-Ribas, E., P. Vidal-Garćıa, and J. Heredia-Juesas, “Complex analysis and parameterization
of the lossy transmission line theory and its application to solve related physical problems,”
International Conference on Electromagnetics in Advanced Applications, ICEAA 2015 Proceedings,
141–144, Torino, Italia, September 7–11, 2015.

3. Smith, P. H., “Transmission-line calculator,” Electronics, Vol. 12, 29, 1939.

4. Smith, P. H., “An improved transmission-line calculator,” Electronics, Vol. 17, 130, 1944.

5. Gago-Ribas, E., C. Dehesa Mart́ınez, and M. J. González Morales, “Complex analysis of the lossy-
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