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Merged Characteristic Basis Function Method for Analysis of
Electromagnetic Scattering Characteristics from Conducting Targets
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Abstract—In this paper, a merged characteristic basis function method (MCBFM) is proposed to
analyze the electromagnetic scattering characteristics from conducting targets. A merged characteristic
basis function (M-CBF) is newly defined in the MCBFM. Considering the mutual interaction of
surrounding blocks, the M-CBF is generated by merging the conventional secondary characteristic basis
functions (SCBFs) and the high order characteristic basis functions (HO-CBFs) of each block in the
conventional primary characteristic basis function (PCBF). Thus, the true current distribution of the
targets is approached by using a single M-CBF reducing the number of CBFs when the incident plane
waves (PWs) are certain. The numerical results of a PEC hexahedron demonstrate that the proposed
MCBFM improves the accuracy without increasing the number of PWs and the CBFs compared to the
improved primary CBFM (IP-CBFM). The results also demonstrate that the MCBFM is capable of
effectively reducing the CPU time by 63.38% without losing any accuracy compared to the conventional
characteristic basis function method (CBFM). Other results of a PEC cylinder demonstrate that when
a considerable computational accuracy is required, the efficiency of the proposed MCBFM is the highest
among these three methods.

1. INTRODUCTION

The method of moments (MoM) has been widely applied to accurate solution of electromagnetic
problems. However, it places a considerable burden on the computational time and memory
requirements when electrically large problems are analyzed. The iterative techniques, such as the
fast multipole method (FMM) [1] and multilevel fast multipole method (MLFMM) [2, 3], are known as
effective analysis techniques to improve the efficiency of the MoM. But the involvement of Bessel and
Legendre functions in these methods makes them complicated and difficult to implement. Moreover, the
dependency of incident field makes the FMM and MLFMM unsuitable for the analysis of monostatic
problems.

In recent years, the characteristic basis function method (CBFM) has been proposed [4, 5] as a
fast, stable, and simple algorithm for the large scale and ill-conditioned problem. This method can be
performed using the direct method for matrix calculation. In the CBFM, the scatterer is divided into
multiple blocks, and characteristic basis functions (CBFs) are generated in each block. The number
and the size of blocks are known to be the key parameters. The dimension of reduced matrix is
determined by the number of blocks. While dealing with electrically large scattering problems, the
number of unknowns in each block should be increased in order to keep low number of blocks. Although
the small dimension of reduced matrix reduces the solving time of reduced equation, it also rapidly
reduces the computational efficiency of the generation of impendence matrix and the construction of
the reduced matrix. Meanwhile, it is known that there is a tradeoff relationship between the precision
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and calculation time [6]. Several studies have been conducted for the accuracy, calculation time and
memory improvement of the CBFM. Singular value decomposition (SVD) has been introduced to reduce
the lengthy CBFs [7, 8]. The adaptive cross approximation (ACA) algorithm has been introduced to
accelerate the generation of the reduced matrix [9]. Multiple plane waves (PWs) with two orthogonal
polarizations are used as the incident electromagnetic fields [10, 11]; however, in large scale scattering
problems, the incident electromagnetic fields in multiple directions generate an extremely large number
of CBFs, and it takes a long time to perform SVD procedure. Limiting the range of incidence angles
can reduce the number of generated CBFs. However, decreasing the CPU time by this approach has
a negative impact on accuracy. The secondary CBFs (SCBFs) are proposed in [12] to decrease the
number of the incident PWs without reducing the accuracy of the results. The high order CBFs is
proposed to enhance the accuracy of the CBFM, and a connected patch array is analyzed using the
CBFM along with the HO-CBFs [13]. Besides, the HO-CBFs combined with a volume integral equation
is used in the analysis of various antennas in the vicinity of a dielectric object. The HO-CBFs provide
results accurately even if a block division is arbitrary [14]. However, the uses of SCBFs and HO-CBFs
result in problematic number of CBFs. An improved primary CBFM (IP-CBFM) is proposed in [15],
which reduces the amount of memory used for reduced matrix by combining the SCBFs with the PCBF.
However, this approach also reduces the precision compared to the conventional CBFM.

In order to resolve the above mentioned problems, this paper proposes a merged characteristic
basis function method (MCBFM) that realizes the efficiency and accuracy synchronously. Taking the
mutual interaction of surrounding blocks into account in the primary CBFs, the SCBFs and HO-CBFs
of each block are merged in the PCBF to generate a merged characteristic basis function (M-CBF). The
proposed MCBFM achieves better efficiency than the conventional CBFM without losing any accuracy.
Moreover, the MCBFM is more accurate than the IP-CBFM.

The remainder of the paper is organized as follows. In Section 2, the conventional CBFM and IP-
CBFM are briefly reviewed first. Then the formulation of the MCBFM is described in detail. Section 3
provides some numerical results about the monostatic radar cross section (RCS) to demonstrate the
accuracy and efficiency of the MCBFM. Finally, the conclusions are drawn in Section 4.

2. FORMULATION

2.1. Review of the Conventional CBFM

In this section, the computation procedure of the conventional characteristic basis function method
(CBFM) is briefly described. Further details about the CBFM can be found in [4]. In the CBFM, the
target is divided into M blocks. The CBFs of each block consist of two parts: the primary CBF (PCBF)
and secondary CBFs (SCBFs).

The PCBF refers to the self-interaction component in the block. Suppose tha tthe number of
incident PWs is NPWs (NPWs = 2NφNθ), where Nφ and Nθ represent the numbers of PWs in directions
of φ and θ, respectively. Two polarization modes are considered, and the incident field is denoted as
Ee,NPWs

ii . The PCBF of the block i is generated as follow:

Ze
iiJ

e
ii = Ee,Npws

ii (1)

where Ze
ii represents the self-impedance matrix for the extended block i, with i = 1, 2, . . . ,M ; Ee,NPWs

ii
is an excitation matrix, and Je

ii is the response to the corresponding excitation. Eq. (1) can be solved
directly by the LU decomposition, and then the PCBF Jb

ii of block i is obtained by removing the
components of Je

ii corresponding to the overlapping segments. Superscripts e and b stand for the
extended and un-extended blocks, respectively.

It is known that a higher precision solution can be obtained by considering the SCBFs [4]. The
SCBF is the mutual interaction component between blocks i and j. The SCBF is generated as:

Ze
iiJ

e
ij = −Ze′

ijJ
b′
jj (2)

where Ze′
ij is a part of the mutual impedance matrix Ze

ij, and Ze
ij represents the mutual interaction

of extended block i and un-extended block j. The dimensions of Ze′
ij are N e

i × N e′
j , where N e

i is the
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number of unknowns in the extended block i; N e′
j = Nj − Noverlaping

ij ; Nj is the number of unknowns

in the un-extended block j and Noverlaping
ij the number of unknowns corresponding to the overlapping

segments between extended block i and un-extended block j. Jb′
jj is a part of the PCBF Jb

jj, and its
dimensions are N e′

j × 1. The SCBF Jb
ij is obtained by removing the extended components of Je

ij .

2.2. Review of the IP-CBFM

It is easy to know from Subsection 2.1 that the number of CBFs in each block is M under each incident
PW, one PCBF and M − 1 SCBFs. When NPWs PWs are set to irradiate to each block, the total
number of the CBFs is M2 ×NPWs. That is an enormous number of CBFs which significantly increases
the CPU time and memory requirement. The number of CBFs can be reduced by limiting the number
of incident PWs. However, decreasing the CPU time by this approach has a negative impact on the
accuracy.

To resolve this problem, an improved primary characteristic basis function method (IP-CBFM) is
proposed in [14]. The IP-CBFM reduces the number of CBFs by combining the SCBFs with PCBF.
The improved primary CBF (IP-CBF) of each block is generated using Eqs. (1) and (2) as follows:

Ze
iiJ

e
ii +

M∑
j=1
j �=i

Ze
iiJ

e
ij = Ze

ii

⎛
⎜⎜⎝Je

ii +
M∑

j=1
j �=i

Je
ij

⎞
⎟⎟⎠ = Ee,NPWs

ii −
M∑

j=1
j �=i

Ze′
ijJ

b′
jj (3)

Ze
iiJ

e,IP
ii = Ee,NPWs

ii −
M∑

j=1
j �=i

Ze′
ijJ

b′
jj (4)

The IP-CBF Jb,IP
ii of block i can be obtained by removing the extended components of Je,IP

ii . The
total number of CBFs is reduced to M × NPWs. Thus, the IP-CBFM realizes the reduction of CBFs.
However, the precision is also reduced compared to that of the conventional CBFM.

2.3. The Formulation of the MCBFM

This subsection presents the merged characteristic basis function (MCBFM) to enhance the accuracy
of the IP-CBFM without increasing the number of PWs and CBFs. A merged CBF (M-CBF) is
newly defined. Considering the high-order mutual interaction of surrounding blocks, the M-CBF is
generated by merging the conventional secondary characteristic basis function (SCBFs) and the high-
order characteristic basis functions (HO-CBFs) of each block in the conventional primary characteristic
basis function (PCBF).

First, the HO-CBFs are generated from the sum of corresponding SCBFs as follows:

Ze
iiJ

e,HO
ij = −Ze′

ij

M∑
j′=1
j′ �=j

Jb′
jj′ (5)

where i = 1, 2, . . . ,M ; j = 1, 2, . . . , (i − 1), (i + 1), . . . ,M , and j′ = 1, 2, . . . , (j − 1), (j + 1), . . . ,M .
Let’s take i = 1 as an example to clearly describe the construction of the HO-CBFs. In Eq. (5), when
i = 1, j should be j = 2, 3, . . . ,M . The HO-CBFs of extended block i are Je,HO

12 ,Je,HO
13 , . . . ,Je,HO

1M ,
respectively. While solving Je,HO

12 (i = 1, j = 2), Jb′
21,J

b′
23, . . . ,J

b′
2M are used in the term Jb′

jj′ at the right
side of Eq. (5), at this moment j′ = 1, 3, . . . ,M .



18 Li, Sun, and Wang

Then the M-CBF of each block is generated based on Eqs. (1), (2) and (5) as follows:
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The M-CBF Jb,M-CBF
ii of block i can be obtained by removing the extended components of Je,M-CBF

ii .
The total number of M-CBFs is still M × NPWs. It can be observed from Eq. (8) that the HO-CBFs
do not need to be solved. Since the mutual interaction of surrounding blocks is properly considered in
the M-CBF, the high precision can also be obtained when the same number of PWs is set to irradiate
each block. Moreover, lower number of PWs is required in the MCBFM than the IP-CBFM when a
considerable computational accuracy is required. It should be explained that the generation time of the
M-CBFs will increase slightly, but it is negligible relative to the overall time.

Lastly, it is desirable to use the SVD procedure to remove the redundancy in the obtained M-CBFs
before constructing the reduced matrix. Since the number of M-CBFs is much lower than the CBFs
generated by the CBFM, the time of SVD procedure is also saved in the MCBFM.

3. NUMERICAL RESULTS

In order to verify the validity of the proposed method, the MCBFM is applied to different samples
to calculate the monostatic RCS. The obtained results are compared with the those obtained by the
CBFM, IP-CBFM and the simulation of FEKO. The simulations are performed on a personal computer
equipped with Intel� CoreTM i7-3820 at 3.60 GHz and 64 GB RAM. The full impedance matrix is stored
in the computer memory, and the threshold of the SVD is 1.0E-3.

First, the scattering problem of a PEC hexahedron at a frequency of 300 MHz is presented. The
electrical lengths of bottom and top sides are 1λ and 0.4λ, respectively, and 1λ high. The hexahedron
is divided into 1598 triangular patches with total 4491 unknowns. All the unknowns are assigned to

Figure 1. Monostatic RCS of a PEC hexahedron
in HH polarization.

Figure 2. Monostatic RCS of a PEC hexahedron
in V V polarization.
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8 blocks. The results of monostatic RCS in HH and V V polarization calculated by the CBFM, IP-
CBFM, MCBFM and the simulation results of FEKO are presented in Fig. 1 and Fig. 2, respectively.
The conditions required for the three methods are shown in Table 1. Nθ, Nφ indicate the number of
incident PWs in each direction. Δθ,Δφ indicate the angle intervals of the incident PWs. The calculation
time for different procedures and relative errors are summarized in the Table 2.

Table 1. The condition of incident PWs for the three methods.

Method (Nθ, Nφ) (Δθ,Δφ) Number of PWs
CBFM

(9, 4) (36◦, 90◦) 72IP-CBFM
MCBFM

Table 2. The calculation time of different procedures and the relative errors.

Methods

CBFs

generation

time (s)

SVD

time

(s)

Reduced matrix

construction

time (s)

Solving

time

(s)

Total

Time

(s)

Number

of CBFs

(After SVD)

Relative

errors

(%)

FEKO - - - - 131.37 - -

CBFM 21.53 42.21 255.25 7.72 329.71 778 0.701%

IP-CBFM 14.79 10.67 69.84 5.49 100.79 416 3.043%

MCBFM 27.55 5.58 82.04 5.58 120.75 448 0.704%

The relative error is defined as (|RCSx − RCSFEKO|/|RCSFEKO|)× 100%, where RCSFEKO are the
simulation results from the software FEKO, and RCSx are the results of the three methods. It can be
easily observed from Fig. 1 and Table 2 that the proposed MCBFM is more accurate than the IP-CBFM,
and the relative error is reduced by 2.3%. The generation time of the CBFs is slightly increased by the
MCBFM, but the overall total time is reduced by 63.38% compared to the CBFM.

In order to further demonstrate the accuracy and the efficiency of the MCBFM, the results for the
scattering problem from one PEC cylinder at a frequency of 600 MHz are presented. The electrical size
of the cylinder is 18λ length and 0.6λ radius. The cylinder is divided into 12802 triangular patches, and

Figure 3. Monostatic RCS of a PEC Cylinder in
HH polarization.

Figure 4. Monostatic RCS of a PEC Cylinder in
V V polarization.
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the total number of unknowns is 26686. All the unknowns are assigned to 25 blocks. The monostatic
RCS in HH and V V polarizations calculated by the CBFM, the IP-CBFM and the MCBFM with
considering different numbers of PWs are presented in Fig. 3 and Fig. 4, respectively. The conditions
required for these three methods are shown in Table 3.

Table 3. The condition for the three methods.

Method (Nθ, Nφ) (Δφ,Δθ) Number of PWs Relative errors (%)
CBFM (11, 5) (30◦, 72◦) 110

< 1%IP-CBFM (15, 6) (22.5◦, 60◦) 180
MCBFM (11, 5) (30◦, 72◦) 110

It can be seen from Fig. 3 and Fig. 4 that the results obtained by the three methods are in good
agreement with the simulation results of FEKO. When the relative error is less than 1%, the number
of PWs required in the IP-CBFM is more than that in the CBFM and MCBFM. The CPU time and
number of CBFs for the three methods are summarized in the Table 4.

Table 4. The calculation time of different procedures for the three methods.

Methods

CBFs

generation

time (s)

SVD

time

(s)

Reduced matrix

construction

time (s)

Solving

time

(s)

Total

Time

(s)

Number

of CBFs

(After SVD)

FEKO - - - - 9612.17 -

CBFM 578.78 10803.8 11743.5 231.10 23357 4263

IP-CBFM 301.19 315.28 5785.61 146.33 6548.41 2964

MCBFM 855.31 116.76 4968.13 85.09 6025.18 2731

It can be seen easily seen from Table 3 that when a considerable computational accuracy is required,
the efficiency of the proposed MCBFM is the highest among these three methods.

4. CONCLUSION

In this paper, a merged characteristic basis function method (MCBFM) is proposed to analyze the
electromagnetic scattering characteristics from conducting targets. First, a merged characteristic basis
functions (M-CBF) is defined and generated by merging the conventional secondary characteristic basis
functions (SCBFs) and the high order characteristic basis functions (HO-CBFs) of each block in the
conventional primary characteristic basis function (PCBF). Then the proposed MCBFM is used to
calculate the monostatic RCS in different polarizations of a PEC hexahedron and a PEC cylinder. The
numerical results validate and demonstrate that the proposed MCBFM significantly reduces the CPU
time without losing the accuracy compared to the conventional CBFM. Moreover, the proposed method
improves the accuracy without increasing the number of PWs and CBFs compared to the IP-CBFM.
Hence, the proposed MCBFM is much more efficient than the other two methods when a considerable
computational accuracy is required.
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