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Characteristic Analysis of Phase Glint in InSAR Image Processing

Jing-Ke Zhang1, *, Da-Hai Dai2, Zong-Feng Qi1, Yong-Hu Zeng1, and Lian-Dong Wang1

Abstract—This paper investigates the phase glint problem involved in interferometric synthetic
aperture radar (InSAR) image processing, which refers to the multiple scatterer interference of a single
pixel, and studies the distribution of interferometric phase in the case of double scatterer interference. It
is found that the value range of the observed interferometric phase is related to several factors including
the complex scattering coefficient ratio and interferometric phase difference between the elementary
scatterers, and no matter what values of interferometric phases of elementary scatterers are taken, the
range of interferometric phase of phase glint is always 2π. This paper also briefly analyzes the impact
of phase glint on classical InSAR image processing and man-made target height retrieval, and it is
concluded that the phase glint will induce significant height estimating error. Simulation and real data
results verify the conclusion.

1. INTRODUCTION

Synthetic aperture radar (SAR) provides the full ability of acquiring high resolution radar images
independent of sunlight illumination and weather conditions and is a well-proven technique for many
military and civilian remote sensing fields [1–6]. However, conventional SAR imagery is a projection of
observed scene from three-dimensional (3D) scene scattering properties onto the two-dimensional (2D)
range-azimuth plane, which makes the interpretation of SAR image extremely difficult, especially for
the man-made target [7, 8].

With the introduction of interferometric processing technique, some derived techniques, including
InSAR [9], differential InSAR (DInSAR) [10], and polarimetric InSAR (PolInSAR) [11, 12], are
developed, among which InSAR is a technique that obtains terrain digital elevation map (DEM) by
coherently processing two images acquired from slightly different views. Although InSAR has achieved
great success in various remote sensing applications, it cannot be applied in the 3D reconstruction of
man-made targets, considering that the widely accepted assumption that a given pixel is dominated
by scattering from a single height [9] is usually violated in many cases such as man-made target
reconstruction. In fact, multiple scatterers with different heights may be mapped in the same pixel [13],
which will produce a chaotic observed interferometric phase. We refer the effect to phase glint in
this paper. Phase glint usually makes the results produced by classical InSAR image processing
unacceptable. In [14] and [15], the authors analyze the impact of phase glint on the man-made height
estimation and propose a method of detecting the existence of phase glint by using the pixel magnitudes
corresponding to two coherent SAR images. In [16], based on the difference between the interferometric
phases corresponding to different polarizations, a novel method of detecting phase glint is introduced.
In [17] and [18], the detection methods of multiple scatterer interference based on differential SAR
tomography are studied. However, the detailed distribution of the interferometric phase of phase glint
along with the variety of the characteristic of the elementary scatterers is still lack of research.
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This paper is dedicated to deriving the detailed phase distribution characteristic of phase glint
and presents a demonstration about the impact of phase glint on two typical applications, i.e., classical
InSAR image processing and man-made target height retrieval, by processing the simulated and real
collected InSAR data. The paper is organized as follows. Section 2 introduces the concept and
establishes the mathematic model. In Section 3, we derive the detailed distribution of the interferometric
phase of phase glint and concisely analyze the impact of phase glint on classical InSAR image processing
and man-made target height retrieval. In Section 4, simulation and real data results are presented to
verify the validy of the theoretical analysis. Finally, conclusions are presented in Section 5.

2. PROBLEM FORMULATION

Without loss of generality, we consider InSAR system operating with single-pass mode. The raw data
are focused on two SAR complex images, and the slave image is registered to the master image.

If there are N elementary scatterers located in an arbitrary pixel, the scattering response of the
pixel can be expressed as

Cm =
N∑

k=1

Ake
jϕmk (1)

Cs =
N∑

k=1

Ake
jϕsk (2)

where Ak is the complex scattering coefficient of the kth scatterer; subscripts m and s represent the
master and slave channel of InSAR system respectively; ϕmk and ϕsk denote the phases corresponding
to the distances between the kth scatterer and the master and slave channels, respectively.

Then, the interferometric phase of the pixel can be written as

ΔϕC = arg (CmC∗
s ) (3)

where superscripts ∗ represents conjunction operator. Obviously, when ϕmk − ϕsk �= ϕmp − ϕsp +
2kπ, k, p ∈ Z, k �= p, the interferometric phase ϕC varies with Ak and may be not equal to the
interferometric phase of any elementary scatterer of the pixel, so ΔϕC cannot reflect the height of any
elementary scatterer.

For the sake of simplify, we assume that the phase glint is caused by two elementary scatterers,
A and B. The complex scattering coefficient ratio (CSCR) of B to A is ρ exp(jφ). Without loss of
generality, we assume 0 ≤ ρ ≤ 1 (if ρ ≥ 1, we can obtain 0 ≤ ρ ≤ 1 by interchanging A for B), and φ is
uniformly distributed between −π and π. Then, the scattering response of the pixel can be expressed
as

Sm = A exp (jϕmA) (1 + ρ exp (j (φ + ϕmB − ϕmA))) (4)

Ss = A exp (jϕsA) (1 + ρ exp (j (φ + ϕsB − ϕsA))) (5)

where A is the complex scattering coefficient of scatterer A. Setting φ′ = φ + ϕsB − ϕsA, ΔϕA =
ϕmA−ϕsA, ΔϕB = ϕmB−ϕsB, ΔϕBA = ΔϕB−ΔϕA, and without the consideration of phase wrapping,
the interferometric phase of phase glint can be expressed as

ΔϕC = arg (SmS∗
s ) = ΔϕA + arg

((
1 + ρ exp

(
j
(
φ′ + ΔϕBA

))) (
1 + ρ exp

(−jφ′))) (6)

where ΔϕA and ΔϕB denote the interferometric phases of A and B, respectively.
Equation (6) can be expanded as

ΔϕC = ΔϕA + tan−1

(
ρ sin (φ′ + ΔϕBA) − ρ sin φ′ + ρ2 sinΔϕBA

1 + ρ cos (φ′ + ΔϕBA) + ρ cos φ′ + ρ2 cos ΔϕBA

)
(7)

From Eq. (7), it can be seen that the interferometric phase of phase glint is related to the interferometric
phases ΔϕA and ΔϕB, the interferometric phase difference ΔϕBA, and the CSCR (ρ exp(jφ)) of B to A.
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3. MAIN RESULTS

3.1. Distribution Characteristic of Interferometric Phase

In this section, we will derive the detailed distribution of interferometric phase of phase glint. For given
positions of scatterers A and B, the interferometric phase ΔϕC is the function of parameters ρ and φ.
Setting ΔϕCA = ΔϕC − ΔϕA, we can obtain

f (ρ, φ) = tan (ΔϕCA) =
ρ sin (φ′ + ΔϕBA) − ρ sin φ′ + ρ2 sin ΔϕBA

1 + ρ cos (φ′ + ΔϕBA) + ρ cos φ′ + ρ cos ΔϕBA
(8)

From Appendix A, it can be concluded that

df2 (ρ, φ)
dφ2

=

⎧⎪⎪⎨
⎪⎪⎩

−2
(
ρ − ρ3

)
sin (ΔϕBA/2)
a2

φ = −ΔϕBA
2 + ϕsA − ϕsB

2
(
ρ − ρ3

)
sin (ΔϕBA/2)
a2

φ = π − ΔϕBA
2 + ϕsA − ϕsB

(9)

where −ΔϕBA
2 + ϕsA −ϕsB and π− ΔϕBA

2 + ϕsA −ϕsB is the extreme points of f(ρ, φ) with respect to φ.
According to a2 > 0 and ρ − ρ3 ≥ 0, the polarity of Eq. (9) is only dominated by sin(ΔϕBA/2), so

we can obtain conclusions as follows:
(1) sin(ΔϕBA/2) ≥ 0, i.e., ΔϕBA ∈ (0, 2π) + 4kπ, k ∈ Z. When φ= π − ΔϕBA

2 + ϕsA − ϕsB, f(ρ, φ)

has local minimum value because of df2(ρ,φ)
dφ2 > 0. Moreover, tan(·) is monotone increasing function, so

ΔϕC has local minimum value

ΔϕC min = ΔϕA − 2 tan−1

(
ρ sin (ΔϕBA/2)

1 − ρ cos (ΔϕBA/2)

)
(10)

When φ= − ΔϕBA
2 + ϕsA − ϕsB, ΔϕC has local maximum value

ΔϕC max = ΔϕA + 2 tan−1

(
ρ sin (ΔϕBA/2)

1 + ρ cos (ΔϕBA/2)

)
(11)

(2) sin(ΔϕBA/2) ≤ 0, i.e., ΔϕBA ∈ (−2π, 0) + 4kπ. When φ= π − ΔϕBA
2 + ϕsA − ϕsB, f(ρ, φ) has

maximal value. Because df2(ρ,φ)
dφ2 < 0, ΔϕC has local maximal value

ΔϕC max = ΔϕA − 2 tan−1

(
ρ sin (ΔϕBA/2)

1 − ρ cos (ΔϕBA/2)

)
(12)

When φ= − ΔϕBA
2 + ϕsA − ϕsB, ΔϕC has local minimum value

ΔϕC min = ΔϕA + 2 tan−1

(
ρ sin (ΔϕBA/2)

1 + ρ cos (ΔϕBA/2)

)
(13)

If ΔϕC max and ΔϕC min are regarded as the functions of ρ, one can obtain

ΔϕC max (ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔϕA + 2 tan−1

(
ρ sin(ΔϕBA/2)

1 + ρ cos(ΔϕBA/2)

)
ΔϕBA ∈ (0, 2π) + 4kπ

ΔϕA − 2 tan−1

(
ρ sin(ΔϕBA/2)

1 − ρ cos(ΔϕBA/2)

)
ΔϕBA ∈ (−2π, 0) + 4kπ

(14)

ΔϕC min (ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔϕA − 2 tan−1

(
ρ sin(ΔϕBA/2)

1 − ρ cos(ΔϕBA/2)

)
ΔϕBA ∈ (0, 2π) + 4kπ

ΔϕA + 2 tan−1

(
ρ sin(ΔϕBA/2)

1 + ρ cos(ΔϕBA/2)

)
ΔϕBA ∈ (−2π, 0) + 4kπ

(15)

Equations (14) and (15) are named as the maximal and minimum value curves in the following discussion.



46 Zhang et al.

According to Appendix B, for the case of 0 ≤ ρ ≤ 1, the value range of ΔϕC can be expressed as

ΔϕC ∈

⎧⎪⎪⎨
⎪⎪⎩

[
ΔϕA +

Δϕ′
BA

2
− π,ΔϕA +

Δϕ′
BA

2

]
, ΔϕBA ∈ (0, 2π) + 4kπ[

ΔϕA +
Δϕ′

BA

2
,ΔϕA +

Δϕ′
BA

2
+ π

]
, ΔϕBA ∈ (−2π, 0) + 4kπ

(16)

Similarly, when ρ ≥ 1, ρ′ exp(jφ′) is defined as the CSCR of B to A, that is 0 ≤ ρ′ ≤ 1. It also can
be concluded that

ΔϕC ∈

⎧⎪⎪⎨
⎪⎪⎩

[
ϕB − Δϕ′

BA

2
,ΔϕB − Δϕ′

BA

2
+ π

]
, ΔϕBA ∈ (0, 2π) + 4kπ[

ΔϕB − Δϕ′
BA

2
−π,ΔϕB − Δϕ′

BA

2

]
, ΔϕBA ∈ (−2π, 0) + 4kπ

(17)

In summary, if elementary scatterers A and B are located in a single pixel of SAR image, along with
the change of ρ ∈ [0 +∞) and φ ∈ [−π, π], the value range of interferometric phase of the corresponded
pixel is

ΔϕC∈
[
ΔϕA+

Δϕ′
BA

2
−π,ΔϕA+

Δϕ′
BA

2

]
∪
[
ΔϕB−Δϕ′

BA

2
,ΔϕB−Δϕ′

BA

2
+π

]
, ΔϕBA∈(0, 2π)+4kπ (18)

ΔϕC∈
[
ΔϕB−Δϕ′

BA

2
−π,ΔϕB−Δϕ′

BA

2

]
∪
[
ΔϕA+

Δϕ′
BA

2
,ΔϕA+

Δϕ′
BA

2
+π

]
, ΔϕBA∈(−2π, 0)+4kπ (19)

From Eqs. (18) and (19), we can conclude that the value range of interferometric phase ΔϕC in the case
of double scatterer interference is related to the interferometric phases ΔϕA and ΔϕB of elementary
scatterers, and the interferometric phase difference ΔϕBA between the elementary scatterers. However,
no matter what values of ΔϕA, ΔϕB or ΔϕBA are taken, along with the change of ρ and φ, the dynamic
range of interferometric phase ΔϕC is always 2π. Moreover, in some cases, the value of ΔϕC exceeds
the span decided by ΔϕA and ΔϕB.

3.2. Impact on Classical InSAR Image Processing

In classical InSAR image processing, the extracted interferometric phase is always a wrapped phase,
which can be expressed as

ΔϕW = wrap (Δϕ) (20)

where wrap(·) defines a wrapping operator; Δϕ is unwrapped phase; ΔϕW is the wrapped phase of Δϕ
and ΔϕW ∈ [−π, π]. If the number of wrapped cycles is n, the relationship between ΔϕW and Δϕ can
be express as

ΔϕW = Δϕ − 2nπ (21)

Phase unwrapping is any technique that permits retrieving the unwrapped phase Δϕ from the
wrapped phase ΔϕW in InSAR image processing. Most phase unwrapping algorithms are based on the
hypothesis that the absolute value of phase gradient of adjacent pixels is less than π. According to the
analysis of Section 3.1, the interferometric phase of phase glint varies with CSCR, which may lead to the
absolute value of phase gradient greater than π, i.e., the unwrapped phase may be incorrect. With the
flat phase removed, phase filtering, phase unwrapping and the flat phase compensated, if the ultimate
interferometric phase is Δϕ′, the retrieved height can be expressed as [9]

h′ ≈ H − R cos
(

ε + sin−1

(−λΔϕ′

2πB

))
(22)

where H denotes the height of platform, R the distance between corresponding pixel and InSAR master
channel antenna, B the baseline length, ε the angle the baseline makes with respect to a reference
horizontal plane (see Fig. 1), and λ the wavelength. Because Δϕ′ is not equal to the interferometric
phase of any elementary scatterer, the retrieved height h′ cannot reflect the real height of any elementary
scatterer.
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Figure 1. System geometry of InSAR.

3.3. Impact on Man-Made Target Height Retrieval

In the case of man-made target reconstruction, because the scattering response can be characterized
as a superposition of a set of discrete scatterers, conventional phase unwrapping algorithms cannot
work effectively. In order to estimate the man-made target height using single-pass polarimetric
interferometric SAR system, [16] proposes a novel method utilizing the interferometric phases of the
scatterer couples.

If the unwrapped interferometric phase of a couple of scatterer of InSAR images is Δϕ, it can be
split into two terms

Δϕ =
2π
λ

B⊥
ΔR

R0 tan θ
+

2π
λ

B⊥
h

R0 sin θ
(23)

where B⊥ is the perpendicular baseline length, R0 the range value of the middle scene, θ the looking
angle, and h the height of the scatterer (see Fig. 1). The first term is referred to as flat earth phase, which
can be calculated in accordance with the imaging geometry. With the flat phase removed, scatterer
height can be directly estimated from the unwrapped interferometric phase Δϕ′

h =
Δϕ′λR0 sin θ

2πB⊥
(24)

It is obvious that the maximum unambiguity height value is huamp = λR0 sin θ/B⊥.
Without the consideration of the existence of phase glint, a flowchart of man-made target height

retrieval used in [16] is shown as Fig. 2. Firstly, the flat phase is removed between the master image
and slave image. Then, based on the scattering center model, the scattering centers are extracted
from the master and slave images. Next, the interferometric phases of corresponding scatterer couples
are obtained. In the man-made target height retrieval, the imaged scene is usually very small, and
the maximum unambiguity height is much higher than the target height for most interferometric
system configurations, implying that the target height can be directly estimated from the extracted
interferometric phases. Finally, the target height is retrieved from the extracted interferometric phases
as in Eq. (24). It should be pointed out that the retrieved height is a relative height. According to
Section 3.1, if the extracted scatterer couples include those caused by phase glint, especially in the
case that the interferometric phase exceeds the span decided by the elementary scatterers, the retrieved
height will deviate greatly from the real one.

4. EXPERIMENTAL EXAMPLES

To further analyses the distribution of interferometric phase and impact of the phase glint on InSAR
image processing, simulation and real data experiment results are presented in the section. Section 4.1
verifies the distribution characteristics of interferometric phase of phase glint, which are presented in
Section 3.1. Section 4.2 considers the classical InSAR image processing results of phase glint. The
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Table 1. Parameters of InSAR system.

System Parameter Value
Carrier frequency/GHz 10
Height of airplane/m 8000

Velocity of airplane/(m/s) 125
Looking angle/(◦) 45

Range resolution/m 1
Azimuth resolution/m 1

parameters of InSAR system in Sections 4.1 and 4.2 are listed in Table 1. In order to demonstrate
the impact of phase glint on man-made target height retrieval, real data experiment is presented in
Section 4.3.

4.1. Validation of Distribution of Interferometric Phase

In simulation I, scatterers A and B are located at (0, 8000, 0) m and (0, 8010, 10) m, respectively, so it can
be obtained that ΔϕA = 0.037 rad, ΔϕB = −0.4866 rad and ΔϕBA = −π

6 ∈ [−2π, 0]. The span decided
by the interferometric phases of the elementary scatterers is [−0.4866, 0.037] rad. The distribution of
ΔϕC when 0 ≤ ρ ≤ 1 is shown in Fig. 3(a), and the value range is [−0.2488, 2.9168] rad, which is
consistent with the theoretical value [ΔϕA + ΔϕBA

2 ,ΔϕA + ΔϕBA
2 + π]. Fig. 3(b) and Fig. 3(c) represent

the maximal and minimum value curves which are defined in Section 3.1, respectively. One can see
that the maximal e and minimum value curves are the monotone increasing function and monotone
decreasing function of ρ, respectively. The distribution of ΔϕC when ρ ≥ 1 is shown in Fig. 3(d), and
the value range is [−3.3664,−0.2448] rad. From Fig. 3(e) and Fig. 3(f), it can be seen that the maximal
value of ΔϕC is −0.2448 rad, and the minimum value is −3.3664 rad. Form Fig. 3(a) and Fig. 3(d), one
can conclude that the value interval of ΔϕC is [−3.3664, 2.9168] rad which obviously exceeds the span
decided by interferometric phases of the elementary scatterers, and the dynamic range of ΔϕC is 2π,
which are consistent with the theoretical value as shown in Eq. (19).

In simulation II, the coordinates of scatterer A are (0, 8000, 89.5) m, and the coordinates of scatterer

Figure 2. Flow chart of man-made height retrieval based on InSAR system.
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Figure 3. Distribution of interferometric phase of simulation I. (a) Interferometric phase versus ρ and φ
(0 ≤ ρ ≤ 1). (b) The maximal value curve of interferometric phase versus ρ (0 ≤ ρ ≤ 1, φ = 0.299 rad).
(c) The minimum value curve of interferometric phase versus ρ (0 ≤ ρ ≤ 1, φ = −2.8426 rad). (d)
Interferometric phase versus ρ′ and φ′ (ρ ≥ 1). (e) The maximal value curve of interferometric phase
versus ρ′ (ρ ≥ 1, φ′ = 2.8426 rad). (f) The minimum value curve of interferometric phase versus ρ′
(ρ ≥ 1, φ′ = −0.299 rad).

B are (0, 7910.5, 0) m, which means ΔϕA = −2.319 rad, ΔϕB = 2.3935 rad and ΔϕBA = 1.5π ∈ [0, 2π].
From Fig. 4, one can conclude that the value range of ΔϕC is [−3.3664, 2.9168] rad, and the dynamic
range of ΔϕC is 2π, which are consistent with the theoretical value as shown in Eq. (18).

4.2. Classical InSAR Image Processing Results

In this part, two simulation experiments of airborne InSAR are presented to analyze the impact of phase
glint on classical InSAR image process. Both simulation scenarios share the same terrain, which is a
flat plane with an area 400m×400m in both ground range direction and azimuth direction. Two group
scatterers are set in both simulation experiments, and the coordinates are the same as in Section 4.1.
The parameters ρ and φ of each simulation are shown in Table 2. In order to minimize the influence of
the terrain to the interferometric phase of phase glint, the signal power to clutter power ratio (SCR) is
set as 5 dB. Then, the classical image processing is applied to each simulation. The image results are
shown as in Fig. 5 and Fig. 6, and the comparisons of the theoretical values and estimated values are
shown in Table 2.

According to Table 2, the interferometric phase of each scatterer group of simulation III does
not exceed the span decided by the elementary scatterers (−0.1783 ∈ [−0.4866, 0.037] rad, −0.2156 ∈
[−2.319, 2.3935] rad), and the height of each scatterer group is within the height of the elementary
scatterers (4.1 ∈ [0, 10] m,49.4 ∈ [0, 89.5]m). From Fig. 5 and Table 2, one can conclude that the
retrieved interferometric phase and height are consistent with the theoretical values. In this case,
because of the retrieval height within the height interval of the elementary scatterers, the phase glint
does not produce significant error for height retrieval. However, the retrieval height cannot reflect the
real height of any elementary scatterers.
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Figure 4. Distribution of interferometric phase of simulation II. (a) Interferometric phase versus ρ and
φ(0 ≤ ρ ≤ 1). (b) The maximal value curve of interferometric phase versus ρ (0 ≤ ρ ≤ 1, φ = 2.3562 rad).
(c) The minimum value curve of interferometric phase versus ρ (0 ≤ ρ ≤ 1, φ = −0.7853 rad). (d)
Interferometric phase versus ρ′ and φ′ (ρ ≥ 1). (e) The maximal value curve of interferometric phase
versus ρ′ (ρ ≥ 1, φ′ = 0.7853 rad). (f) The minimum value curve of interferometric phase versus ρ′
(ρ ≥ 1, φ′ = −2.3562 rad).

Table 2. Parameters setting and the comparison of the theoretical values and the estimated results of
classical InSAR image processing.

ρ φ/(rad) ΔϕC/(rad) h/(m) Δϕ̂C/(rad) ĥ/(m)

Simulation III
Scatterer group 1 0.7 −2.8426 −0.1783 4.1 −0.1747 4.04
Scatterer group 2 0.9 2.3562 −0.2156 49.4 −0.2117 49.3

Simulation IV
Scatterer group 1 10/7 0.3 −1.5067 29.5 1.494 29.3
Scatterer group 2 0.5 −0.7856 −2.83 99.3 3.462 −20.3

In simulation IV, the interferometric phases of both scatterer groups exceed the span decided
by the elementary scatterers (−1.5067 /∈ [−0.4866, 0.037] rad, −2.83 /∈ [−2.319, 2.3935] rad), and the
corresponding height of each scatterer group exceeds the height interval of the elementary scatterers
(29.5 /∈ [0, 10]m, 49.4 /∈ [0, 89.5]m). According to Fig. 6 and Table 2, the retrieved interferometric phase
and height of the first scatterer group are approximate to the theoretical values, while the retrieved
interferometric phase and height of the second scatterer group are different from the theoretical values.
From Fig. 6 and Table 2, we can see that the retrieved interferometric phase of the second group is
approximate to the wrapped value (3.4532 rad) of the theoretical value, because the absolute value of
interferometric phase gradient between the second group and the adjacent terrain exceeds π, which
results in that the interferometric phase of the second group is not unwrapped effectively and that the
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Figure 5. The InSAR image processing results of simulation III. (a) Master image. (b) Wrapped
interferogram. (c) Unwrapped interferogram. (d) DEM. (e) Azimuth-height projection DEM.
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Figure 6. The InSAR image processing results of simulation IV. (a) Master image. (b) Wrapped
interferogram. (c) Unwrapped interferogram. (d) DEM. (e) Azimuth-height projection DEM.
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retrieval height is quite different from the real height of any elementary scatterer. In this case, the
interferometric phase of phase glint exceeds the phase interval decided by the elementary scatterers,
which will lead to serious height estimated error.

In sum, the interferometric phase of phase glint varies with the CSCR of elementary scatterers,
and the retrieved height from the interferometric phase cannot reflect the real height of any elementary
scatterer. When the interferometric phase exceeds the span decided by the interferometric phases of
the elementary scatterers, it will produce serious height estimation error in classical InSAR image
processing.

4.3. Man-Made Target Height Retrieval Results

To demonstrate the impact of phase glint on man-made height retrieval, we apply the method presented
in Section 3.3 to real data provided by East China Research Institute of Electronic Engineering. The
data are acquired with carrier frequency of 9.6 GHz in single pass bistatic mode over Lingshui County
of China. The spatial resolutions in the slant range and azimuth direction are both 0.3 m. The
interferometric baseline is about 1.22 m with its orientation angle ε = 15.6◦. Considering that radar
looking angle for the middle scene is about θ ≈ 50.3◦ (R0 ≈ 8.3 km, and H ≈ 5.3 km), we obtain the
perpendicular baseline B⊥ = 1 m. The maximum unambiguity height is huamp = 198 m. For airplane
target height retrieval, the unambiguity height is sufficient. We choose a slice of the real data, which
corresponds to an airplane parked on the aerodrome. The real height of the airplane is about 11 m.
Fig. 7 presents the SAR images of the airplane.
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Figure 7. SAR images of an airplane. (a) Master image. (b) Slave image.

With the flat phase removed and the 2D ESPRIT technique [19] applied to the images, we obtain
a set of scattering centers. The results are presented in Fig. 8(a), and the marker size indicates the
intensity of the scatterer. From Fig. 8(a), it can be seen that the extracted scatterers clearly depict
the shape of airplane in the 2D plane. Then, according to the interferometric phases of corresponding
scatterer couple, the scatterer height is estimated as in Eq. (24). The results are presented in Figs. 8(b)
and (c). We notice that the height difference between the estimates for the scatterers achieves 45 m
which exceeds the real height, implying that the results are unreliable. It is because there exists phase
glint caused by multiple scatterer interference in the airplane, and the interferometric phases of these
scatterers cannot reflect the real height of the target.
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Figure 8. 3D reconstruction results for the airplane. (a) Range-azimuth projection map. (b) 3D
representation of the scatterers. (c) Azimuth-height projection map.

5. CONCLUSION

In this paper, we investigate the phase glint problem caused by multiple scatterer interference of a single
pixel in single-pass InSAR system. Our mathematic analysis indicates that the observed interferometric
phase of phase glint is a chaotic value and varies with the CSCR between the elementary scatterers, which
cannot reflect the real height of any elementary scatterer and may produce serious height estimating
error. Simulation and real data experiment results verify the theoretical analysis. Our analysis and
experimental results suggest that for height retrieval especially for man-made target, extra care is
needed to account for the effects of phase glint caused by multiple scatterer interference.

Moreover, for the specialty of creating a chaotic interferometric in InSAR image processing, the
phase glint can be utilized to develop three-dimension deceptive scene generation method against InSAR.

APPENDIX A.

This appendix will derive Equation (9). The first derivative of f(ρ, φ) which is shown as in Eq. (8) with
respect to φ can be expressed as

df (ρ, φ)
dφ

=

(
ρ − ρ3

)
(cos (φ′ + ΔϕBA) − cos φ′)

(1 + ρ cos (φ′ + ΔϕBA) + ρ cos φ′ + ρ cos ΔϕBA)2
(A1)

Let df(ρ,φ)
dφ = 0, and the extreme points of f(ρ, φ) are derived as φ = −ΔϕBA

2 + ϕsA − ϕsB and

φ = π − ΔϕBA
2 + ϕsA − ϕsB.

Substituting a for the denominator of the right of Eq. (A1), the second derivative of f(ρ, φ) with
respect to ϕ can be written as

df2 (ρ, φ)
dφ2

=

(
ρ − ρ3

)
((sin φ′ − sin (φ′ + ΔϕBA)) a − (cos (φ′ + ΔϕBA) − cos φ′) a′)

a2
(A2)

where a′ represents the derivative of a with respect to φ. When φ = −ΔϕBA
2 + ϕsA − ϕsB or

φ = π − ΔϕBA
2 + ϕsA − ϕsB, one can obtain that

df2 (ρ, φ)
dφ2

=

⎧⎪⎪⎨
⎪⎪⎩

−2
(
ρ − ρ3

)
sin (ΔϕBA/2)
a

φ = −ΔϕBA

2
+ ϕsA − ϕsB

2
(
ρ − ρ3

)
sin (ΔϕBA/2)
a

φ = π − ΔϕBA

2
+ ϕsA − ϕsB

(A3)

APPENDIX B.

This appendix will derive the value range of ΔϕC for the case of 0 ≤ ρ ≤ 1.
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Setting x = ρ sin(ΔϕBA/2)
1+ρ cos(ΔϕBA/2) and y = ρ sin(ΔϕBA/2)

1−ρ cos(ΔϕBA/2) , and substituting into ΔϕC max (ρ)andΔϕC min(ρ)
which are expressed by Eqs. (14) and (15), respectively, the derivatives of ΔϕC max(ρ) and ΔϕC min(ρ)
with respect to ρ can be expressed as

Δϕ′
C max (ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 sin (ΔϕBA/2)
(1 + x2) (1 + ρ cos (ΔϕBA/2))2

ΔϕBA ∈ (0, 2π) + 4kπ

− 2 sin (ΔϕBA/2)
(1 + y2) (1 − ρ cos (ΔϕBA/2))2

ΔϕBA ∈ (−2π, 0) + 4kπ

(B1)

Δϕ′
C min (ρ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2 sin (ΔϕBA/2)
(1 + y2) (1 − ρ cos (ΔϕBA/2))2

ΔϕBA ∈ (0, 2π) + 4kπ

2 sin (ΔϕBA/2)
(1 + x2) (1 + ρ cos (ΔϕBA/2))2

ΔϕBA ∈ (−2π, 0) + 4kπ

(B2)

From Eqs. (B1) and (B2), it can be seen that Δϕ′
C max(ρ) ≥ 0 and Δϕ′

C min(ρ) ≤ 0 for arbitrary ΔϕBA,
i.e., ΔϕC max(ρ) is monotone increasing function while ΔϕC min(ρ) is monotone decreasing function
of ρ. So, ΔϕC max(ρ) and ΔϕC min(ρ) have maximal value and minimum value, respectively, when
ρ = 1, which are also the maximal and minimum values of ΔϕC. Moreover, it can be concluded that
min(ΔϕC max(ρ)) = max(ΔϕC min(ρ)) = ΔϕA. In summary, the value range of ΔϕC(ρ, ϕ) is equal to
the union of the range of ΔϕC max(ρ) and ΔϕC min(ρ). So, one can obtain

max (ΔϕC) = ΔϕC max (1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔϕA + 2 tan−1

(
sin (ΔϕBA/2)

1 + cos (ΔϕBA/2)

)
ΔϕBA ∈ (0, 2π) + 4kπ

ΔϕA − 2 tan−1

(
sin (ΔϕBA/2)

1 − cos (ΔϕBA/2)

)
ΔϕBA ∈ (−2π,0) + 4kπ

(B3)

min (ΔϕC) = ΔϕC min (1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ΔϕA − 2 tan−1

(
sin (ΔϕBA/2)

1 − cos (ΔϕBA/2)

)
ΔϕBA ∈ (0, 2π) + 4kπ

ΔϕA + 2 tan−1

(
sin (ΔϕBA/2)

1 + cos (ΔϕBA/2)

)
ΔϕBA ∈ (−2π,0) + 4kπ

(B4)

For a given ΔϕBA, there is always a Δϕ′
BA ∈ [−2π, 2π] satisfying Δϕ′

BA = ΔϕBA − 4kπ. According to
submultiple angle formula of trigonometric functions

tan−1

(
sin (ΔϕBA/2)

1 − cos (ΔϕBA/2)

)
=

⎧⎪⎨
⎪⎩

π

2
−Δϕ′

BA

4
ΔϕBA ∈ (0, 2π) + 4kπ

−π

2
−Δϕ′

BA

4
ΔϕBA ∈ (−2π,0) + 4kπ

(B5)

tan−1

(
sin (ΔϕBA/2)

1+ cos (ΔϕBA/2)

)
=

Δϕ′
BA

4
(B6)

Then, it can be concluded that

ΔϕA − 2 tan−1

(
sin (ΔϕBA/2)

1 − cos (ΔϕBA/2)

)
=

⎧⎪⎨
⎪⎩

ΔϕA +
Δϕ′

BA

2
− π ΔϕBA ∈ (0, 2π) + 4kπ

ΔϕA +
Δϕ′

BA

2
+ π ΔϕBA ∈ (−2π,0) + 4kπ

(B7)

ΔϕA + 2 tan−1

(
sin (ΔϕBA/2)

1 + cos (ΔϕBA/2)

)
= ΔϕA +

Δϕ′
BA

2
(B8)

So for the case of 0 ≤ ρ ≤ 1, we can conclude that

ΔϕC ∈
{

[ΔϕA + Δϕ′
BA/2 − π,ΔϕA + Δϕ′

BA/2] , ΔϕBA ∈ (0, 2π) + 4kπ

[ΔϕA + Δϕ′
BA/2,ΔϕA + Δϕ′

BA/2 + π] , ΔϕBA ∈ (−2π, 0) + 4kπ
(B9)
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