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High-Resolution Grid-Independent Imaging for Terahertz 2-D
Synthetic Aperture Radar with Spatial Under-Sampling

Li Ding1, 2, 3, Xi Ding2, Yangyang Ye2, Sixuan Wu2, and Yiming Zhu1, 2, 3, *

Abstract—For the purpose of two-dimensional (2-D) imaging in the Terahertz (THz) near field through
2-D synthetic aperture radar technology, Fourier transform (FT) is one of the most popular imaging
ways. However, FT-based algorithms would encounter performance loss either when spatial sampling
is under Nyquist frequency or there are off-grid scatterers in the scene of interest. Therefore, by
exploiting the theory of matrix enhancement and continuous parameter estimation, we propose to use
matrix enhancement and matrix pencil (MEMP) method and matched filter to deal with arbitrarily
located scatterers when spatial under-sampling is adopted. Through constructing a specifically expanded
matrix, the information of the scatterers involved in the small data set can be enhanced. Then, high-
resolution grid-independence 2-D imaging can be achieved by the combination of MP and matched filter.
Simulation results verify the effectiveness of the proposed algorithm.

1. INTRODUCTION

Terahertz (THz) benefited from its low radiation energy, strong penetration and high resolution has
spurred a surge of interests into the imaging fields, especially into the security-related applications [1–
6].

Currently, THz spatial two-dimensional (2-D) imaging is popularly implemented by the synthetic
aperture radar (SAR) technology. Although SAR is a well-known technique trading time for space in
the microwave imaging region [7, 8], many geometries of inversion problems can be seen as interesting
variants of SAR, such as the transceiver array in [9] by trading cost for time. For the imaging method,
Fourier transform (FT), which is widely used in the classical microwave SAR fields, is also a way of
well-known imaging in the THz band [2–6]. [3] has proposed a surveillance system with a vertical
linear antenna array actuated over a circular path to obtain a 360◦ cylindrical scan, and similarly for
such a SAR with circular trajectory, [4] has provided a nonuniform FT-based algorithm to decrease the
computation complexity. Operating at difference THz band, [5] has elaborated the outcomes obtained
by a 2-D planar SAR with broadband sweep signals, while [6] has proposed an imaging scheme based on
frequency-controlled beam scanning antenna to speed up the scene scanning. However, no matter what
strategy the system is, the imaging method with respect to the derived analytical expression belongs
to FT scope. Traditional FT-based methods have several drawbacks when being applied into THz
fields. One of the most important factors is the shorter wavelength of THz radiation, which implies the
reduced sampling interval in space. In order to utilize FT, spatial sampling should obey Nyquist theory
to obtain a full set of data [3, 4]. This leads to a larger amount of data and dramatically increases the
signal acquisition time. The corresponding system cost will scale up, especially when achieving a high
spatial resolution performance by enlarging the synthetic aperture lengths in both x- and y-azimuth
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dimensions. It is obviously not conducive to the application of THz imaging technology. Besides, FT
has a nature of discrete parameter estimation, which is inherent to solve linear inverse problems arising
from discretization on a continuum. This assumes both that the imaging scene consists of 2-D predefined
grids and that all the scatterers are located exactly on these grids. Otherwise, those off-grid scatterers
would severely affect the imaging performance [10, 11].

Recently, the theory of compressed sensing (CS) has attracted increased research interests to deal
with the imaging problem when the data set is obtained not following Nyquist theory [12, 13]. However,
CS-based reconstruction still belongs to the scope of discrete parameter estimation. Thus, it cannot
avoid the off-grid phenomenon, and would lead to the well-known basis mismatch problem [10, 11].
Besides, conventional methods for continuous parameter estimation [14, 15], such as the estimating
signal parameters via rotational invariance techniques (ESPRIT), and the matrix pencil (MP) method,
which are free of grid dependence, would become less effective if the number of given samples is small
by under-sampling.

Attentive to the aforementioned problems, we propose a high-resolution grid-independent imaging
algorithm to achieve 2-D imaging for THz near field with spatial under-sampling. The discrete echo
model in 2-D wavenumber domain for THz near-field imaging is firstly derived in detail. Towards the
situation of under-sampling, by jointly utilizing the sparse nature of the targets and the continuous-
parameter-estimation technique, the imaging method based on matrix extension and matrix pencil
(MEMP) [16] and matched filter is proposed. The proposed algorithm is presented both to achieve
imaging in 2-D azimuth plane for arbitrarily scatterers and to support a high-resolution performance
by extracting the scatterer information through a mathematically matrix enhancement way. Simulation
results illustrate that the proposed algorithm outperforms the traditional FT.

2. SIGNAL MODEL

The geometry of THz 2-D SAR imaging system in near field is shown in Fig. 1. The length of the
effective observation plane in the x-direction is Lx, and that in the y-direction is Ly. The distance
between the observation plane and the imaging scene is Z0. The spatial sampling position of the
transceiver along the x-dimension is denoted as x′

m, m = 0, . . . ,M −1, and M is the number of samples
in the x-dimensional space. Similarly, y′n, n = 0, . . . , N −1 indicates the spatial sampling position along
the y-dimension, and N is the number of samples in the y-dimensional space. The transmitted signal is
s(t) = ej2πft with the carrier frequency f . Assuming that there are L scatterers in the interested scene,
the echo received by the transceiver at the position (x′

m, y′n) is

sr(x′
m, y′n, t) =

L∑
l=1

σl(xl, yl)e
j2πf

(
t− 2Rl(x′m,y′n)

c

)
(1)

where σl(xl, yl) and (xl, yl) are the complex reflection coefficient and position of the l-th scatterer,
respectively; c is the light velocity; Rl(x′

m, y′n) is the path delay from the transceiver at (x′
m, y′n) to the

l-th scatterer and is of the form as

Rl

(
x′

m, y′n
)

=
√

(xl − x′
m)2 + (yl − y′n)2 + Z2

0 (2)

After the quadrature down-conversion by e−j2πft, the echo signal in Eq. (1) can be expressed as

sr(x′
m, y′n) =

L∑
l=1

σl(xl, yl)e−j2πf
2Rl(x′m,y′n)

c (3)

With respect to the spherical wave inherently involved in the exponential term in Eq. (3) for THz
near field, the alternative of Eq. (3) can be obtained by a superposition of plane-wave components and
is

sr(x′
m, y′n) =

L∑
l=1

σl(xl, yl)

⎧⎨
⎩

∑
kx′(m)

∑
ky′(n)

e−jkx′(m)(xl−x′
m)−jky′(n)(yl−y′

n)+jkz′(m,n)Z0

⎫⎬
⎭ (4)
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Figure 1. Terahertz 2-D SAR imaging.

where kx′(m) and ky′(n) correspond to the x- and y-dimensional wavenumber components, respectively,

kz′(m,n) =
√

k2 − k2
x′(m) − k2

y′(n), and k = 2πf/c represents the wavenumber. It is obvious to rewrite

Eq. (4) into a more enlightening way as

sr

(
kx′ (m) , ky′ (n)

)
= FT2D

{
sr

(
x′

m, y′n
)}

e−jkz′(m,n)Z0 = FT2D {σl(xl, yl)} (5)

where FT2D{·} indicates the 2-D Fourier transform (FT).
Apparently, Eq. (5) reveals that the wavenumber-domain echo sr(kx′(m), ky′ (n)) and the reflectivity

of the scatterer σl(xl, yl) obey Fourier transform, which is the basis for analyzing the inversion
performance in the wavenumber domain. At present, if the spatial sampling (x′

m, y′n in the
observation plane satisfies Nyquist theory, it is clear from Eq. (5) that the reflectivity σl(xl, yl) can
be straightforwardly obtained through the inverse FT of sr(kx′(m), ky′(n)). That is, the 2-D image
reconstruction takes the form as

σl(xl, yl) = FT−1
2D

{
FT2D

{
sr

(
x′

m, y′n
)}

e−jkz(m,n)Z0

}
(6)

where FT−1
2D{·} indicates the 2-D inverse Fourier transform.

It is notable from Eq. (6) that in the THz band, the shorter wavelength, compared with the
traditional microwave, renders the dramatically increased amount of data set if applying the Nyquist
theory for the FT-based performance consideration. This implies the corresponding increased acquisition
time and system complexity. Hence, a more appealing way to break the limitation of Nyquist law
is to adopt the under-sampling scheme. However, traditional FT-based imaging gradually loses its
advantages for the current cases. Although the recently arising CS theory refers to one of the most
popular techniques to deal with this under-determined linear inversion problem, its grid dependence
on discrete bases, which is the same as FT, makes performance loss as well. Therefore, concerning
the problems of grid-independence and under-sampling in practice, it is meaningful to propose a more
general imaging approach for 2-D SAR in THz near field.

3. ALGORITHM IMPLEMENTATION

Considering both the under-sampling over the 2-D observation plane and the grid independence, we take
the advantage of matrix enhancement and matrix pencil (MEMP) method to make continuous parameter
estimation when given a small data set. Benefited from the enhanced matrix from the samples, the
proposed algorithm can obtain more information about the scatterers than the original data set shows,
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so it can improve the 2-D azimuth dimension resolution without increasing the complexity of the imaging
system.

Based on Equations (4) and (5), the echo signal can be expressed as

sr

(
kx′ (m) , ky′ (n)

)
=

L∑
l=1

σl(xl, yl)e−jkx′(m)xl−jky′(n)yl (7)

In general, under the assumption that the field of view spanned by the aperture length is smaller
than that of the adopted antenna itself, the wavenumber sampling (kx′(m), ky′(n)) can be assumed to
meet with the following uniform relationship

kx′ (m) = Δkxm, ky′ (n) = Δkyn (8)

where Δkx and Δky are the sampling intervals of x- and y-dimensional wavenumber domains,
respectively, and will be approximately computed as

Δkx =
2k Lx√

(Lx/2)2+Z2
0

M
, Δky =

2k Ly√
(Ly/2)2+Z2

0

N
(9)

where it should be noted that if the non-uniformity of (kx, ky) over 2-D wavenumber domain cannot be
ignored, the effectiveness of Eq. (9) will be guaranteed as well by inserting an additional interpolation
step in advance.

By setting qx,l = e−jΔkxxl and qy,l = e−jΔkyyl for simplicity, Eq. (7) can also be written as

sr

(
kx′ (m) , ky′ (n)

)
=

L∑
l=1

σl(xl, yl)qm
x,l

qn
y,l

(10)

Based on the model in Eq. (10), the detailed method of imaging by the combination of MEMP and
matched filter is described in the following steps:

• Step 1 : Enhanced Matrix Construction

An enhanced matrix is used for 2-D frequency estimation by partitioning and stacking as follows:

He =

⎡
⎢⎣

H0 . . . HM−K

. . .
. . . . . .

HK−1
... HM−1

⎤
⎥⎦ (11)

where

Hm =

⎡
⎢⎣

sr

(
kx′ (m) , ky′ (0)

)
. . . sr

(
kx′ (m) , ky′ (N − I)

)
...

. . .
...

sr

(
kx′ (m) , ky′ (I − 1)

)
. . . sr

(
kx′ (m) , ky′ (N − 1)

)
⎤
⎥⎦ (12)

He is an Hankel block matrix, and Hm is an Hankel matrix, m = 0, 1, . . . ,M −1. Each column of Hm is
a windowed segment of the sequence {sr(kx′(m), ky′(0)), sr(kx′(m), ky′(1)), . . . , sr(kx′(m), ky′(N − 1))}
with the window length I, and I ≥ L. Each column of He is a windowed segment of the matrix sequence
{H0,H1, . . . ,HM−1} with the window length K, and K ≥ I. The expanded matrix He can obtain more
information about the scatterers, and it is beneficial to the improvement of imaging quality.

• Step 2 : 2-D Poles Estimation

According to the position information of the scatterers involved in qx,l and qy,l, we can know from
Eq. (10) that the 2-D position of the scatterers will be estimated through extracting out the 2-D poles
of Eq. (10). Therefore, the matrix He can be decomposed as follows

He = UsΣsVH
s + UnΣnVH

n (13)

where Us, Σs and Vs contain L major components, and Un, Σn and Vn contain the remaining non-
major components. The superscript H denotes the complex conjugate transpose.
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Let Us1 and Us2 be

Us1 = Us (1 : KL − L, :) (14)
Us2 = Us (L + 1 : end, :) (15)

According to the theory of MP, the x-dimensional poles (i.e., {qx,l; l = 1, 2, . . . , L}) can be obtained by
computing the generalized eigenvalues of Us2 − λUs1. We set the outputs as {q̂x,lx; lx = 1, 2, . . . , L}.

Furthermore, we define
Usp = P · Us (16)

where P is a permutation matrix and is of the form as

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

pT (1)
pT (1 + I)

...
pT (1 + (K − 1)I)

...
pT (I)

pT (I + I)
...

pT (I + (K − 1)I)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

where p(i + jI) is a KI × 1 vector, and except for the i-th element of value of 1, all the elements of
p(i + jI) are zero, i = 1, 2, . . . , I, j = 0, 1, . . . ,K − 1. To extract the poles of {qy,l}, in a similar way,
we form Usp1 and Usp2 from Usp as

Usp1 = Usp (1 : KL − L, :) (18)
Usp2 = Usp (L + 1 : end, :) (19)

Then, the generalized eigenvalues of Us2p − λUs1p can be computed as {q̂y,ly ; ly = 1, 2, . . . , L}.
• Step 3 : Scatterer Position Estimation

The x- and y-dimensional positions of the scatterer can be calculated as follows

x̂lx =
−Im(log(q̂x,lx))

Δkx
(20)

ŷly =
−Im(log(q̂y,ly))

Δky
(21)

• Step 4 : Pairing

Although now two sets of poles, i.e., {q̂x,lx; lx = 1, . . . , L} and {q̂y,ly ; ly = 1, . . . , L} have been
estimated, the order in each set is still unknown. It means that the pair of (x̂lx , ŷly) as lx = ly is
not necessarily pointing to the estimation of (xl, yl) of the l-th scatterer. To obtain the correct but not
necessarily ordered pairs {(x̂l, ŷl); l = 1, . . . , L}, we need to pair the two sets {x̂lx ; lx = 1, . . . , L} and
{ŷly ; ly = 1, . . . , L}.

For i = 1, 2, . . . , L, maximizing the function shown in Eq. (22) with respect to j will yield the
correct pairs {(x̂l, ŷl); l = 1, . . . , L} [14].

Js(i, j) =
L∑

t=1

∥∥uH
t eL(q̂x,i, q̂y,j)

∥∥2
(22)

where {ut, t = 1, 2, . . . , L} express the L principal eigenvectors of Us, eL(q̂x,i, q̂y,j) = q̂x,i ⊗ q̂y,j, and
q̂x,i = [1, q̂x,i, . . . , q̂

K−1
x,i ]T , q̂y,j = [1, q̂y,j , . . . , q̂

I−1
y,j ]T and i, j = 1, . . . , L.

• Step 5 : Complex Coefficients Recovery
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By bringing the estimated (x̂l, ŷl) from step 4 into the echo model in Eq. (7), all the samples of
{sr(kx′(m), ky′(n)), m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1} collected over the 2-D observation plane
can be stacked as

S = FxσFT
y (23)

where S, Fx, Fy and σ denote the 2-D echo matrix, observation matrix in x-dimension, observation
matrix in y-dimension and the scattering matrix, respectively. Specifically, they are

S =

⎡
⎢⎣

sr

(
kx′ (1) , ky′ (1)

)
. . . sr

(
kx′ (1) , ky′ (N)

)
...

. . .
...

sr

(
kx′ (M) , ky′ (1)

)
. . . sr

(
kx′ (M) , ky′ (N)

)
⎤
⎥⎦

Fx =

⎡
⎢⎣

e−jkx′(1)x̂1 . . . e−jkx′(1)x̂L

...
. . .

...
e−jkx′(M)x̂1 . . . e−jkx′(M)x̂L

⎤
⎥⎦

Fy =

⎡
⎢⎣

e−jky′(1)ŷ1 . . . e−jky′(1)ŷL

...
. . .

...
e−jky′(N)ŷ1 . . . e−jky′(N)ŷL

⎤
⎥⎦

σ =

⎡
⎣

σ1 (x1, y1) . . . 0
...

. . .
...

0 . . . σL (xL, yL)

⎤
⎦

thus, the complex reflectivity can be solved through a two-step matched filter,

σ̂ =
(
FH

x Fx

)−1
FH

x SF∗
y

(
FT

y F∗
y

)−1
(24)

4. SIMULATION

Here, we take the traditional FT-based algorithm as a comparison. The parameters of the considered
THz 2-D SAR are set as follows. The lengths of the effective observation plane in the x-direction
and y-direction are Lx = 0.0803 m and Ly = 0.0803 m, respectively. The distance between the
observation plane and the imaging scene is |Z0| = 0.5 m. The center frequency of the transmitted
signal is f = 183 GHz, and the wavelength is λ = 1.64 mm, such that both the spatial intervals in x-
and y-dimensions are λ/2 = 0.82 mm according to Nyquist theory [17]. However, we take the under-
sampling, and the spatial interval in both the dimensions is set as 1.64 mm. Therefore, the numbers of
sampling points along the x-dimension and y-dimension of the transceiver are M = 50 and N = 50,
respectively. Let ρx and ρy denote the limit resolution of x-dimension and y-dimension, respectively.

According to the parameters given above, ρx can be calculated as ρx = c
4f

(Lx/2)2+Z2
0

(Lx/2)2
= 5.1 mm [18],

and similarly, ρy = 5.1 mm. The error of estimation is computed as

Error =
1
L

L∑
l=1

‖r̂l − rl‖2

‖rl‖2

where r̂l = (x̂l, ŷl)T and rl = (xl, yl)T . To avoid the effect caused by the mainlobe of FT, its estimation
error is calculated by picking up its L largest peaks.

By arbitrarily choosing 3 scatterers with the constraint that |x1−x2| = ρx, |y2−y3| = ρy, as shown
in Fig. 2(a), Fig. 2 validates the resolution capability of the proposed algorithm. The comparison
between Fig. 2(a) and Fig. 2(b) represents the failure by FT-based method and the effectiveness of the
proposed approach, where the targets estimated by FT in Fig. 2(a) are unseparated, and thus the error
is referred to infinity, denoted as Inf.

Furthermore, we can see from Fig. 3(a) and Fig. 3(b) that the FT-based algorithm can resolve
different scatterers as the distance between any two of the scatterers increases to beyond multiple times
of resolution, but is of a worse estimation performance even regardless of the mainlobe effect.
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Figure 2. Under-sampling imaging comparison with |x1 − x2| = ρx and |y2 − y3| = ρy: (a) FT (Error
Inf), (b) proposed algorithm (Error 0.0384).
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Figure 3. Under-sampling imaging comparison with |x1−x2| > 2ρx and |y2−y3| > 2ρy: (a) FT (Error
0.0363), (b) proposed algorithm (Error 0.0237).

For the case of multiple scatterers, Fig. 4 shows that even compared to FT of the full data set,
the proposed algorithm for under-sampling case has a pleasant reconstruction and outperforms the
FT-based algorithm especially in the light of focusing performance and the estimation error.

Furthermore, the imaging performances of orthogonal matching pursuit (OMP) and our proposed
algorithm are compared, where OMP is a popular algorithm in the CS field. It is well known that the
grid-dependence problem limits the performance of CS-relevant algorithms. Therefore, by arbitrarily
choosing 5 scatterers in the scene, the imaging results by the two algorithms are shown in Fig. 5(a) and
Fig. 5(b), respectively. Obviously, Fig. 5 demonstrates that our proposed approach can provide better
imaging than OMP when off-the-grid scatterers exist.

Then the performance of the proposed algorithm with respect to varying number of samples as
well as the resolving capability versus the varying x-dimensional distance between two scatterers is
examined, shown in Fig. 6. Inferred from Fig. 3, two scatterers with the spacing greater than multiple
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Figure 4. Imaging comparison: (a) FT (full data set, Error 0.0319), (b) proposed algorithm (under-
sampling, (Error 0.0211).
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Figure 5. Imaging performance of off-the-grid scatterers, undersampling with M = N = 50: (a) OMP
(Error 0.1672), (b) proposed algorithm (Error 0.0204).

times of theoretical resolution.are selected to guarantee the good performance by FT-based method in
Fig. 6(a), and the current estimation error under the full data set (i.e., M = N = 100) is taken as
a baseline. Fig. 6(a) compares the performance of the proposed algorithm with respect to number of
sampling points. Obviously, when M , N are too small, such as M = N = 10, the performance by
the proposed algorithm yields a very bad estimation, where the error is infinitely great. The turning
happens at around M = N = 25, and then the performance of the proposed algorithm is improved as M ,
N increase. When M , N become greater than 40, one can see that the proposed algorithm outperforms
FT. It accounts for the setting of M and N in previous Figs. 2–4. Then, the performance of those
two fixed scatterers by the proposed algorithm with different numbers of samples is tested. To make a
consistency, here M and N still take their values as 50. Compared with FT, the proposed algorithm
is shown to provide a good performance with far lower number of samples. In Fig. 6(b), we take the
x-dimensional distance between two scatterers as the index to investigate the resolving performance by
two ways. It obviously shows that except the number of samples, with the same system parameters
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with ratio threshold of 10, (c) M = N = 1000 with ratio threshold of 10, (d) M = N = 100 with four
different ratio thresholds.
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setting, the resolution of the proposed algorithm is approximately better than twice that of FT.
The comparison of computational complexity between FT and our approach is conducted here. The

complexity for our proposed algorithm is focused on step 2 [16], and its computational load is about

2KL (M − (K/2)) (N − (L/2)) + 5K3L3 (25)

while the 2-D FT method requires about
1
2

(log2MN)MN. (26)

The ratio of the computational order of the proposed algorithm over the 2-D FT-based method is
calculated numerically.

In Fig. 7, a certain value is set as a threshold of the ratio, under which the computation of the
proposed algorithm is seen acceptable. Then, the ratio less than the threshold is denoted as 1, and
otherwise denoted as 0. Among Figs. 7(a), (b) and (c), 10 is such a threshold, and it can be observed
that with the increasing M and N (i.e., the dimensions of the data set), the range of K and L will be
enlarged for acceptable complexity of the proposed algorithm. That is, the higer the number of samples
is, the larger the range of K and L can be. Due to the relative small K and L compared with the size of
data, it should be noted that the proposed algorithm is suitable for the scene with small size of data set.
However, it is worth noting that to reduce the size of data set is the original intension of our paper, and
thus our proposed algorithm is efficient and of practical application in some extent. Besides, Fig. 7(d)
shows that if the requirement on the computation complexity can be relaxed, the range of K and L will
increase. It means that the detection performance of our proposed algorithm can be improved.

5. CONCLUSION

This paper has proposed an improved algorithm for 2-D synthetic aperture radar imaging in the
THz near field. Benefited from the matrix enhancement, the originally limited information of the
target can be enhanced when given a small data set and thereby, the under-sampling scheme can be
applied in practice to reduce the system complexity. By further combing the advantage of continuous
parameter estimation, the proposed method can be free of grid dependence and needs not to make
the interested scene pre-discretized into finite grids. Therefore, it is able to provide high-resolution
imaging performance at the case of under-sampling. The proposed algorithm has been demonstrated to
outperform the traditional FT-based algorithm with much fewer measurements and shows its feasibility
in applications of THz imaging.
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