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A Gain-Phase Error Calibration Method for the Vibration of Wing
Conformal Array
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Abstract—Due to the influence of aerodynamic forces, the wing will be subjected to vibration and
deformation. This will result in a severe performance degradation of the wing conformal antenna. To
solve this problem, a new gain-phase error compensation method based on the deformation fitting of
wing conformal antenna is proposed. In this proposed method, the array deformed shape curve is fitted
through the gain error of the array, thus the position of each element can be calculated. Finally, by using
the position of the elements to calibrate the gain-phase error, the corrected directions of arrival (DOA)
estimation angle is obtained. Simulation results show that the proposed method can well reproduce the
shape of the array, and effectively compensate the position error caused by the vibration of the wing
conformal antenna.

1. INTRODUCTION

A conformal array antenna is attached to a non-planar carrier and forms a smart skin. Compared with a
traditional array, it has the characteristics of excellent aerodynamic performance, wider beam scanning
range and smaller radar scattering areas, hence it has been widely used in missiles, rockets, aircraft and
ships, etc. However, due to the vibration from the carrier, the location and orientation of the conformal
array element might be changed, and an azimuth dependent gain-phase error of the array would be
generated. The gain-phase error will result in performance degradation of the conformal array antenna.
Motivated by that, this paper investigates how to compensate for the influence of the deformation of
wing on conformal array antenna.

Directions-of-arrival (DOA) estimation algorithm is mainly developed in two directions. One is
to reduce the computational complexity [1], and the other is to reduce the dependence on the array
response or to increase robustness in the presence of array errors [2]. A modified capon algorithm in [2]
based on partial calibrated subarrays is proposed to achieve robustness to array deformation error.
However, these methods of increasing robustness are usually undesirable and the array error needs to
be calibrated. Generally, array gain-phase error calibration techniques can be divided into two main
categories: active calibration methods [3–5] and self-calibration methods [6–12]. The former technique
requires auxiliary elements which usually are direction known signal sources, whereas the self-calibration
method needs to estimate or calibrate these errors through the array parameters or by means of precisely
calibrated array elements. In [6], Wang et al. proposed an instrumental sensors method (ISM), which
can estimate the three azimuth errors of the perturbed element and decouple the estimation with four
precise calibration elements. In [7], Friedlander and Weiss proposed a subspace based self-calibration
algorithm in which the DOA estimated angle was obtained by searching two-dimensional spectral peak.
In [9], according to the maximum likelihood criterion, the objective function of the source azimuth
and element position error was constructed and optimized by alternating iterations. In [13, 14], a low-
order vibration model of the wings was proposed, and the effects of vibration on the DOA estimation
algorithm were studied.
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In this paper, a calibration method for gain-phase error of wing conformal array based on wing-
shape fitting is proposed. This algorithm belongs to the self-calibration algorithm and does not need
any auxiliary sources. It is suitable for the low-order vibration of the wing. In this proposed method,
the shape curve of the deformed array is fitted through the gain error of the array and used to calibrate
the gain-phase error. Compared with other calibration techniques, the wing deformation data obtained
by the proposed method is not azimuth dependent, therefore it has great flexibility in implementation.
For example, if a single source operating at a particular frequency band is used for calibration, through
this proposed method, we can obtain shape information of the deformed array. The shape information
can be used for gain-phase error correction, to calibrate the DOA estimation of the signal sources
which are operating in other frequency bands. Another example, when the shape of the array after the
deformation, we can use pattern dynamically reconfigure technology mentioned in the literature [15] to
reconstruct the pattern of the array to ensure that the array can work properly. Additionally, when
part of the array elements have the ability to reproduce the shape of the deformed array, these few array
elements are selected for calibration. It will reduce the complexity of data processing and is suitable for
large conformal array. Simulation results show that the proposed method is effective and stable.

2. VIBRATION MODEL AND SIGNAL MODEL

According to the wing vibration model in [13], the deformation data of the wing can be obtained and
applied in the following simulations. It is assumed that the plate is subject to a forced vibration at
x = 0. Let a(t) represent the motion of the plate and the deformation of the wing plate can be modelled
as

Z(x, t) = Z0(x) + a(t) + q1(t)Z1(x) (1)

where Z0(x) represents the static bending mode in Gravity conditions, Z1(x) the first-vibration mode,
and Z(x, t) the displacement of the points on the wing after the wing deformation in the vertical space.

It is assumed that the on-board conformal antenna is a uniform linear array (ULA). Array elements
are evenly distributed on the wing. The number of array elements is M , and the number of sources in
the unknown space N = 1. The received data can be expressed as

x(t)= a(θ)s(t)+n(t) (2)

where x(t), a(θ), s(t) and n(t) represent the data vector received by the array, signal steering vector,
source signal, and Gaussian white noise vector, respectively; t is the time variable. They are defined as
matrix X= [x(1),x(2), . . . ,x(K)], s= [s(1), s(2), . . . , s(K)] and matrix N= [n(1),n(2), . . . ,n(K)]. Here
K is the number of snapshots. Thus the received data in Eq. (2) become [7]

X = a(θ)s + N (3)

Ideally, the shape of the array is stable; therefore, the steering matrix of the array is known from the
array manifold. If array elements are directional antenna, the deformation of the array will cause gain
and phase error. In that case, the received data can be written as:

X = Γa(θ)s + N (4)

where, Γ denotes the gain and phase error of array and is given by:

Γ = FW (5)

where F = diag[α1, α2, . . . , αM ] represents the gain error matrix; α1, α2, . . . , αM are real numbers;
W = diag[β1, β2, . . . , βM ] denotes the phase error matrix; β1, β2, . . . , βM are imaginary number and
βiβ

∗
i =1, i = 1, 2, . . . ,M . The covariance matrix R is written by:

R = XXH (6)

where (•)H denotes the Hermitian transpose operation. The covariance matrix R is decomposed by
Eigenvalue:

R=
M∑
i=1

λiαiα
H
i (7)
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where λi is ith eigenvalue of the matrix R, αi is the eigenvector corresponding to eigenvalue λi. The
estimated noise power is obtained by [7]

σ2 = (λ2 + λ3 . . . + λM )/(M−1) (8)

The noise subspace is defined as
UN = [α2, α3, . . . , αM ] (9)

3. THE COMPENSATION METHOD BASED ON FITTING OF WING

3.1. Computing Array Gain Error

The formula of computing gain errors of array has been mentioned in many articles such as [10].
Considering the signal model above, the covariance matrix R of received data is obtained by

R = XXH

= (Γ(θ)a(θ)s)(Γ(θ)a(θ)s)H + NNH + (Γ(θ)a(θ)s)NH + N(Γ(θ)a(θ)s)H

= F(Wa(θ)s)(Wa(θ)s)HFH + σ2I

= F(DRsDH)FH + σ2I

(10)

where (Γ(θ)a(θ)s)NH = N(Γ(θ)a(θ)s)H = 0; Rs = ssH and Rs is a constant that denotes the intensity
of the signal source when it is incident on the array; σ2 is the estimated noise power; D = Wa, and D
is defined as

DRSDH =

⎛
⎝ d11 . . . d1M

...
. . .

...
dM1 . . . dMM

⎞
⎠ (11)

where di,j = βiaiRsa
∗
jβ

∗
j , i, j = 1, 2, . . . ,M . Thus, from Eqs. (10) and (11), it is obtained that

Ri,i − σ2 = αi(βiaiRsa
∗
i β

∗
i )α∗

i i = 1, 2, . . . ,M (12)

where Ri,i denotes the ith diagonal element of the covariance matrix R. Ri,i is the real value directly
related to the corresponding elements of the matrix F. Therefore, the elements of gain error matrix F
can be estimated from the diagonal elements of the covariance matrix R. Then we have∣∣Ri,i − σ2

∣∣ = Ri,i − σ2 = |αi|
∣∣∣βiaiRsa

∗
jβ

∗
j

∣∣∣ ∣∣αH
i

∣∣
= |αi|2 Rs

∣∣∣βiaia
∗
jβ

∗
j

∣∣∣ i = 1, 2, . . . ,M (13)

= α2
i RsC

where, C = |βiaia
∗
jβ

∗
j |. Let ᾱi=αi/α1, it is obtained from Eq. (13) by [10]

ᾱi =

√
Ri,i − σ2

R1,1 − σ2
i = 1, 2, . . . ,M (14)

Let F̄ = diag[ᾱ1, ᾱ2, . . . , ᾱM ], F̄ denotes the normalized gain error matrix of F and satisfies:

F=F̄α1 (15)

3.2. Fitting the Wing Deformation Curve

Considering the uniform linear array model above, array elements are assumed to be evenly distributed
on the x-axis. The wing deformation shape curve is fitted according to the slope vector ρ =
[ρ1 ρ2 . . . ρM ]T and the slope vector denotes the slope value of the wing curve at different array elements
position. It is assumed that the slope curve of the wing is an M − 1 order polynomial curve, and it is
expressed as

h(x) = g1x
M−1 + g2x

M−2 + . . . + gM−1x + gM (16)
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where g1, g2, . . . , gM are the coefficients of the polynomial curve. M is the number of array elements. If
the order is less than M − 1, we need to use the least squares method to fit the slope curve of the wing
and a complex pseudo-inverse will be generated in the following fitting process. This will increase the
computational complexity. By taking the coordinates x1, x2, . . . , xM of array elements into Eq. (16), it
is rewritten into

f

⎛
⎜⎜⎝

⎡
⎢⎢⎣

x1

x2
...

xM

⎤
⎥⎥⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎢⎢⎣

g1x
M−1
1 g2x

M−2
1 . . . gM−1x

1
1 gM

g1x
M−1
2 g2x

M−2
2 . . . gM−1x

1
2 gM

...
...

. . .
...

...
g1x

M−1
M g2x

M−2
M . . . gM−1x

1
M gM

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎣

ρ1

ρ2
...

ρM

⎤
⎥⎥⎦ (17)

It can be further simplified as
X1g = ρ (18)

where g is given by g = [p1 p2 . . . pM ]T , and X1is defined as

X1 =

⎡
⎢⎢⎢⎢⎣

xM−1
1 xM−2

1 . . . 1

xM−1
2 xM−2

2 . . . 1
...

...
. . .

...
xM−1

M xM−2
M . . . 1

⎤
⎥⎥⎥⎥⎦ (19)

Left-multiplying both sides of Equation (18) yields

g = X−1
1 ρ (20)

where X−1
1 is the inverse matrix of X1. Thus, a can be calculated by the slope vector ρ. Since it is

assumed that the slope curve of the wing is an M − 1 order polynomial curve, the wing deformation
curve should be an M order polynomial curve and it follows that

H(x) = q1x
M + q2x

M−1 + . . . + qMx + qM+1 (21)

where q1, q2, . . . , qM+1 are the coefficients of the wing deformation curve and qM+1=0. Taking derivation
of Eq. (21) with respect to x, it is obtained by

H ′(x) = q1MxM−1 + q2(M − 1)xM−2 . . . + qM = h(x) (22)

With the coefficients in Eqs. (16) and (22), we have

g = q ⊕ [M, M − 1, . . . , 1] (23)

where, q = [b1, b2, . . . , bM ], ⊕ represents the Hadamard product operation. Let o = [ 1
M , 1

M−1 , . . . , 1], q
is obtained by

q = g ⊕ o (24)

Referring to Eqs. (16) and (18), formula (21) can also be further simplified as

y = X2q (25)

where y = [y1 y2 . . . yM ] represents y-coordinate vector of the elements after deformation, and X2 is
given by

X2 =

⎡
⎢⎢⎢⎢⎣

xM
1 xM−1

1 . . . x1
1

xM
2 xM−1

2 . . .
...

...
...

. . .
...

xM
M . . . . . . x1

M

⎤
⎥⎥⎥⎥⎦ (26)

Therefore, the position vector y of the elements in the array is obtained by using coefficient vector q.
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3.3. Implementation Process

In this paper, we assume that: (1) The orientation offset of the reference element is known or the
reference element is an omnidirectional antenna; (2) In a particular frequency band, there is only one
source in the unknown space. The following is the implementation of the proposed method:

Step 1: First, using the received data vector x, the covariance matrix R is obtained. Then by
performing the eigenvalue decomposition of R, the white noise power σ2 and the noise subspace UN

can be calculated from Eqs. (7) and (8).
Step 2: According to Eq. (14), the normalized gain error matrix F̄ can be calculated.
Step 3: The gain error value of the reference element is obtained by

α1=f(θj+φ1) (27)

where θj is the DOA estimation angle; j is the number of cycles, the initial value θ1 is 0; φ1 is the angle
of the reference element from x-axis; according to the assumption, φ1 is known or φ1 = 0; f(θ) is the
antenna pattern function of array element.

Using Equation (15), the array gain error matrix F can be calculated. Formula (27) shows the
relationship between the gain error of the reference element, θj and φ1. In fact, the relationship also
applies to the each elements in the array:

αi=f(θj+φi) =Fi,i (28)

Then, we have
φi = e

∣∣f−1 (Fi,i) − θj

∣∣ i = 2, 3, . . . ,M (29)

where Fi,i is the ith the diagonal element of matrix F which represents the received intensity of the
element from the single signal source; e is a constant, and it is set to −1 or 1 according to the wing
deformed shape. e represents the positive or negative direction of the array element deviation.

Step 4: Let the slope vector ρ = [ρ1 ρ2 . . . ρM ], and it can be calculated by

ρi = tan(φi) i = 1, 2, . . . ,M (30)

Applying the fitting method mentioned in Section 3.2, the position vector y = [y1 y2 . . . yM ] of the
array elements is obtained.

Step 5: The phase error matrix W is obtained by

W = diag
(
ejky1 sin(θi), ejky2 sin(θi), . . . , ejkyN sin(θi)

)
(31)

where k is the propagation constant, k = 2π/λ. Combined with the gain error matrix F obtained above,
the response matrix of the deformed array is calculated

Γ (θj)A (θ) = FWA (θ) (32)

Then the multiple signal classification (MUSIC) spectrum [16] is

PMUSIC(θ) =
1

(Γ(θj)A(θ)UN )(Γ(θj)A(θ)UN )H
(33)

The new DOA estimation angle θj+1 can be obtained by

θj+1 = arg minθ(PMUSIC(θ)) (34)

Step 6: By using θj+1, the objective function is calculated as follows:

Jj+1= Γ (θj)A (θj+1)UN (35)

If the convergence condition 0 ≤ Jj − Jj+1 < ε is satisfied, the cycle stops, and θj+1 is taken as the
final DOA estimation angle; otherwise, θj+1 = θj + ν ∗ τ where ν is −1 or 1, and τ is the search step,
j = j + 1, and go to step 3.
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(a) (b)

Figure 1. The wing deformation curves during a vibration cycle and at t = 0.03 s.

4. SIMULATION AND MEASUREMENT

According to the data given in [13], wing length L = 1 m, the frequency of the first vibration mode
f1 = 5 Hz, frequency of forced vibration frequency f=4 Hz, and amplitude of forced vibration ω0=0.1 m.
The wing deformation curves during a vibration cycle and at t = 0.03 s are demonstrated in Fig. 1.

All simulations are carried out in a uniform linear array of 8 elements with one half-wavelength
inter-element spacing. The wavelength λ=0.2 m. The elements of the array are evenly distributed over
the x-axis, and the first one is at x = 0 m. The Matlab program is established to simulate the uniform
linear array receiving signals from different azimuth. When the array is deformed as shown in Fig. 1,
there will be great errors if the MUSIC algorithm is used to estimate the azimuths of the signal sources
directly. So in these simulations, we have applied the algorithm proposed in this paper to calibrate the
errors. The τ in step 6 is generally set to 0.002◦ and ε set to 1.

Considering the signal model mentioned above, the SNR of signal source is 20 dB, and the number
of snapshots K is 300. The DOA estimation angles calibrated have been obtained for different incident
directions [20◦, 40◦, 60◦] in a vibration cycle. Compared with the MUSIC method without calibration,
these calibrated DOA estimation angles are shown in Fig. 2.

From Fig. 2, we can see that this proposed method has a good calibration effect for different incident
directions when the wing is on different deformation stages.

Figure 3 shows DOA estimation angles with and without calibration over 300 Monte Carlo
experiments. The number of snapshots K is 200. The incident direction of the signal source is 45◦, and
the array deformation time is selected at 0.03 s. From Fig. 3, we can see that the error range is about
[−0.1◦, 0.1◦]. Considering that the systematic error (such as the step length) is about [−0.06◦, 0.06◦], it
can be concluded that the proposed method has good stability.

It is assumed that the error range of successfully estimated angle is [−0.2◦, 0.2◦]. Fig. 4 shows
the DOA estimation success rates at different SNRs for different arrival directions while the number of
snapshots K = 300. The DOA estimation success rates against the numbers of snapshots are shown in
Fig. 5 for different arrival directions when the SNR of signal source is 20 dB. The direction of incidence
of the source is [35◦, 45◦, 55◦].

Because of the influence of noise, the gain error cannot really reflect the gain of each array element
due to the different incident direction. However, by increasing the SNR of the signal or increasing the
number of snapshots, it can reduce or even eliminate this influence. From Fig. 4, it can be discovered
that the success rate can reach 90% when the SNR is higher than 10 dB. Fig. 5 reveals that with
the increase of snapshots, the success rate of DOA estimation increases rapidly. When the number of
snapshots is greater than 50, the success rate can reach 90% or even more.
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(a)

(b)

(c)

Figure 2. The DOA estimation angle of this proposed method for different incident directions in a
vibration cycle.
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Figure 3. The DOA estimation angles over 300 Monte Carlo experiments.

Figure 4. The DOA estimation success rates of the proposed method for different SNRs.

Figure 5. The DOA estimation success rates of the proposed method for different numbers of snapshots.
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5. CONCLUSIONS

In this paper, a gain-phase error calibration method for wing conformal array based on shape fitting is
proposed. Compared with the other calibration techniques, the proposed method has the benefit that
the obtained wing deformation data are not azimuth dependent. Additionally, it has great flexibility in
implementation. The simulation results reveal that the accuracy and stability of the proposed method
can be guaranteed. Since it can accurately reproduce the deformed shape of the conformal array, it is
desirable to be applied in the analysis applications of conformal arrays.
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