
Progress In Electromagnetics Research B, Vol. 77, 37–55, 2017

Development of an Adaptive Approach for Identification of Targets
(Match Box, Pocket Diary and Cigarette Box) under the Cloth

with MMW Imaging System

Bambam Kumar, Rohit Upadhyay, and Dharmendra Singh*

Abstract—Non-metallic objects, such as match box and cigarette box, detection and identification are
quite an essential task during personal screening from standoff distance to protect the public places like
the airport. Although various imaging sensors such as microwave, THz, infrared and MMW with signal
processing techniques have been demonstrated by the researchers for concealed weapon detection, it is
still a challenging task to detect and identify different types of small size targets such as matchbox,
pocket diary and cigarette box simultaneously. Therefore, in this paper, an attempt has been made to
develop such an algorithm/methodology by which different types of small targets, such as a matchbox
and cigarette box, which is fully or half-filled or empty and pocket diary at different orientations
beneath various cloths can be detected and identified with an MMW radar system. For this purpose,
an optimal method has been proposed to form an image, and after that, in post processing a novel
adaptive approach for detection and identification of considered targets has been proposed. The data
were collected by MMW system at V-band (59 GHz–61 GHz). The proposed algorithm/methodology
gives a quite satisfactory result.

1. INTRODUCTION

The concealed targets detection and identification beneath different cloths are really desired in view of
safety as well as security of the public and their assets, such as airports, shopping malls and playground
stadiums. [1]. Gradiometer metal detectors and X-ray scanner have been used for a very long time. The
former is most suitable to detect target such as metals and high conductivity materials; however, it is
unable to detect target such as match box, and the latter is used to detect concealed targets in luggage
box but not in the human body because the ionizing property of x-rays is harmful to human body [2, 3].
Microwave imaging techniques have been used for through-wall imaging (TWI) and ground penetrating
radar (GPR) [4, 5]. However, the lower frequency range of microwave imaging technique suffers from
very poor resolution [6]. Various researchers have started to work for concealed target detection in the
frequency range between microwave and X-ray, which is known as infrared imaging, THz imaging, and
millimetre wave imaging (MMW) [7–9]. Nowadays, MMW and THz wave are attracting the attention
of researchers because of their high-resolution capability [10]. Resolution is one of the important factors
for detection of small targets.

To increase the resolution of MMW image, researchers have demonstrated various signal processing
steps for concealed weapon detection, quality monitoring for non-destructive testing (NDT) and medical
imaging [9, 11, 12]. However, very limited research work has been reported at 60 GHz centre frequency
on the basis of signal processing algorithms for complete concealed target detection and its identification.

Received 8 April 2017, Accepted 28 June 2017, Scheduled 19 July 2017
* Corresponding author: Dharmendra Singh (dharmfec@gmail.com).
The authors are with the Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee,
Roorkee, Uttarakhand, India.



38 Kumar, Upadhyay, and Singh

Digital signal processing steps such as clutter and noise removal techniques, segmentation,
thresholding and identification for detection and identification are used for camera based images as
well as microwave radar imaging, i.e., GPR and TWI [4, 5, 13, 14]. Various signal processing techniques
are available, but it is important to critically analyse these techniques for proper use in a particular
application. A comparison of different statistics-based clutter reduction techniques is given in [13].
Spatial linear and nonlinear filters, such as Gaussian, mean, mode, median, adaptive median and
max filters, have been used to enhance the quality of the image [15]. A variety of segmentation and
thresholding techniques have been proposed by researchers for detection of targets, such as histogram
based [16], clustering based [17], entropy based thresholding [18], locally adaptive thresholding [19],
Hidden Markov model (HMM) [20] and mixture of Gaussian densities with Iso-counters evolution [21].
The performance of any segmentation and thresholding operation largely depends on various factors,
such as non-stationary and correlated clutter, ambient illumination and mixing of gray levels within
the object and its background [22]. Histogram based technique performs better when the object and
background are largely separated and have distinct bimodal valley point. Although Markov model and
gaussian model are noise resistant, they are computationally inconsistent. Entropy method performs
fairly in uniform images, but it is complex because of logarithmic calculations involved [23].

Further, it is essential to know the specific target material types such as metal, paper, plastic,
clothing to identify the targets [24, 25]. A number of different identification techniques have been
reported by researchers which are generally used for identification of feature extraction based techniques,
artificial neural network (ANN) and material of targets [26, 27]. Shape-based feature extraction is not
suitable for identifying targets like match box, cigarette box and pocket diary which have almost similar
shape and size.

Statistics based detection and identification has been used for characterization of natural, urban and
sea surfaces using synthetic aperture radar and medical field [28–31]. However, very limited research has
been reported on statistics based concealed targets identification. Single probability density function
classifier has been used to study the changes of gait cadence in amyotrophic lateral sclerosis (ALS)
which is a type of neurological disease [32]. Various probability density functions (pdfs) have been used
to improve the performance of target detection, despeckling and identification of SAR images [33–35].
The scattering distribution of pdf parameter is highly sensitive to the frequency, range and roughness
properties of the targets [36, 37]. A small change in these properties provides a big change in the
scattered distribution. Thus, the single probability density based function may fail to capture the true
properties of the backscattered signal; hence the false alarms rate may be increased.

Therefore, in this paper, an attempt is made to detect and identify the concealed targets like a
match box, pocket diary and cigarette box with MMW wave imaging radar. The paper is organized as
follows. Section 2 describes an MMW imaging radar system, data acquisition and pre-processing steps
for enhance the quality of the raw image. Section 3 discusses different signal processing techniques used
for target detection and identification. Validation of the system is discussed in Section 4, and Section 5
concludes this work.

2. MMW RADAR SYSTEM FOR DATA ACQUISITION AND PRE-PROCESSING

MMW radar has been erected using vector network analyser (make: Agilent N5247A (10 MHz–67 GHz)
PNA-X), VNA cable (make: MMW-N4697F (DC to 67 GHz) −1.85 mm) and pyramidal horn antenna
(make: MESA MW-HF-907V) in stepped frequency continuous wave (SFCW) mode. In generating the
SFCW signal, the frequencies between adjacent sub-signals are increased by an incremental frequency
of Δf . For one burst of SFCW signal, a total of ‘N ’ continuous wave signals, each having a discrete
frequency of fN = f0 + (N − 1)×Δf , is sent, where f0 is the frequency of the first signal. The detailed
specifications of active millimetre wave imaging radar is given in Table 1.

2.1. Arrangement of Imaging System

Generally, all these selected targets are kept in pocket. The front part of a target is covered with piece
of cloth, and the back side of target is human body (Chest). In this case, we replace body part with
polystyrene sheet. We consider three different targets which are from three different materials, paper
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Table 1. Specifications of active millimeter wave imaging radar for concealed target detection.

MMW Active Radar Parameter Typical Value
Operating frequency 59 GHz–61 GHz

BW 2GHz
No. of frequency points (N) 201

Transmitted Power 0 dBm
Range resolution 7.5 cm

Cross range resolution 0.625 cm
Antenna type Pyramidal Horn

Beam width of antenna (E, H Plane) 9.1 degrees, 10.4 degrees
Gain of antenna 25 dBi
Antenna Swath 0.028 m2

board for match box, plastic cover for pocket diary, and polythene cover and aluminium foil (outside
and inside of cigarette box) whose dielectric value is slightly different from human body. The scattered
statistics depends upon dielectric property of targets. The dielectric constant of human skin (palm) is
approximately 1.5 at 60 GHz [38]. The dielectric value of normal human breast is approximately 3 at
50 GHz [39, 40]. Therefore, we take polystyrene whose dielectric is in between 2–3 in the considered
frequency range [41].

The reflection coefficient (S11) is observed for human body (chest) and polystyrene sheet (thickness
2 cm) which is shown in Figure 1, and it is noticed that the reflection coefficient of polystyrene sheet is
nearly the same as human body for frequency range 59 GHz to 61 GHz.

The dielectric constant of the considered polystyrene sheet (thickness 2 cm) is also measured using
free space setup [42]. In this method, polystyrene sheet is placed between two antennas, which operates
in bistatic mode and measured under a far-field condition. First, the system is calibrated using gated-
reflect-line (GRL) calibration method [43]. It is a full two-port calibration method similar to a LRM
calibration (Line, Reflect, Match). After calibration, the dielectric constant of polystyrene sheet is
calculated using Agilent 85071E Materials Measurement Software that uses Transmission-Reflection-
Line (TRL) method [42, 43]. The result is shown in Figure 2. The value of dielectric constant of
polystyrene sheet is approximately 2.2 at frequency range (59–61) GHz. Therefore, we take background
material as polystyrene in the place of human body.

Figure 1. Reflection Coefficient for human body
and polystyrene sheet.

Figure 2. Dielectric constant for considered
polystyrene sheet.
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The target is placed over a polystyrene sheet of thickness 2 cm because the permittivity of a
polystyrene sheet is nearly the same as the permittivity of the human body at 60 GHz. The polystyrene
sheet with the target is mounted on a movable 2D wooden scanning frame so that it can be moved
by fixed number of steps in horizontal as well as vertical direction as shown in Figure 3. The distance
between two consecutive scan positions is kept at 2 cm in both horizontal and vertical directions. The
numbers of horizontal and vertical scanning positions are 30 and 16, respectively. The target is placed at
a distance of 75 cm from the flare of the antenna. We place the match box at left most position, pocket
diary at middle position and cigarette box at right most position, covered by either cotton or woolen
cloth for the concealed targets detection as shown in Figure 4. Match box and pocket diary are kept
at 6 cm apart, and the separation between a pocket diary and cigarette box is at 4 cm. The orientation
of target and quantity of match stick and cigarette inside the box is varied for identification point of
view. Details of different targets nomenclature and their corresponding properties, used throughout in
this paper, are summarized in Table 2. Full, half and empty denote the level of cigarette and match
stick inside cigarette and match box as shown in Table 2 column c. Targets Id T1 to T10 are used
for development of concealed target detection and identification, and targets Id V1 to V3 are used for
validation purpose of concealed target detection and identification.

Figure 3. An arrangement of target used for millimetre wave stand-off concealed target detection.

Figure 4. The target used for millimeter wave stand-off concealed target detection and identification.
(a) Concealed targets covered with cotton cloth piece. (b) Concealed targets covered with woolen cloth
piece.
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Table 2. Different targets with target Id and their corresponding properties.

S.
No.

Target
Id

Quantity Inside
MB & CB

Covering material for
CB, MB &PD

Orientation

a b c d f
1 T1 Full Cotton 0◦

2 T2 Full Woolen 0◦

3 T3 Half Cotton 0◦

4 T4 Half Woolen 0◦

5 T5 Empty Cotton 0◦

6 T6 Empty Woolen 0◦

7 T7 Full Cotton 60◦

8 T8 Full Woolen 60◦

9 T9 Full Cotton 45◦

10 T10 Full Woolen 45◦

11 V1 Full Cotton 0◦

12 V2 Empty Woolen 0◦

13 V3 Full Cotton 40◦

CB = Cigarette box, PD = Pocket diary and MB = Match box.

2.2. Data Acquisition and Preprocessing

The complex scattering parameters (S11) are collected at N = 201 frequency point in the frequency
domain. Several preprocessing steps such as frequency to time domain conversion, time domain to
spatial domain conversion and external calibration are applied to obtain range profile of target whose
details are given in [27]. It gives range profile information of a target in terms of intensity vs downrange.
The cross-range resolution of MMW radar system is 0.625 cm at 60 GHz center frequency [27]. The total
30 horizontal scans are carried out which is also known as B-scan, whose matrix dimension is 201× 30.
It gives information about down range and width of the target. Stacking of B-scan in the vertical
direction at equal step size is called C-scan. The vertical scanning positions are 16, so C-scan data form
3-D matrix whose dimension is 201 × 30 × 16. The total sixty C-scan data are taken, and six sets of
reading are taken for each targets Id as shown in Table 2, in which the first fifty sets of data are used
for development of the algorithm, and the rest ten are used for validation purpose. The raw C-scan
image is shown in Figure 5, where it is very difficult to conclude anything. Therefore, there is a need
to develop a methodology by which different targets can be detected and identified. Various techniques
of such a type are critically analyzed as given in following steps.

2.2.1. Step 1: Normalization

The raw C-scan image contains a wide variation in reflected intensity values due to different dielectric
materials of concealed targets. Therefore, firstly, raw C-scan data are normalized for further processing,
such as clutter reduction, segmentation, thresholding and identification. The basis of normalization is
to bring image intensity value in one scale; normalization process is applied according to

Inorm =
I − Imin

Imax − Imin
(1)

where I is the pixel intensity value of the image at any arbitrary location, Inorm the normalized pixel
intensity, and Imax and Imin are the maximum and minimum intensity values of the raw C-scan image.
The normalized images are shown in Figure 6.
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(a) (b)

Figure 5. C-scan raw image for concealed targets Id (a) T1 and (b) T2.

(a) (b)

Figure 6. C-scan normalized image for targets Id (a) T1 and (b) T2.

2.2.2. Step 2: Clutter Reduction

The normalized C-scan data have actual information of target as well as clutter signals, such as antenna-
air interference signal, reflection and refraction due to multipath propagation, background reflection
and covering cloth reflection. Clutter signals are unrelated to target’s scattering signal but occur in
the same time window. Therefore, several statistics-based clutter removal techniques like, singular
value decomposition (SVD), principle component analysis (PCA), factor analysis (FA), independent
component analysis (ICA) and average trace subtraction (ATS) have been applied [13]. Out of these
many clutter reduction techniques, the best suitable technique is selected on the basis of peak signal to
noise ratio (PSNR) as shown in Table 3. PSNR can be calculated using Eqs. (2) and (3) [44].

MSE =
1

MxN

N∑
i=1

M∑
j=1

{f (i, j) − p (i, j)}2 (2)

PSNR (dB) = 10log
(

1
MSE

)
(3)

where f(i, j) and p(i, j) are the normalized and clutter removed images, respectively; M and N are
dimensions of image; MSE is a mean square error.

SVD decomposes the scattered signal into different unrelated subspaces such as target subspaces and
clutter subspaces. SVD is a most reliable and computationally effective matrix decomposition technique
which has additional advantages such as better image quality and lower mean square error (MSE) than
other statistics-based clutter removal techniques. The normalized image f(i, j), with dimension M ×N ,
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Table 3. Performance of clutter removal techniques on the basis of PSNR for target Id T2.

S. No Clutter removal techniques PSNR (dB)
1 SVD 25.95
2 PCA 17.62
3 FA 14.34
4 ICA 16.18
5 ATS 18.41

where i = 1, 2, 3, . . . ,M and j = 1, 2, 3, . . . , N , can be decomposed as [13]

f = UDV T (4)

where U and V are unitary matrix such as UUT = I, V T V = I, and D is a diagonal matrix whose
elements are D = diag(σ1, σ2, σ3, . . . , σr) with σ1 ≥ σ2 ≥ σ3 ≥ . . . ≥ σr ≥ 0. The diagonal components
of D are called singular values, and SVD of function f is

f=
N∑

k=1

σkukv
T
k (5)

or
f=f1+f2+f3. . .+fN (6)

where fi matrix has the same dimensions as f and is called the ith eigen image of f . After analyzing
the eigen values, it is found that eigen images f1, f2 and f3 correspond to three different targets, and
remaining eigen image represents clutter. Hence target signal can be represented as

S=
3∑

k=1

σkukv
T
k (7)

Singular value decomposition method is applied to clutter mitigation according to Equations (4)–
(7). It removes clutter by decomposing radar signal into multidimensional subspace due to different
dielectric targets, background and surrounding reflections. Results are shown in Table 3, where it is
observed that SVD provides the best results. So SVD clutter reduction technique is applied, whose
results are shown in Figure 7, which is further processed for enhancement. SVD is very useful for
characterizing and analyzing the behavior of scattered signal which is a mixture of target signal and
clutter signal

2.2.3. Step 3: Image Enhancement

Spatial convolution filter, adaptive median filter, mean filter and spatial maximum filter are critically
analyzed for targets image enhancement [45, 46], and results are compared on the basis of PSNR as
shown in Table 4. PSNR is calculated between SVD image and spatial filtered image according to
Equations (2)–(3). Out of these several image enhancement techniques, spatial maximum filtering
method provides better result to find missing pixel points, and it also enhances the intensity of image
pixel. The pixels of an image are modified by moving the filter mask from one pixel point to another
pixel point of image in spatial filtering operation. For spatial max filtering operation, 3 × 3 filter mask
is taken, and the middle point of this mask filter is modified by maximum pixel point of filter mask.
Therefore, on the basis of PSNR of all filtered images, it is found that spatial max filter provides good
results in comparison with the above linear and nonlinear filtering operations, shown in Figure 8. The
intensities of pixel points of image are significantly enhanced in target region which is quite helpful to
know about the number of targets. The spatial maximum filter also enhances the boundary of targets.
These preprocessed image is further used for detection and identification.
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Table 4. Performance of spatial filtering techniques on the basis of PSNR for target Id T2.

S. No Spatial Filter techniques PSNR (dB)
1 Spatial convolution filter 18.23
2 Adaptive median filter 15.35
3 Mean filter 13.45
4 Spatial maximum filter 20.16

3. POST PROCESSING

3.1. Development of Adaptive Detection and Identification Algorithm for Considered
Targets under the Cloths and Its Implementation

3.1.1. Target Detection

To detect the targets, it is important to critically analyze the behavior of individual target and on that
basis develop a detection technique. In the considered targets, it is observed that cigarette box, pocket
diary and match box have different levels of reflection intensity. For detecting the three types of targets,
a proper threshold has to be decided. Detecting and identifying these three targets simultaneously is a
very difficult task because of the reflection level. Firstly different commonly used thresholding techniques
are critically analyzed
3.1.1.1 Critical Analysis of Commonly Used Thresholding Techniques

The main aim of this task is to demarcate the three different considered targets. For this purpose,
statistics based thresholding method, maximum entropy based thresholding method, Otsu’s thresholding
method and cluster based thresholding are applied [16–19] and analyzed. The performance of these
thresholding methods is measured on the basis of true positive (TP) and false positive (FP), which can
be defined as [11]

TP =
Correctly detected target pixels

Total no. of target pixels
(8)

FP =
Incorrectly detected target pixels

Total no. of pixels-total no. of target pixels that exit
(9)

The total number of each target’s pixels can be determined by a priori knowledge about size of
target, cross range resolution of MMW imaging system and step size of target movement in horizontal
and vertical directions. The sizes of MB and PD are nearly equal to (8 × 6) cm, and the size of CB is

(a) (b)

Figure 7. SVD image for concealed targets Id (a) T1 and (b) T2.
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(a) (b)

Figure 8. Spatial Max filter image for concealed targets Id (a) T1 and (b) T2.

nearly equal to (10× 6) cm which covers approximate (4× 3 = 12) and (5× 3 = 15) pixels, respectively.
The targets region is defined on a priori knowledge of target location and their corresponding size. If
the obtained pixel is outside the defined boundary region, then it means false alarm, and no pixel below
the boundary region denotes missed pixels point. Table 5 shows the comparison of the performances
of all four thresholding techniques in terms of TP and FP for target Id T2. Otsu’s method is a very
popular global automatic thresholding technique, in which a threshold is determined by maximizing
discriminant measure [16]. This method provides missed out pixel points for each class and also false
alarm for CB. In cluster-based thresholding methods, an image sample is divided into two parts: one
corresponds to background, and the other corresponds to foreground [17]. This method provides missed
out pixel points and false alarm for each class. The maximum entropy based thresholding method
provides the threshold value by maximizing a posteriori entropy that is subject to certain inequality
constraints which are derived by means of special measures characterizing uniformity and shape of the
regions in the image [18]. This method gives false alarm for all types of considered targets and missed
out pixel points for MB and PD. Statistics-based thresholding method provides true target detection
for each class but generates false alarm for PD and CB. All these thresholding methods provide either
false alarm or missed out pixel point due to wide intensity variation among targets.

Table 5. Performance of thresholding techniques on the basis of TP and FP for target Id T2.

S. Thresholding True positive (TP) False positive (FP)
No. techniques MB PD CB MB PD CB
1 Statistics-based thresholding 1 1 1 0 0.2 0.4

2
Maximum entropy based

thresholding method
0.6 0.7 1 0.3 0.7 0.55

3 Otsu’s thresholding 0.4 0.5 0.83 0 0 0.2
4 Cluster based thresholding 0.7 0.91 0.83 0.4 0.33 0.4

From above observation, it is clear that single threshold method is not able to detect complete shape
of targets simultaneously because of wide variation in intensity level in images from different types of
materials, but statistics-based thresholding methods provide better results than other thresholding
methods.

3.1.1.2 Proposed Decision Criterion for Thresholding

Step:1 Critical Analysis of Statistics-Based Thresholding Techniques
The statistics-based threshold method is proposed which can be defined as the function of mean
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and standard deviation of the image
Th = f(Mean, Standard deviation) (10)

A wide and extensive investigation has been carried out for choosing the threshold boundary
required to detect targets under cloths using image statistics (i.e., mean “μA” and standard deviation
“σD”). It is found that the desired threshold boundary for detection of concealed targets cannot be
easily obtained by using separately or mixing the mean and standard deviation of the entire image (i.e.,
μA, σD, μA±σD). The image statistics may not be exactly the same for two images of a similar situation,
Therefore, it is not reasonable to consider expression μA, σD, μA ± σD as the threshold boundary of a
selected attribute for the detection of concealed targets. Hence, to make the expression adaptive, an
unknown term ‘p’ is included to form different mathematical expressions (e.g., μA±p∗σD) for threshold
boundary. The statistics-based threshold method can be defined as

Th = μA − p ∗ σD (11)
The statistics-based thresholding technique should work in such a manner that it maximizes the accuracy
of detection and concurrently minimizes the false alarm. For this, optimizing the value of ‘p’ is needed so
that the goal may be achieved. In order to achieve the goal, firstly, compute the true positive (TP) and
false positive (FP) values of the obtained image. They are defined in Equations (8) and (9), respectively.

The true positive value provides the overall accuracy, and false positive value gives the false alarm.
These two parameters are related to the scaling parameter ’p’. Here, for four randomly selected different
targets Id, TP and FP are plotted for different values of p as shown in Figures 9 and 10. It is observed
that the values of TP and FP increase with increasing ’p’, and after a definite critical value of ’p’, TP
approaches the desired true positive value, i.e., 1. On the other hand, the false alarm also increases
after increasing the value of ‘p’ as shown in Figure 10. This compromising behavior of TP and FP is
required to be stable. Therefore, we need to select optimum value of ‘p’ that offers maximum overall
accuracy and at the same time minimal false alarm.

Figure 9. Plot of True positive vs p of concealed
targets for target Id T1, T2, T5and T6.

Figure 10. Plot of False positive vs p of
concealed for target Id T1, T2, T5 and T6.

Step 2. Formulation for Optimization the Scaling Parameter (p)
The curve-fitting approach is used for developing an empirical relation between TP and FP with

‘p’, shown in Figures 9 and 10. Several relations are analyzed, and the following empirical relations are
selected on the basis of coefficient of determination (R2) values which are 0.9 for both the relations:

TP (p) = a1 exp−
(

μA − p ∗ σD − b1
c1

)2

(12)

FP (p) = a2 exp−
(

μA − p ∗ σD − b2
c2

)2

(13)

where, a1, a2, b1, b2, c1 and c2 are constants. The values of the constants are given in Table 6 for both
TP(p) and FP(p). Multiple sets of observations are taken for single set of target Id as shown in Table 2,
in which one set of observations is shown in Table 6.
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Table 6. Constant value of TP and FP with corresponding R2 values for different targets Id.

Target Id a1 b1 c1 R2 a2 b2 c2 R2

T1 .9968 .4727 2.53 0.9234 10.6 −2.301 2.824 0.9597
T2 1.644 −1.126 3.26 0.9243 5.757 −2.389 2.727 0.9777
T3 1.067 1.789 1.781 0.9369 8.692 −0.680 1.828 0.9683
T4 1.042 1.58 1.705 0.9651 10.99 −1.021 1.941 0.9711
T5 1.134 2.311 2.072 0.8854 0.0532 0.103 2.097 0.9641
T6 1.134 2.28 2.021 0.8624 0.3939 −3.86 3.707 0.9391
T7 1.003 0.4849 2.409 0.9398 0.08093 −0.73 2.4 0.956
T8 1.093 1.82 1.568 0.9581 3.169 0.583 1.372 0.9747
T9 14.31 −6.52 4.714 0.9414 0.0149 0.738 13.48 0.9657
T10 0.968 1.753 2.063 0.8858 10.99 −1.021 1.654 0.9711

Average value 2.439 0.4844 2.412 0.9222 5.07 −1.057 3.403 0.9647

After deriving the empirical relation of TP(p) and FP(p) with ‘p’, next step is to find the best value
of ‘p’ so that true positive value and false positive value are maximized and minimized, respectively.
For this purpose, genetic algorithm (GA) is used.

The values of a1, b1, c1, a2, b2 and c2 of Equations (12) and (13) are replaced by the average values
as shown in Table 6. As shown in Figures 9 and 10, by maximizing TP(p), FP(p) is also maximized and
vice versa. This type of problem can be solved as a multi-objective optimization problem for value of
‘p’ in the range between 1 and 6. In genetic optimization algorithm problem, function Y (p) is divided
into two vector functions, i.e., Y1(p) and Y2(p), which corresponds to true positive function whose value
should be near one and false positive function whose value should be close to zero, respectively. Y1(p)
and Y2(p) are defined as

Minimizing Y (p) = [Y1(p), Y2(p)]; 1 < p < 6 Such that Y1(p) = −TP(p) and Y2(p) = FP(p)
Our main focus is to maximize TP(p) and minimize FP(p) for optimum value of p. For that, the

goal is set such that FP should be lower than the upper boundary (ubTN) and TP greater than the
lower boundary (lbTP). The goal vector can be defined as

Goal = [−ubTNubTN] for fitness function Y (p) = [Y1(p), Y2(p)];
This gives the critical value of p so that TP > lbTP and FP < ubTN. The developed algorithms are

tested for unknown targets as shown in Table 7. Figure 11 shows the statically based thresholded image
for targets Id V1 and V2, which are independent data sets and never used for training the algorithm.

Table 7. Values of scaling parameter “p” for unknown targets Id with TP and FP.

Targets Id Mean (μA) Std. Dev. (σD) p TP FP
V1 0.3634 0.0217 4.1 1 0.13
V2 0.5766 0.0342 4.3 1 0.05

After target detection, the next step is target identification. For target identification, the first
image segmentation technique is applied so that individual target pixels can be analyzed properly.

Step 3. Segmentation of Image
Segmentation is done on the basis of the fusion of normalized image (Figure 6) and thresholded

image (Figure 11). The thresholded image gives approximately correct boundary of the considered
targets. Now the image is segmented in three parts, and the number of corresponding target pixels are
extracted. Now the second objective is identification of targets, and these segmented pixels may be
quite helpful for identification of targets.



48 Kumar, Upadhyay, and Singh

(a) (b)

Figure 11. Image for target Id (a) V1 and (b) V2 with proposed threshold technique.

3.1.2. Proposed Technique for Target Identification

After targets detection, the next objective is target’s identification. Three separate regions of normalized
image, as shown in Figure 6, obtained corresponding to three different targets, are used for targets
identification on the basis of statistics. The identification is performed on the basis of statistical
distribution of reflected data. As discussed above, scattered statistics depend upon several parameters,
such as dielectric property and roughness of targets. Therefore, multivariate classes are observed of
normalized image due to different types of materials and roughness of the targets. Probability density
function is a very useful tool to identify targets around large intensity difference between targets and
background. Probability density function has unique features to provide different parameter values
for multivariate class, and these parameter values are taken into account for identification purposes.
Therefore, for target’s identification, various probability density functions were applied on segmented
normalized data for finding of different materials, such as paper board for match box, plastic cover
for pocket diary, and polythene cover and aluminum foil, outside and inside of cigarette box. Firstly,
chi-squared goodness of fit test is performed for all data on more than 50 probability density functions,
which were available in easy fit software, and only these pdf functions, namely, normal, Weibull, gamma,
Cauchy, Laplace and Rayleigh, pass the chi-square test for all targets on the basis that statistic value
should be less than critical value and that p-value is greater than the level of significance (5%) as shown
in Table 8 [27]. Out of these pdf functions, the best fit pdfs on the basis of minimum statistic value are
selected, which are Laplace, normal and gamma pdf as shown in Table 8.

The best-fit pdfs’ distributions (Laplace, normal and gamma pdf) using x as pixel intensity are
given below [47].

• Laplace pdf distribution

f(x) =
λ

2
exp(−λ|x − μ|) (14)

where μ is the continuous location parameter and λ the continuous scale parameter. The expected
(mean) value of a Laplace distribution is

E (x) = μ (15)
and the variance is

V ar (x) = 2/λ2 (16)
• Normal pdf distribution

f(x) =
1√

2πσ2
exp

(−(x − μ)2

2σ2

)
(17)

V ar(x) = σ2 (18)
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Table 8. Chi-squared statistics for various distributions for single target Id T1.

Pdf Parameters CB PD MB

Normal
Statistics 1.112 0.148 1.811
P-value 0.726 0.928 0.404

Critical value 7.814 5.991 5.991

Weibull
Statistics 1.133 1.016 2.569
P-value 0.889 0.797 0.276

Critical value 9.487 7.814 5.991

Cauchy
Statistics 2.033 1.798 1.463
P-value 0.565 0.615 0.690

Critical value 7.814 7.814 7.814

Laplace
Statistics 0.220 0.180 0.003
P-value 0.638 0.913 0.984

Critical value 3.841 5.991 3.841

Rayleigh
Statistics 3.112 1.525 1.525
P-value 0.210 0.466 0.466

Critical value 5.991 5.991 5.991

Gamma
Statistics 0.408 0.647 0.001
P-value 0.981 0.885 0.967

Critical value 9.487 7.814 3.841

where μ is the continuous location parameter and σ the continuous scale parameter.

• Gamma pdf distribution

f (x) =
1

βαΓ(α)
xα−1e

−x
β (19)

where α is the shape parameter and β the scale parameter. Both α and β must be greater than zero,
and Γ(α) is the gamma function and evaluated as

Γ (α) =

∞∫
0

xα−1e−xdx (20)

The shape parameter (α) and scale parameter (β) are denoted as

α =
(E[x])2

V ar[x]
(21)

β =
V ar[x]
E[x]

(22)

Figure 12 shows comparative plots of the three target material classes for three best-fit pdfs, i.e.,
Laplace, normal and gamma for target Id T1. Similar plots are also achieved by other target Id.
These pdfs are characterized on the basis of location, shape and scale parameter. Location parameter
gives the information about location or shift of the distribution. The shape parameter is also called
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(a) (b) (c)

Figure 12. Comparative pdf for three target’s class CB, PD and MB. (a) Laplace pdf. (b) Normal
pdf. (c) Gamma pdf, for target Id T1.

Table 9. Scale parameters as well as its mean and standard deviation values of Laplace, Normal and
Gamma PDF for different targets Id.

Target
Id

Laplace scale
parameter

Normal scale
parameter

Gamma scale
parameter

CB PD MB CB PD MB CB PD MB
λ1 λ2 λ3 σ1 σ2 σ3 β1 β2 β3

T1 6.550 14.29 10.09 0.215 0.098 0.140 0.200 0.069 0.138
T2 6.548 13.40 11.85 0.215 0.105 0.120 0.205 0.080 0.102
T3 6.001 14.24 11.39 0.235 0.099 0.124 0.229 0.076 0.106
T4 6.151 15.36 11.96 0.229 0.092 0.118 0.230 0.068 0.107
T5 5.670 13.90 10.26 0.249 0.101 0.137 0.193 0.040 0.1326
T6 6.390 15.16 10.96 0.222 0.093 0.130 0.186 0.054 0.1506
T7 5.961 13.85 10.93 0.236 0.102 0.130 0.182 0.050 0.1542
T8 6.470 12.70 9.77 0.218 0.111 0.144 0.199 0.068 0.1322
T9 6.480 14.55 10.37 0.218 0.097 0.136 0.210 0.058 0.1218
T10 6.122 13.09 10.79 0.230 0.108 0.131 0.189 0.053 0.1450

Mean (M) 6.234 14.05 10.83 0.227 0.101 0.131 0.202 0.616 0.1289
Std.

Dev. (D)
0.299 0.851 0.735 0.011 0.006 0.008 0.016 0.012 0.0190

slope parameter which gives information about the changes in pdf distribution, whether the function will
increase, remain constant or decrease with x. The scale parameter is a measure of spread in distribution
in data, i.e., where the bulk of distribution lies. From Figure 12, it is observed that cigarette box and
pocket dairy data have wider and narrower pdf plots than match box, and it is common in all three
best-fit probability density functions. Therefore, scale parameters (λ, σ and β) are selected for material
identification. The scale parameter values of each pdf are calculated according to Equations (16), (18)
and (22) for considered targets (Table 2) whose values are shown in Table 9.

Mean and standard deviation of scale parameter for each considered target are computed for defining
the range of scale parameter by which the considered targets can be identified. For this purpose,
Mean ± n ∗ Std.Dev is considered while changing the value of n from 0 to 4 at the interval of 0.5.
It is observed that at n = 2, the scale parameter provides clear demarcation among targets (i.e., no
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overlapping of values) which is shown in Table 10.
The identification of target’s material is based on any two or more than two combinations of best-fit

pdfs. Figure 13 shows a complete flow chart of targets identification.

Table 10. Range of scale parameter of Laplace, Normal and Gamma PDF for target identification.

Target
Laplace Scale
Parameter(λ)

Normal Scale
Parameter(σ)

Gamma Scale
Parameter(β)

Min. Max. Min. Max. Min. Max.
CB 5.63 6.84 0.205 0.249 0.170 0.234
PD 12.35 15.75 0.089 0.113 0.037 0.085
MB 9.36 12.30 0.115 0.147 0.090 0.167

Figure 13. Flow chart of targets identification using probability density function (pdf) based decision
tree.
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4. VALIDATION FOR DETECTION AND IDENTIFICATION

Final flow chart is shown in Figure 14, and it is validated for 10 different data sets in which 3 data set
results are shown in Table 11, and it is observed that the obtained values of (λ1, σ1, β1), (λ2, σ2, β2)
and (λ3, σ3, β3) satisfy the respective criteria by which target can be identified as CB, PD and MB
successfully.

Table 11. Value of scale parameter for validation of data for target identification.

Target Id Laplace scale parameter Normal scale parameter Gamma scale parameter
CB PD MB CB PD MB CB PD MB
λ1 λ2 λ3 σ1 σ2 σ3 β1 β2 β3

V1 6.80 12.55 10.67 0.205 0.112 0.132 0.209 0.084 0.143
V2 6.67 12.81 10.26 0.212 0.110 0.137 0.193 0.055 0.145
V3 6.01 13.42 9.51 0.235 0.105 0.146 0.172 0.077 0.154

Figure 14. Flow chart of complete signal processing steps for concealed target detection.
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5. CONCLUSION

An active MMW SFCW imaging radar system is ingeniously assembled to detect and identify small
targets such as match box, pocket diary and cigarette box under different cloths, which operates at
center frequency 60 GHz. An optimal preprocessing method is proposed to obtain the image after an
adaptive detection and identification algorithm is proposed which gives quite satisfactory results for
detecting and identifying the considered targets. The novelty of this paper is to identify the targets
which haves different types of materials.
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