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On the Radiation from a Short Current-Carrying Straight Wire
Oriented Perpendicular to a Stratified Medium

Mauro Parise1, * and Giulio Antonini2

Abstract—In a previous work, improved full-wave analytical expressions have been derived for the
Sommerfeld Integrals (SIs) describing electromagnetic radiation from a short vertical straight wire
located in close proximity to a conductive soil. Such formulas ensure high accuracy of the result of the
computation, as well as time savings with respect to conventional techniques used to evaluate the SIs,
but unfortunately may be used only when both source and field points are located at the air-medium
interface. The scope of this paper is to overcome the limitations implied by the previous approach,
and provide series-form expressions for the generated field components that are valid for an arbitrarily
stratified medium and for any position of the vertical wire antenna and observation point in the air
space above it. The expressions follow from the analytical evaluation of the integral representation for
the magnetic vector potential, performed through contour integration after substituting an equivalent
pole set for each branch cut of the integrand. Validity, efficiency and accuracy of the developed formulas
are illustrated through numerical examples.

1. INTRODUCTION

The study of the radiation characteristics of dipole antennas situated in proximity to stratified media
has attracted the interest of several scientists in the past years [1–20]. This is because electric dipoles
are extensively used in a variety of engineering applications, especially in the areas of close-to-the-
surface radio communication, geophysical prospecting, radio remote sensing, and hypethermia [2–7, 11–
15, 22, 23]. Despite the number of contributions from researchers, to date accurate analytical expressions
for the fields, valid regardless of the operating frequency, can be derived only under the assumption that
both the source and the observation points lie on the surface of the material medium [10, 23]. If this
condition cannot be met, closed-form expressions for the fields may still be obtained, but at the price of
introducing approximations that limit their applicability to electrically dense media [4–7, 11] or specified
frequency ranges [4–6, 17–20]. Examples of contributions in this direction are the solutions valid for the
quasi-static, indermediate, and far-field frequency ranges, which result from reducing the Sommerfeld
integrals to forms amenable to asymptotic techniques such as the saddle-point method [13, 17–20].

The present paper focuses on the problem of a short current-carrying straight wire oriented
perpendicular to a stratified ground. The scope of the work is to overcome the limitations implied
by the approach described in [10, 23], and determine exact analytical expressions for the generated
fields that are valid for any position of the source and observation points in the air space above the
medium. To accomplish this task, first the direct field and the ideal reflected field are extracted from
the integral representation for the magnetic vector potential. Next, the remaining part of the magnetic
vector potential is written as the sum of branch-cut integrals and closed-contour integrals around the
poles of the integrand. Finally, the hyperbolic branch cuts are extracted from the integrands of the
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branch-cut integrals and replaced with equivalent pole sets [23], so as to make it possible analytical
integration. Each field component is given as the sum of two exponential terms (describing the direct
and the ideal reflected fields) and three fast convergent sequences of residue sums, that represent the
above surface ground wave, the lateral wave and the surface waves. The obtained formulas for the fields
offer advantages in terms of time savings with respect to standard numerical integration procedures.
Moreover, investigating the expressions for the different contributions to the fields, as well as their
outcomes, allows to gain useful insight into the physics of the problem, and this feature makes the
proposed solution advantageous over numerical simulation tools employed to solve electromagnetic
boundary value problems.

2. FORMULATION OF THE PROBLEM

The geometrical configuration under study is sketched in Fig. 1. The emitter, modeled as a vertical
electric dipole of moment 1 · ejωt A ·m, is located at height h above an N -layer conducting medium.
The nth layer of the medium has dielectric permittivity εn, electrical conductivity σn, and thickness
dn=zn−zn−1, being zn the position of the upper bound of the layer. The bottom or first layer is assumed
to be a semi-infinite region. The magnetic permeability is everywhere equal to that of free space μ0.
We introduce a cylindrical coordinate system (ρ, ϕ, z) such that the air-medium interface coincides with
the plane z=0 and the short wire antenna is placed on the z axis. The symmetry about the z axis
implies that the electromagnetic field originates from a z-directed magnetic vector potential [17]. As a
consequence, the field components produced in the air space may be expressed as
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Figure 1. Sketch of a short straight wire oriented perpendicular to a stratified medium.
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where A is the non-null component of the vector potential, given by
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4π
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In Eq. (4), the two exponential terms represent the primary field and the ideal field reflected by the
medium (that is the field of a negative image), while As is a correction term caused by the imperfect
conductivity of the layered half-space. On the other hand, Zn is the intrinsic impedance of the nth layer
(n=0 denotes free space), given by

Zn=
un

σn + jωεn
, (9)

while Ẑn is the surface impedance at z=zn, defined by the recursive formula

Ẑn=Zn
Ẑn−1 + Zntanh(undn)
Zn + Ẑn−1tanh(undn)

, n=2, . . . , N, (10)

with
Ẑ1=Z1. (11)

The aim of this paper is to analytically evaluate Eq. (5) and, subsequently, the field components in
Eqs. (1)–(3). To this end, it is first convenient to rewrite Eq. (5) as
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, (13)

where the dependence on the square roots u2, u3, . . . , uN has not been made explicit to signify that the
function G is even in such quantities [17]. Next, proceeding as in [17, 24] makes it possible to deform
the integration contour so that it is wrapped around the singularities of the integrand located in the
upper-half of the complex plane, as shown in Fig. 2(a). This leads to express As as
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that is as the sum of two branch-cut integrals associated with −k0 and −k1 plus a number of closed-
contour integrals around the poles of G, that is λ
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the upper infinite semi-circle has been neglected in Eq. (14). In fact, this contribution cannot but be
identically zero, because the Hankel function in the integrand decays exponentially with increasing |λ|
in the upper half-plane. The explicit form of I(−1) may be easily obtained through residue calculus. It
yields
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Figure 2. (a) Deformed integration contour and (b) branch cut equivalent pole set.
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On the other hand, each of the integrals I(0) and I(1) may be evaluated by extracting the relevant
branch cut from the integrand and replacing it with an equivalent set of poles. Branch-cut extraction
procedure consists of decomposing G into its even and odd parts with respect to u0 or u1. For instance,
I(0) requires a decomposition of G with respect to u0, as follows
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Pole sets equivalent to the extracted branch cuts may be determined by iteratively applying the square
root algorithm to the computation of the square roots u0 and u1, as described in [10, 23, 24]. At the lth
iteration, the square root algorithm generates the following partial-fraction representation for un [23]
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being Ml=2l−1 − 1, and
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Substituting Eq. (23) in the nth branch-cut integral I(n) and closing the integration contour with the
arc of upper infinite semi-circle comprised between its ends, as sketched in Fig. 2(b), allows to obtain
a closed-contour integral around the λ
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m ’s. In fact, such poles lie on the suppressed branch line. Since
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where the first Ml poles of the pole set corresponding to n=− 1 have been considered. It is understood
that the numbering of the λ
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means that higher-order poles correspond to highly attenuated waves. Finally, use of Eqs. (4) and (29)
in Eqs. (1)–(3) gives rise to the following expressions for the fields
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Each of the expressions (36)–(38) consists of three sequences of residue sums, which converge as l is
increased in virtue of convergence of the square root algorithm. The residue sums associated with n=0
and n=1 describe the above-surface ground and lateral waves, respectively. Such contributions, together
with the direct field and the ideal reflected field, labelled with a subscript 0 in Eqs. (30)–(32), constitute
the space wave radiated by the antenna. The rest of the generated field consists of surface waves, and is
described by the residue sums associated with n=− 1 in Eqs. (36)–(38). Expressions (30)–(32) allow to
overcome the limitations implied by the previously published square-root-algorithm-based solution to
the same problem [10, 24]. In fact, they allow to relax the assumption that both source and observation
points lie at the air-medium interface. At the same time, as will be clarified in Sec. 3, the derived
expressions ensure a high level of accuracy and offer advantages in terms of time savings with respect
to standard numerical techniques conventionally used for evaluating Sommerfeld-type integrals.

3. RESULTS AND DISCUSSION

Primary objective of this section is to show the convergence of the sequences in Eqs. (36)–(38) as the
number of iterations l of the square root algorithm is increased. To this goal, we use Eq. (31) to compute
the amplitude-frequency spectrum of the Ez-field generated by a unit-moment straight wire antenna
lying on the top surface of a two-layer conductive ground. The field point is at height z=50 m above
the medium and at radial distance ρ=300 m from the emitter, while the electromagnetic and geometric
parameters of the layers of the medium are assumed to be σ1=10 mS/m, ε1=10ε0, d1=400 m, σ2=1 S/m,
and ε2=5ε0. The results of the simulations, depicted in Fig. 3, are compared with the data arising from
numerically evaluating Eq. (2) through the Gauss-Kronrod quadrature rule [25]. As is seen, when l is
increased the outcomes from Eq. (31) rapidly converge to the exact numerical data, denoted by points,
and convergence is faster at higher frequencies. Moreover, perfect agreement between analytical and
numerical data is observed when truncating the sequences of residue sums in Eq. (37) at l=12, that is
when each residue sum is composed of M12=211−1=2047 residues. It should be noted that, in general,
the three contributions to Eq. (37) do not have the same impact on the Ez-field strength. For instance,
if the field point is located at height z=50 m from the top surface of the medium, one would expect that
the effects of surface and lateral waves, associated with n=−1 and n=1, respectively, are negligible with
respect to that of the ground wave (n=0). This point is clarified by Fig. 4, which depicts the magnitude
of Ez and those of the relevant ground-wave, lateral-wave, and surface-wave terms against the radial
distance ρ from the emitter. The parameters of the medium are taken to be the same as in the previous
example, and the operating frequency is assumed to be 10 kHz. Again, the sequences of the residue sums
have been truncated at l=12. From the analysis of the plotted curves it emerges that the amplitude of
the Ez-field substantially coincides with that of the ground-wave field over the considered interval, and
that the surface waves suffer from a mild attenuation with increasing ρ. Instead, the magnitude of the
lateral wave rapidly goes down below the plot scale as ρ grows up. Finally, it should be observed that
direct and ideal reflected fields cannot contribute to the total Ez-field, since they cancel out each other
because of the position of the emitter at the air-medium interface.



Progress In Electromagnetics Research, Vol. 159, 2017 55

10-10

10-8

10-6

10-4

10-2

100

102

100 101 102 103 104 105 106 107 108

|E
z|

  (
V

/m
)

Frequency  (Hz)

exact
l=5
l=6
l=7

l=12

Figure 3. Profiles of |Ez| against frequency. Out-
comes from the proposed solution are compared
with the data arising from numerical integration
of the field integral.

10-10

10-8

10-6

10-4

10-2

100

102

100 101 102 103

|E
z|

  (
V

/m
)

Radial distance from the source,  ρ (m)

total
gw
lw

sw

Figure 4. Profile of |Eρ| against ρ. Separate
contributions of ground wave (gw), lateral wave
(lw), and surface waves (sw) to the total field.

One would ask whether the derived solution is advantageous in terms of computation time over
previous solutions and standard numerical integration procedures. This aspect is illustrated in Table 1,
which shows the time taken by the proposed method, the Gauss-Kronrod quadrature rule, and King’s
well-established solution [7], to calculate the radial distribution of the vertical electric field that a straight
wire antenna lying on a homogeneous medium produces at z=50 m. Here, the operating frequency is
1MHz, while the electromagnetic parameters of the medium are taken to be σ1=0.1 mS/m and ε1=3 ε0.

Table 1 is structured as follows. The second column contains time cost data corresponding to

Table 1. Computation times and accuracy of the proposed and conventional approaches.

Approach Time consumption (s) Speed-up RMS rel. error (%)
Gaussian rule 126 21 -

King’s approach 6 - 8.3
Proposed solution 19 3.2 0.16
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by applying the proposed approach (solid isolines). Outcomes from King’s approach are denoted by
dashed isolines.
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simulations running on a single-core 1.8 GHz PC. The third column shows the ratio of the time taken
by the proposed expression for Ez and the Gaussian rule to that required by King’s solution (speed-up
offered by King’s approach). Finally, the fourth column contains the root-mean-square (RMS) relative
errors resulting from using the proposed and King’s solution in place of Gaussian quadrature rule. From
a glance at the data in Table 1 it is deduced that, accuracy being equal, using Eq. (37) rather than
Gaussian quadrature permits to obtain significant time savings. On the other hand, King’s approach
implies minimum time cost, but the price to be paid for its usage is the loss of accuracy. This is also
confirmed by the contour plots sketched in Fig. 5, which depict the magnitudes of Eρ (Fig. 5(a)) and Ez

(Fig. 5(b)) versus ρ and z (the antenna is still positioned at height h=0). For both the contour plots,
a significant discrepancy is observed between the solid isolines associated with the proposed solution
and the dashed isolines arising from King’s approach. The amount of the discrepancy depends on
the conductivity of the medium, and higher values of the conductivity make it possible to reduce the
discrepancy. For instance, assuming σ1=1 mS/m and ε1=10 ε0 leads to the contour plots illustrated in
Fig. 6, characterized by solid and dashed isolines almost overlapping. Bad accuracy of King’s solution
for low values of the conductivity is explained by the failure of the assumptions |k1|ρ�1 and k2

0/|k2
1 |�1,

underlying its derivation.
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Figure 6. Contour plots of (a) |Eρ| and (b) |Ez| versus ρ and z, computed for σ1=1 mS/m and ε1=10 ε0

by applying the proposed approach (solid isolines). Outcomes from King’s approach are denoted by
dashed isolines.

4. CONCLUSION

This paper presents an explicit solution, in series form, for the fields from a short current-carrying
straight wire oriented perpendicular to a stratified medium. The solution arises from the analytical
evaluation of the integral representation for the magnetic vector potential, carried out through contour
integration upon substituting an equivalent pole set for each branch cut exhibited by the integrand.
Each field component is expressed as the sum of five contributions, namely the direct, the ideal reflected,
the ground-wave, the lateral-wave, and the surface-wave fields. The latter three terms are given as
convergent sequences of residue sums. Performed numerical simulations confirm the correctness of the
developed theory. It has been shown how the proposed formulas are accurate and significantly less time
consuming than conventional numerical integration procedures.
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