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Electromagnetic Retarded Potential Induced by Quantum
Vacuum Polarization

Leng Liao1, Ruiqiang Zhao1, Hong Zhang2, *, Jianting Zhou2, and Yewang Bie3

Abstract—Based on 1st order one-loop effective Lagrangian derived from the 2-point photon vertex
in quantum electrodynamics, we obtaine a quantum modified Maxwell equations, and the classical
expression of retarded potential is consequently modified by these equations. The results indicate that,
due to the time-space non-locality of vacuum polarization, the vacuum polarization current is delayed
relative to the field variation and induces a series of additional retarded potentials except for the classical
part of retarded potential. Particularly, compared to the classical potential, these additional potentials
are further retarded. Because the retarded potential is the base of theory of electromagnetic radiation,
the results of this work are of great value to the studies of quantum effect in ultra-intense electromagnetic
radiation.

1. INTRODUCTION

In the past five decades, the laser technology has acquired dramatic success. Terawatt and even Petawatt
table-top laser equipments have already been employed [1]. It is believed that laser intensity can reach
the Schwinger limit (∼ 1029 W/cm2 or Ecr ∼ 1016 V/m) [1, 2] in expectable future. Under the strong
field brought by these anticipated lasers, vacuum is no longer linear but generally behaves as a nonlinear
dielectric medium due to the quantum polarization effect [2–5]. This nonlinear effect has attracted great
attention due to its laying outside classical Maxwell theory and even providing possibility of real electron-
positron pairs production in the vacuum [6]. With the development of ultra-intense laser, the study of
vacuum polarization becomes more and more important, and a lot of works have been reported [2, 7–10].
However, to our knowledge, the electromagnetic retarded potential with considering vacuum polarization
has not yet been investigated. In this work, the quantum modification to the classical retarded potential
is studied based on the first-order one-loop effective Lagrangian of electromagnetic field. Because the
retarded potential theory is the base of electromagnetic radiation theory [11], this work is important to
the future studies on the quantum effect in ultra-intense electromagnetic radiation.

To probing the nonlinear phenomena under strong electromagnetic field, in the 1930s, Heisenberg
and Euler had already presented a quantum modification to Maxwell equations in the form of
effective Lagrangian (Heisenberg-Euler Lagrangian) [3], but this Lagrangian abandons the non-local
and absorption properties of vacuum polarization [12]. Later, in the 1950s, Schwinger proposed non-
perturbation proper time technique [2] to obtain the effective Lagrangian of strong electromagnetic field.
This is a popular method to explore the vacuum polarization, since it is a universal method in terms
of formality to obtain the effective Lagrangian, but only for some simple field configuration, the exact
expression of effective Lagrangian can be given. Schwinger’s method is not workable in most cases.
However, an approximate effective Lagrangian for arbitrary field configuration can be directly given
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by using the perturbation theory in QED [13]. Although it is not an accurate method when the field
strength is beyond Schwinger limit, under which electron-positron pairs are produced with significant
magnitude [2], it is still valid in the case of field lower than the Schwinger limit, and in particular,
the non-locality of vacuum polarization is considered. Therefore, this work starts at this approximate
Lagrangian, because we do not concern the electron-positron pair production in this work but focus on
the vacuum polarization effects on retarded potentials.

In this work, based on this first-order one-loop effective Lagrangian derived from the 2-point photon
vertex in quantum electrodynamics (QED), the modification of classical Maxwell equations is first
obtained. Applying these equations, we get the corresponding retarded potential and find that except
for the classical retarded potential, there exist a series of retarded potentials induced by polarization.
These additional potentials are induced by the vacuum polarization, and due to the non-locality of
vacuum polarization, they are further retarded relative to the classical part of retarded potential.
This result indicates that the vacuum polarization effect can be separated from the strong classical
background in the time and implies a way to explore the weak vacuum non-linear phenomena.

Because the retarded potential is the base of theory of electromagnetic radiation, the results of
this work are of great value to the studies of quantum nonlinear effect in ultra-intense electromagnetic
radiation.

2. MODEL: FIRST ORDER ONE-LOOP EFFECTIVE LAGRANGIAN OF
ELECTROMAGNETIC FIELD

In vacuum, the classical action of electromagnetic field as a functional of W [A] = ∫ dxL(A(x), ∂A(x)),
A(x) is a four-potential vector of electromagnetic field, and L is Lagrangian of electromagnetic field and
satisfies the least action principle: δW [A]/δAμ(x) = jμ(x) = 0. However, in QED, jμ(x) is expressed
as a vacuum expectation of jμ(x) = 〈A|ĵμ(x)|A〉 (where |A > denotes the vacuum state vector with
a classical field Aμ(x)), and particularly, 〈A|ĵμ(x)|A〉 �= 0 due to the creation and the subsequent
annihilation of virtual electron-positron pairs, which is so called vacuum polarization [12–15]. Thus,
considering the vacuum polarization, it leads to a modified functional expression of Maxwell equations
in vacuum:

δW [A]
δAμ(x)

=
δW (1)[A]
δAμ(x)

= 〈A| ĵμ(x) |A〉 (1)

where the action functional W (1)[A] simulates the presence of electric current at purely classical level
and describes the vacuum nonlinear effects [2, 3, 13]. In the first order approximation with the Feynman
rules (the high order terms are neglected relative to the first order), W (1)[A] is given [13]:

W (1)[A] ≈
∫

d4xL(1) =
1
2

∫
d4xd4yAμ(x)Πμν(x, y)Aν(y) (2)

L(1) is nothing but the polarization modification to the classical Lagrangian. Πμν(xy) is the order-e2

renormalized polarization tensor [14], in the momentum space which is given by:

Πμν(k) = (gμνk2 − kμkν)Π(k2) (3)

Π(k2) = − α

3π
k2

∞∫
4m2

dτ

τ
g(τ)

1
k2 + τ − iε

(4)

g(t) =
(

1 +
2m2

τ

)(
1 − 4m2

τ

) 1
2

(5)

α = e2/4π is the fine-structure constant; m and gμν are the electron static mass and metric matrix
component; ε is a positive infinitesimal.

Consequently, the effective Lagrangian Leff = L − L(1) (W [A] = ∫ d4xL) can be obtained,
which still satisfies the classical least action principle. In addition, L is the classical Lagrangian:
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L = −Fμν(x)Fμν(x)/4. By Fourier transform of Equations (3)–(5) to the position space representation
and together with Equation (2), the effect Lagrangian’s explicit expression is obtained:

Leff = −1
4
Fμν(x)

⎡
⎣1 +

α

3π
�

∞∫
4m2

dτ

τ

g(τ)
τ − �

⎤
⎦Fμν(x) (6)

where, � is the D’Alembertian operator, and as usual, Fμν(x) = ∂Aν(x)/xμ − ∂Aμ(x)/xν is the
electromagnetic field tensor. In addition, the detailed calculation for the above is shown in [13].

3. VACUUM POLARIZATION MODIFICATION TO THE MAXWELL EQUATIONS

It can be seen that Equation (6) is not convenient to the concrete analysis. Thereupon, we calculate
the field motion equations via Equation (6) and the least action principle:

δWeff =
∫

d4xδLeff = 0 (7)

It first follows that:

δWeff =
∫

d4x

⎧⎨
⎩
⎡
⎣1 − α

3π

∞∫
4m2

dτ

τ
g(τ)

⎤
⎦ ∂Fμν(x)

∂xv
δAμ(x)

+
α

6π

∞∫
4m2

dτ

(
∂ g(τ)

τ−�Fμν(x)
∂xv

δAμ(x) − Fμν(x)
g(τ)

τ − �
∂δAμ(x)

∂xv

)⎫⎬
⎭ (8)

The first term of right hand of Equation (8) is nothing but a classical part, but the second
and third terms are still complicated, since there exists the operator 1/(τ − �). It is the inverse of
τ − �((τ − �) × (1/(τ − �))f(x) = f(x)).

Before the calculation, let us consider a special equation for τ − �

(τ − �)
∫

d4yG(x − y|t)f(y) = f(x) (9)

G(x − y|τ) = θ(x0 − y0)G+(x − y|τ) + θ(y0 − x0)G−(x − y|τ) (10)

where G(x − y|τ) is the Feynman Green’s function satisfying: (τ−�)G(x − y|τ) = δ4(x − y|τ);
G+(x − y|τ) and G−(x − y|τ) are positive and negative energy Green’s functions, respectively; θ(x) = 0,
x < 0; θ(x) = 1, x ≥ 0. Then, it follows from Equations (9)–(10) that:

1
(τ − �)

f(x) =
∫

d4yG(x − y|τ)f(y) (11)

Using Equation (11), Equation (8) becomes

δWeff =
∫

d4x

⎧⎨
⎩
⎡
⎣1 − α

3π

∞∫
4m2

dτ

τ
g(τ)

⎤
⎦ ∂Fμν(x)

∂xv
δAμ(x)

+
α

6π

∫
d4y

∞∫
4m2

dτg(τ)
∂G(x − y|τ)

∂xv
Fμν(y)δAμ(x)

+
α

6π

∫
d4y

∞∫
4m2

dτg(τ)
∂G(x − y|τ)

∂yv
Fμν(x)δAμ(y)

⎫⎬
⎭ = 0 (12)
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Now, Equation (12) is convenient to the further calculation, beginning at which, we determine the
Maxwell equations with vacuum polarization modification:

δW [A]
δAμ(x)

=
∂Fμν(x)

∂xv
=

α

3π

∞∫
4m2

dτ

τ
g(τ)

∂Fμν(x)
∂xv

− α

6π

∫
d4y

∞∫
4m2

dτg(τ)[G(x − y|τ) + G(y − x|τ)]
∂Fμν(y)

∂yv
(13)

Noting Equation (1) the right-hand part of Equation (13) is no other than the polarization current:
jμ(x). Furthermore, substituting Equation (10) into Equation (13) and swapping the positions of two
negative energy Green’s functions, jμ(x) is written as:

jμ(x) =
α

3π

∞∫
4m2

dτ

τ
g(τ)

∂

∂xv
Fμν(x)

− α

6π

∞∫
4m2

dτg(τ)
∫

d4yθ(x0 − y0)[G+(x − y|τ) + G−(y − x|τ)]
∂

∂yv
Fμν(y)

− α

6π

∞∫
4m2

dτg(τ)
∫

d4yθ(y0 − x0)[G+(y − x|τ) + G−(x − y|τ)]
∂

∂yv
Fμν(y) (14)

The first term of right hand of Equation (14) shows a general local polarization current. The
second term implies the field in the past: y produces the future polarization at x. This polarization is
obviously non-local: the field and polarization current are not at the same position. Here, x0 and y0 are
the time coordinates of polarization source: jμ(x) and field tensor: Fμν(y), respectively. Considering
the properties of θ function (θ(x) = 0, x < 0; θ(x) = 1, x ≥ 0), the function of θ(y0 − x0) in the third
term is not zero just when y0 ≥ x0, but it suggests that the future field Fμν(y) produces polarization
currents jμ(x) in the past. Therefore, the third term of Equation (14) violates the law of causation
although it is correct in mathematics. For this reason, this term is non-physical, and we eliminate it
from Equation (14):

jμ(x) =
α

3π

∞∫
4m2

dτ

τ
g(τ)

∂

∂xv
Fμν(x)

− α

6π

∞∫
4m2

dτg(τ)
∫

d4yθ(x0 − y0)[G+(x − y|τ) + G−(y − x|τ)]
∂

∂xv
Fμν(y) (15)

and as well, the modified Maxwell Equation (13) is further modified

∂

∂xv
Fμν(x) =

α

3π

∞∫
4m2

dτ

τ
g(τ)

∂

∂xv
Fμν(x)

− α

6π

∞∫
4m2

dτg(τ)
∫

d4yθ(x0 − y0)[G+(x − y|τ) + G−(y − x|τ)]
∂

∂yv
Fμν(y) (16)

Moreover, this non-local property implies that the vacuum polarization is a retarded propagating
process.
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4. RETARDED POTENTIALS WITH CONSIDERATION OF VACUUM
POLARIZATION

Adding an external source current j(ex)μ(x) to Equation (15), the modified Maxwell equations with a
external four-current source are given:

∂

∂xv
Fμν(x) = j(ex)μ (x) + jμ (x) = j(ex)μ (x) +

α

3π

∞∫
4m2

dτ

τ
g(τ)

∂

∂xv
Fμν(x)

− α

6π

∞∫
4m2

dτg(τ)
∫

d4yθ(x0 − y0)[G+(x − y|τ) + G−(y − x|τ)]
∂

∂yv
Fμν(y) (17)

Since the fine-structure constant α is very small, the first term in the right hand of Equation (17) is
much larger than the last two, thus it is the major contribution to the right hand: ∂Fμν(x)/∂xν ≈
j(ex)μ(x). Substituting it into right hand of Equation (17) and imposing Lorentz condition
∂Aν(x)/∂xμ = 0.

�Aμ(x) ∼= j(ex)μ (x) +
α

3π

∞∫
4m2

dτ

τ
g(τ)j(ex)μ (x)

− α

6π

∞∫
4m2

dτg(τ)
∫

d4yθ(x0 − y0)[G+(x − y|τ) + G−(y − x|τ)]j(ex)μ (y) (18)

Based on Equation (18) and as the process of deriving classical retarded potential [11], the retarded
potential expression with considering vacuum polarization follows. (for convenience, the light velocity
c is explicitly written; c = 1 in the natural unit system applied in our work and c is usually implicitly
expressed.):

	A(t, 	r) =
	j(ex)(t − R

c , 	r′) +	j(t − R
c , 	r′)

R
=

⎡
⎣1 +

α

3π

∞∫
4m2

dτ

τ
g(τ)

⎤
⎦∫ dV ′	j

(ex)(t − R
c , 	r′)

R

− α

6π

∫
dV ′

⎧⎨
⎩ 1

R

∞∫
4m2

dτg(τ)
∫

dt′′dV ′′θ
((

t − R

c

)
− t′′

) [
G+

((
t − R

c

)
− t′′, 	r′ − 	r′′

∣∣∣∣ τ
)

+G−
(

t′′ −
(

t − R

c

)
, 	r′′ − 	r′

∣∣∣∣ τ
)]

	j(ex)
(
t′′, 	r′′

)
(19)

φ(t, 	r) =
j(ex)0(t − R

c , 	r′) + j0(t − R
c , 	r′)

R
=

⎡
⎣1 +

α

3π

∞∫
4m2

dτ

τ
g(τ)

⎤
⎦∫ dV ′ j

(ex)0(t − R
c , 	r′)

R

− α

6π

∫
dV ′

⎧⎨
⎩ 1

R

∞∫
4m2

dτg(τ)
∫

dt′′dV ′′θ
((

t − R

c

)
− t′′

) [
G+

((
t − R

c

)
− t′′, 	r′ − 	r′′

∣∣∣∣ τ
)

+G−
(

t′′ −
(

t − R

c

)
, 	r′′ − 	r′

∣∣∣∣ τ
)]

j(ex)0(t′′, 	r′′) (20)

where R = |r− r′|, dV ′ = dr′1dr′2dr′3 and dV ′′ = dr′′1dr′′2dr′′3.
Before further analyzing Equations (19)–(20), we determine the explicit expression of Green

functions: G±(x − y|τ). Noting that τ−� = −(� − m2
τ ), after substituting τ = m2

τ , the operator
τ−� is nothing but a minus Klein-Gordon (KG) operator [15] with mass mτ . Thus G±(x − y|τ) =
−D±(x − y|mτ ), where D±(x − y|mτ ) is the positive and negative energy KG Feynman Green’s
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functions with particle mass mτ . Via the explicit expression of KG Green’s function [15], we can
get the explicit expression of G±(x − y|τ):

G±(x − x′|τ) = −D±(x − x′|mτ ) = −θ(±(x0 − x′0))D(x − x′|mτ )

= θ(±(x0 − x′0))

{
1
4π

δ((x − x′)2) − mτθ((x − x′)2)
8π
√

(x − x′)2
H

(2)
1

(
mτ

√
(x − x′)2

)

−mτθ(−(x − x′)2)
8π
√−(x − x′)2

H
(2)
1

(
−imτ

√
−(x − x′)2

)}
(21)

H
(2)
1 (z) is the complex Hankel function (the third kind Bessel function). By the properties of

Hankel function, asymptotic behavior of G±(x, x′|τ) can be deduced:

G±(x − x′|τ) →
{

const.θ(±(x0 − x′0))((x − x′)2)−3/4 exp(−im
√

(x − x′)2), ((x − x′)2 → +∞)
const.θ(±(x0 − x′0))((x − x′)2)−3/4 exp(−m

√|(x − x′)2|), ((x − x′)2 → −∞)
(22)

Equation (22) implies that for the time-like distance ((x − x′)2 > 0, velocity lower than c),
G±(x − x′|τ) has a oscillating behavior and decreases in amplitude owing to the power-law factor.
On the other hand, for the space-like distance ((x − x′)2 < 0, velocity being over c), it rapidly falls to
the zero with the decreasing of (x−x′)2. It suggests the well-known result that particles can propagate
over light velocity due to quantum tunneling effect [16], but the probability is ultra-small. Thus, the
velocity of major propagating process represented by G±(x − x′|τ) is regarded lower than c or generally,
only when (x − x′)2 > 0, G±(x − x′|τ) �= 0.

Now, let us turn back to Equations (19)–(20). Ignoring the tiny value variation owing to the local
vacuum polarization, the first terms of Equations (19)–(20) represent the classical retarded potential,
which is exactly the classical expression of electromagnetic retarded potentials [11]. It is more interesting
that the second term of Equations (19)–(20), which implies that there exists an additional retarded
potential if the quantum vacuum polarization is taken into consideration. This retarded potential does
not lay in any classical theories and is purely a quantum effect. Particularly, they are further retarded
compared with the classical part according to the follow analysis.

There are two steps for producing this additional retarded potential. At first, the source current
j(ex) at x(S) = (t′′, r′′) excites polarization current at x(P ) = (t−R/x, r′). As the discussion of Eq. (22),
the major contributors to the polarization are the source currents whose distance to the polarization
current is time-like: (t − R/c) − t′′ > |r − r′′|; (t − R/c) > t′′ is major contributor to the polarization.
Subsequently, the polarization current at x(P ) produces field at x(F ) = (t, r). The distance between the
polarization currents and their excited fields is light-like as the classical retarded potential.

Furthermore, using the above time-space distance relations, we can deduce the property of distance
between x(S) and x(F ):

(t − R/c) − t′′ >
∣∣	r′ − 	r′′

∣∣⇒ (t − t′′)2 − (r − 	r′′)2 > 0 (23)

Equation (23) shows that for the additional quantum retarded potential, the distance between field
and its source current is mainly time-like, or the quantum retarded potentials propagate with velocity
lower than c. In other words, relative to the classical part of retarded potential, the additional quantum
retarded potential is further retarded.

5. CONCLUSIONS

In conclusion, based on the first order one-loop effective Lagrangian of electromagnetic field, we have
obtained the corresponding quantum modification to the Maxwell equations and classical retarded
potentials. It is found that there exists an additional quantum retarded potential besides the classical
retarded potential, and more importantly, this additional potential propagates more slowly than the
classical one. In other words, it is further retarded relative to the classical part of potential. Furthermore,
we determine that this effect is induced by the non-locality of vacuum polarization.
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