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Loop Antennas with Uniform Current in Close Proximity

to the Earth: Canonical Solution
to the Surface-to-Surface Propagation Problem

Mauro Parise1, *, Marco Muzi1, 2, and Giulio Antonini3

Abstract—In a recent study, the classical problem of a large circular loop antenna carrying uniform
current and situated at the Earth’s surface has been revisited, with the scope to derive a totally analytical
explicit expression for the radial distribution of the generated magnetic field. Yet, the solution arising
from the study exhibits two major drawbacks. First, it describes the vertical magnetic field component
only. Second, it is a valid subject to the quasi-static field assumption, which limits its applicability to
the low-frequency range. The purpose of the present work is to provide the exact canonical solution
to the problem, describing all the generated electromagnetic field components and valid in both the
quasi-static and non-quasi-static frequency regions. These two features constitute an improvement with
respect to the preceding solution. The canonical solution, which is obtained by reducing the field
integrals to combinations of known Sommerfeld integrals, is seen to be also advantageous over the
previous numerical and analytical-numerical approaches, since its usage takes negligible computation
time. Numerical simulations are performed to show the accuracy of the obtained field expressions and
to investigate the behavior of the above surface ground- and lateral-wave contributions to the fields in
a wide frequency range. It is shown that in the near-zone the two waves do not predominate over each
other, while the effect of the lateral wave becomes negligible only when the source-receiver distance is
far greater than the skin depth in the Earth.

1. INTRODUCTION

In the last decades, large circular loops of wire have found extensive application in a number of fields of
scientific and technological interest, including radio communication, radio remote sensing, geophysical
prospecting, amplitude modulation broadcasting, radio direction finding, diathermy. Correspondingly,
a large body of literature has been dedicated to the study of the radiation from these sources [1–24], and
many approaches have been proposed for accurately evaluating the integral representations describing
the generated EM field components. A portion of the published papers deals with sources carrying
uniform currents, either lying in free-space or in presence of stratified material media [1–4, 7, 9, 10, 12].
Even if contributions in that direction are naturally tailored only to electrically small loops, their validity
may be extended to loops of any size relative to the wavelength, provided that the feed system can ensure
a nearly uniform current distribution along the wire. Different techniques make it possible to obtain this
result, and most of them have been known since 1940s [1,24]. The simplest method consists of dividing
the periphery of the antenna into segments that are short in comparison with the wavelength, and
driving such segments in parallel by means of radial transmission lines [1]. In spite of the simplicity of
the antenna geometry, exact analytical explicit expressions for the radiated fields are, to date, available
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only for the free-space case [1–3,9]. When, instead, the circular loop is located horizontally above or on
ground structures, integration of the field integrals becomes difficult and impractical. Explicit solutions
can still be derived, but are either valid subject to restrictive assumptions (on the operating frequency
or the observation points, for instance), or are accurate everywhere but not completely analytical, and,
as a consequence, time consuming. Examples of the former are the small-loop approximations for the
fields [25, 26] and the quasi-static approximation for the vertical magnetic field [16], valid only in the
near zone of the antenna. On the other hand, excellent illustrations of the latter are the series-form
representations arising from applying digital filter technique [4, 18, 22] and Newton’s method [10, 12],
which, before being used, require the a-priori computation of a large set of numerical coefficients.

The present work focuses on the derivation of the complete canonical solution to the problem
of a large horizontal circular loop antenna carrying uniform current and lying on a conducting semi-
infinite half-space. The surface-to-surface propagation case is considered, and the solution is derived
through a totally analytical procedure, which permits to rewrite the field integrals in a form that
involves only previously evaluated Sommerfeld Integrals. As a result, both the electric and vertical
magnetic fields are given as sums of two terms, each one consisting of a series of spherical Hankel
functions of the second kind. The two terms describe the contributions of the above-surface ground
wave and lateral wave generated by the loop. Instead, the radial magnetic field component is expressed
in terms of modified Bessel functions. It is easily understood how useful physical insight can be gained
by investigating the expressions for the field components, and this, combined with the possibility to
rapidly perform any parametric analysis, makes the derived solution advantageous with respect to any
numerical simulation tools employed to solve electromagnetic boundary value problems. Moreover, the
obtained solution permits fast and accurate calculation of the radiated fields regardless of the operating
frequency and the position of the field point, and without requiring the a-priori computation of a set
numerical coefficients. This makes the solution advantageous over any previously published approach
to solve the same problem [4, 10, 12, 18, 22]. Finally, a glance at the far-field asymptotics of the solution
reveals that ground and lateral waves have the characteristics of cylindrical waves travelling in the
positive radial direction. Their analytical expressions are formally similar to those describing the fields
of the loop in free-space, except for the functional dependence on the inverse of the radial distance,
which is quadratic rather than linear. This feature is expected, since it has been previously observed for
small loops [25], and contributes to validate the developed theory. Numerical simulations demonstrate
how in the near-zone of the source ground and lateral waves do not predominate over each other, while
the effect of the lateral wave becomes negligible only when the distance of the field point from the loop
axis is far greater than the skin depth in the conducting medium.

2. PROBLEM FORMULATION

The geometry of the circular loop and the electromagnetic parameters of the plane conducting semi-
infinite half-space are illustrated in Fig. 1. For simplicity, only the portion of half-space that lies in
close proximity to the circular loop is depicted. The emitter lies at the air-medium interface, has radius
a, and carries a current equal to Iejωt. On the other hand, the dielectric permittivity and electrical
conductivity of the medium are indicated with ε1 and σ1, respectively, while the magnetic permeability
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Figure 1: Thin-wire circular loop antenna on the surface of a single-layer conducting medium.
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is assumed to be everywhere equal to that of free space μ0. It is well known [7] that the circular loop can
be represented by a uniform magnetic current distribution over the in-loop region of the interface, that
is by a distribution of magnetic dipoles lying inside the loop. This allows to express the generated field
components in terms of an electric vector potential, resulting from the superposition of the infinitesimal
contributions associated with the dipoles. In the air space, it reads [7]

E = −∇ × F , (1)

H = −jωε0F +
1

jωμ0
∇ (∇ · F ) , (2)

where the vector potential F is given by the superposition integral [27,28]

F (r) =
∫

S

¯̄GF

(
r|ρ′) · dm, (3)

being r = ρρ̂+zẑ the generic field point, dm the moment of the magnetic dipole at the point ρ′ = ρ′ρ̂′,
located at the z = 0 plane, and ¯̄GF (r|ρ′) the three-dimensional dyadic Green’s function corresponding
to F . Finally, S is the circular surface delimited by the edge of the loop. Notice that ¯̄GF includes the
effects of the material medium, and its physical meaning is as follows. The generic scalar component
Gst

F is the s-component of the vector potential at the field point r produced by a unit-moment t-directed
magnetic dipole placed at the source point ρ′ [28]. For the horizontal loop case, the equivalent magnetic
dipoles are directed along the z-axis, and, as a consequence, dm = IdS′ ẑ. Hence, Eq. (3) simplifies to

F (r) = I

∫
S

Gz
F

(
r|ρ′) dS′, (4)

where Gz
F is the third column of ¯̄GF , that is the field due to a unit-moment z-directed point source. It

should be observed that vertical orientation of dipole sources makes the configuration of the problem
symmetrical. This implies that currents in the conducting medium flow only horizontally, and there is
no vertical component of the electric field [7]. Thus, the electromagnetic field is transverse electric (TE)
with respect to z, and, in virtue of Eqs. (1) and (4), the components Fx and Fy, as well as Gxz

F and
Gyz

F , must be identically zero. Equation (4) turns into

F (r) = I

[∫
S
Gzz

F

(
r|ρ′) dS′

]
ẑ, (5)

where Gzz
F is well known and given by [7]

Gzz
F

(
r|ρ′) =

jωμ0

2π

∫ ∞

0

e−u0z

u0 + u1
J0

(
λ|ρ − ρ′|)λdλ, (6)

being Jn(·) the nth-order Bessel function, and

un =
√
λ2 − k2

n, Re[un] > 0, (7)

k2
n = −jωμ0 (σn + jωεn) . (8)

Interchange of the order of the integrals in Eq. (5), and use of the tabulated result [7]∫
S
J0

(
λ|ρ − ρ′|) dS′ =

2πa
λ
J0 (λρ) J1 (λa) (9)

allows to express F as

F = jωμ0Ia

[∫ ∞

0

e−u0z

u0 + u1
J0(λρ)J1(λa)dλ

]
ẑ. (10)

It should be observed that Eq. (10) describes the difference between the total field reflected by the
material medium and the ideal reflected field, that is the field of an ideal negative image loop [12]. In
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fact, when the source lies at the air-medium interface, the image field exactly compensates the direct
field generated by the antenna.

The present work is focused on the derivation of the canonical solution for the non-null field
components Eϕ, Hρ, and Hz at the air-medium interface (z = 0+). The derivation consists of casting
the integral representations for Eϕ and Hρ into forms involving only previously evaluated Sommerfeld
Integrals. Once the two field components are written in explicit form, an analogous explicit expression
for Hz can be deduced by applying Faraday’s law.

Use of Eqs. (10) in Eqs. (1) and (2) allows to obtain, after performing the derivatives, the following
representations for Eϕ and Hρ

Eϕ = − jωμ0Ia

∫ ∞

0

e−u0z

u0 + u1
J1(λρ)J1(λa)λdλ, (11)

Hρ = Ia

∫ ∞

0

u0 e
−u0z

u0 + u1
J1(λρ)J1(λa)λdλ, (12)

which, after multiplying the numerator and denominator of the fractions under the integral signs by
(u0 − u1), may be further simplified to

Eϕ = − jωμ0Ia

k2
1 − k2

0

(P0 − P1) , (13)

Hρ =
Ia

k2
1 − k2

0

(Q0 −Q1) , (14)

being

Pn =
∫ ∞

0
une

−u0zJ1(λρ)J1(λa)λdλ, (15)

Qn =
∫ ∞

0
u0une

−u0zJ1(λρ)J1(λa)λdλ. (16)

Next, use of the identity [29, 11.41.17]

Jm(ξ)Jm(ψ) =
1
π

∫ π

0
J0 (η) cosmφdφ, (17)

where
η =

√
ξ2 + ψ2 − 2ξψ cosφ, (18)

makes it possible to rewrite Eqs. (15) and (16) as

Pn =
1
π

∫ π

0
cosφ

∫ ∞

0
une

−u0zJ0 (λR)λdλ dφ, (19)

Qn =
1
π

∫ π

0
cosφ

∫ ∞

0
u0une

−u0zJ0 (λR)λdλ dφ, (20)

with
R =

√
ρ2 + a2 − 2aρ cosφ. (21)

To evaluate the Pn’s it is convenient to replace un in (19) with

un =
[
∂2

∂ζ2

(
e−unζ

un

)]
ζ=0

, (22)

and, after taking the limit as z→0+, make use of the Sommerfeld Identity [30, p. 9, no. 24]∫ ∞

0

e−unζ

un
J0 (λR)λdλ =

e−jkn

√
R2+ζ2√

R2 + ζ2
, (23)
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so as to obtain

Pn =
1
π

(
∂2Sn

∂ζ2

)
ζ=0

, (24)

with

Sn =
∫ π

0

e−jkn

√
R2+ζ2√

R2 + ζ2
cosφdφ. (25)

The explicit form of Eq. (25) is tabulated in [3, (53)–(56)]. It reads

Sn = −jπkn

∞∑
l=1

(
k2

naρ/2
)2l−1

l! (l − 1)!
h

(2)
2l−1(kn

√
r2 + ζ2)

(kn

√
r2 + ζ2)2l−1

, (26)

being h(2)
l (·) the lth-order spherical Hankel function of the second kind and r =

√
ρ2 + a2, and, as a

consequence, Eq. (24) turns into

Pn = −jkn

∞∑
l=1

(
k2

naρ/2
)2l−1

l! (l − 1)!

[
∂2

∂ζ2

h
(2)
2l−1(kn

√
r2 + ζ2)

(kn

√
r2 + ζ2)2l−1

]
ζ=0

= jk3
n

∞∑
l=1

(
k2

naρ/2
)2l−1

l! (l − 1)!
h

(2)
2l (knr)

(knr)
2l

. (27)

On the other hand, combining Eq. (7) with the Bessel differential equation [31,32](
∂2

∂R2
+

1
R

∂

∂R
+ λ2

)
C0(λR) = 0, (28)

where C0 (·) is any zeroth-order Bessel function, leads to the equation

u2
nJ0(λR) = −

(
∂2

∂R2
+

1
R

∂

∂R
+ k2

n

)
J0(λR) = −Ln [J0(λR)] , (29)

which may be used in Eq. (20) to give, in the limit as z→0+, the expression

Qn =
1
π

∫ π

0
cosφL0Ln

[∫ ∞

0

1
u0un

J0 (λR)λdλ
]
dφ. (30)

Evaluation of Q0 is straightforward. In fact, from [30, p. 11, no. 45] it follows that∫ ∞

0

1
u2

0

J0 (λR)λdλ = K0 (k0R) , (31)

where K0(·) is the zeroth-order modified Bessel function of the second kind. This implies that Q0 is null
since, in virtue of Eq. (28), L0[K0 (k0R)] = 0. Finally, Q1 may be evaluated by proceeding as follows.
First, use of the well-known result [30, p. 8, no. 17]∫ ∞

0

1
u0u1

J0 (λR)λdλ = K0 (αR) I0 (βR) , (32)

where I0(·) is the zeroth-order modified Bessel functions of the first kind, and

α =
j (k1 + k0)

2
, β =

j (k1 − k0)
2

, (33)

makes it possible to simplify expression (30), written for Q1, to

Q1 =
1
π

∫ π

0
L0L1 [K0 (αR) I0 (βR)] cosφdφ

=
2α2β2

π

∫ π

0
[K2 (αR) I2 (βR) −K0 (αR) I0 (βR)] cosφdφ. (34)
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Next, use of the relation [29, 11.41.17]

Km (ξ) Im (ψ) =
1
π

∫ π

0
K0 (η) cosmφdφ, (35)

permits to rewrite Eq. (34) as

Q1 =
2α2β2

π2

∫ π

0

(
cos 2φ′ − 1

) ∫ π

0
K0 (δR) cosφdφdφ′ =

2α2β2

π

∫ π

0
K1 (δρ) I1 (δa)

(
cos 2φ′ − 1

)
dφ′

= −2α2β2

πδ

∂

∂a

∫ π

0
K1 (δρ) I0 (δa)

(
cos 2φ′ − 1

)
dφ′, (36)

being

δ =
√
α2 + β2 − 2αβ cosφ′. (37)

The last integral in Eq. (36) is written in a form suitable for application of addition formulas [29, 11.41.8]
and [29, 11.3.7], namely

K1 (δρ) =
2δ
αβρ

∞∑
m=1

fm(ρ)C(1)
m−1

(
cosφ′

)
, (38)

I0 (δa) = g0(a) + 2
∞∑
l=1

(−1)lgl(a) cos lφ′, (39)

with

fm(ρ) = mKm (αρ) Im (βρ) , (40)

gl(a) = Il (αa) Il (βa) , (41)

and where C
(1)
m (cosφ′) denotes the coefficient of θm in the expansion of

(
1 − 2θ cosφ′ + θ2

)−1 in
ascending powers of θ. It yields

Q1 = −4αβ
πρ

∞∑
l=0

(−1)l
∂ [gl(a)]
∂a

∞∑
m=1

qlmfm(ρ), (42)

being

qlm =

⎧⎪⎪⎨
⎪⎪⎩

∫ π

0
C

(1)
m−1

(
cosφ′

) (
cos 2φ′−1

)
dφ′, l = 0,

2
∫ π

0
C

(1)
m−1

(
cosφ′

) (
cos 2φ′−1

)
cos lφ′ dφ′, l > 0,

(43)

and, since it holds

qlm =

⎧⎪⎨
⎪⎩
π, m = l − 1, l > 1,
−π, m = l + 1,
0, elsewhere,

(44)

one obtains

Q1 =
4αβ
ρ

[
f1
∂g0
∂a

+
∞∑
l=1

(−1)l (fl+1 − fl−1)
∂gl

∂a

]
, (45)
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where the dependences of fl and gl on ρ and a have been omitted for better clarity. Finally, applying
the recurrence relations for the Bessel functions [31, 9.6.26-9.6.28] provides the explicit form of the
a-derivatives in Eq. (45), that is

∂g0
∂a

=
2
αβa

[(
α2 + β2

)
g1 + 2αβg2

]
+
∂g2
∂a

, (46)

∂gl

∂a
=
αβa

2 l
(gl−1 − gl+1) , l > 0. (47)

Substitution of Eqs. (27) and (45) in Eqs. (13) and (14), respectively, gives rise to

Eϕ =
ωμ0Ia

4αβ

[
k3

n

∞∑
l=1

(
k2

naρ/2
)2l−1

l! (l − 1)!
h

(2)
2l (knr)

(knr)
2l

]n=1

n=0

, (48)

Hρ =
Ia

ρ

[
f1
∂g0
∂a

+
∞∑
l=1

(−1)l (fl+1 − fl−1)
∂gl

∂a

]
, (49)

while from Eq. (48) and Faraday’s law, namely

H = − 1
jωμ0

∇ × E, (50)

it follows that

Hz = − 1
jωμ0

1
ρ

∂ (ρEϕ)
∂ρ

=
jIa2

4αβ

{
k5

n

∞∑
l=1

(
k2

naρ/2
)2l−2

[(l − 1)!]2

[
h

(2)
2l (knr)

(knr)
2l

− (knρ)
2

2l
h

(2)
2l+1 (knr)

(knr)
2l+1

]}n=1

n=0

, (51)

where {Xn}n=1
n=0 indicates the difference X1 − X0. It should be noted that the two contributions in

Eqs. (48) and (51), corresponding to n = 0 and n = 1, are related to the branch-cut integrals arising
from deforming the integration path in Eq. (11), so that it is wrapped around the branch lines running
from k0 and k1. As such, the two terms describe the above-surface ground wave (associated with k0)
and the lateral wave (associated with k1). Analogously, Eq. (49) is the result of the analytical evaluation
of the branch-cut integrals originating from Eq. (12), even if one cannot distinguish the contributions
of the two waves to the total Hρ-field.

In the far-zone of the antenna, the above-surface ground wave and lateral wave have the
characteristics of cylindrical waves travelling in the positive ρ-direction. The corresponding analytical
expressions may be obtained from Eqs. (48), (49), and (51) by assuming ρ � a, r ∼= ρ, and |kn|ρ � 1.
This allows to replace the spherical Hankel functions in Eqs. (48) and (51) with their asymptotic
expansions for large arguments, that is

h
(2)
l (knr)∼=h(2)

l (knρ)∼=jl+1 e
−jknρ

knρ
, (52)

and to express the Eϕ- and Hz-fields as

Eϕ
∼= − jωμ0Ia

4αβρ2

[
knJ1 (kna) e−jknρ

]n=1

n=0
, (53)

Hz
∼= − Ia

4αβρ3

{
k2

n [jρJ1 (kna) − aJ0 (kna)] e−jknρ
}n=1

n=0

∼= − jIa

4αβρ2

[
k2

nJ1 (kna) e−jknρ
]n=1

n=0
, (54)

where use has been made of the identity

Jm (kna) =
∞∑
l=0

(−1)l

l! (l +m)!

(
kna

2

)2l+m

. (55)
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On the other hand, introducing the asymptotic expansions of the modified Bessel functions for large
arguments, namely [26,33,34]

Il(βρ)∼=e
βρ + (−1)lje−βρ

√
2πβρ

, (56)

Kl(αρ)∼=
√

π

2αρ
e−αρ, (57)

makes it possible to rewrite fl (ρ) in the form

fl(ρ)∼= l

2ρ
√
αβ

[
e−jk0ρ + (−1)lje−jk1ρ

]
, (58)

and express Eq. (49) as

Hρ
∼= Ia

2ρ2
√
αβ

{
e−jk0ρ ∂

∂a

[
g0 (a) + 2

∞∑
l=1

(−1)lgl (a)

]
− je−jk1ρ ∂

∂a

[
g0 (a) + 2

∞∑
l=1

gl (a)

]}
. (59)

The quantities in the square brackets of Eq. (59) coincide with the right-hand side of Eq. (39), provided
that it is assumed φ′ = 0 and φ′ = π, respectively. Thus, use of Eq. (39) in combination with Eq. (33)
leads to simplifying Eq. (59) to

Hρ
∼= Ia

2ρ2
√
αβ

[
jne−jknρ ∂

∂a
I0 (jkna)

]n=0

n=1

=
Ia

2ρ2
√
αβ

[
jnknJ1 (kna) e−jknρ

]n=1

n=0
. (60)

Expressions (53), (54), and (60) tell us that the far-field results from the interference of two sinusoidal
waves, which propagate with the wavenumbers k0 and k1 and decay as 1/ρ2 with increasing ρ. It should
be noted that the presence of the material medium has the effect to change the ρ-dependence in the
field expressions, from 1/ρ to 1/ρ2. In fact, the non-null far electric and magnetic field components of
the circular loop in free-space are given by the formulas [2]

Eϕ
∼=ωμ0Ia

2ρ
J1 (k0a) e−jk0ρ, (61)

Hz
∼= k0

ωμ0
Eϕ, (62)

which, except for the 1/ρ dependence, are formally similar to each of the two terms in Eqs. (53) and
(54). This feature is expected, since it has been previously observed for small loops [26].

3. DISCUSSION

To test the correctness and accuracy of the developed theory, expressions (48), (49), and (51) are applied
to the computation of the frequency spectra of the Eϕ-, Hρ-, and Hz-fields produced on the top surface of
a homogeneous clay soil by a circular loop, 100/πm in radius, which carries 1A of current. The electrical
conductivity and dielectric permittivity of clay are taken to be σ1 = 25 mS/m and ε1 = 10 ε0 [35–38],
respectively, while the field point is located at distance ρ = 1000/πm from the loop axis. The field
components are computed at 200 frequency points, distributed in the range comprised between 100 Hz
and 40 MHz. The obtained results, depicted in Figs. 2–4, are compared with the data provided by
numerical integration of Eqs. (1)–(10). Quadpack library included in the Slatec mathematical libraries
is used to perform numerical evaluation of the field integrals.

Each solid or dashed curve of Figs. 2–4 is associated with a specific index l at which the sums in
Eqs. (48), (49), and (51) are truncated. As is seen, the convergence of the proposed solution is fast, since
it suffices to use sums made up of 11 terms (for Eϕ and Hz) and 14 terms (for Hρ) to achieve curves
that are in excellent agreement with the exact numerical data. Fast convergence rate is associated with
low computation time. For instance, on a single-core 1.8 GHz PC, computation of the spectrum of |Eϕ|
takes only 7 s, which is a negligible time cost if compared to that of Gaussian quadrature, that is about
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Figure 2: Amplitude-frequency spectrum of Eϕ,
computed at distance ρ = 1000/πm from the loop
axis.
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Figure 3: Amplitude-frequency spectrum of Hρ,
computed at distance ρ = 1000/πm from the loop
axis.
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Figure 4: Amplitude-frequency spectrum of Hz, computed at distance ρ = 1000/πm from the loop axis.

412 s. It should be noted that Fig. 4 also illustrates the behavior of the quasi-static approximation of
Hz, published in [16]. From a comparison with the outcomes from Eq. (51), truncated at l = 11, it
emerges that beyond 100 kHz the quasi-static trend and the exact curve start to diverge. In particular,
the quasi-static approximation for Hz is valid up to about 210 kHz, where the relative percent error
resulting from using it rather than Eq. (51) is equal to 10 % (the generated outcome is 3.4·10−8 A/m
instead of 3.8 · 10−8 A/m).

Figures 2–4 show that the spectra of |Eϕ|, |Hρ|, and |Hz| start to oscillate at frequencies higher
than 1MHz. The oscillatory trend is due to the fact that, at high frequencies, the field point enters the
far-zone of the antenna, where, as will be clarified later, the ground wave predominates over the lateral
wave. The consequence of this is that, according to Eqs. (53), (54), and (60), the frequency spectra of
the field components are dominated by the Bessel function J1 (k0a), which, in turn, may be confused
with its asymptotic approximation for large arguments, because the antenna has become electrically
large (k0a� 1). It reads

J1 (k0a)∼=
√

2
πk0a

sin
(
k0a− π

4

)
, (63)

and the amplitudes of |Eϕ| and |Hz| assume the forms

|Eϕ|∼=ωμ0I

αβρ2

√
k0a

8π

∣∣∣sin (
k0a− π

4

)∣∣∣ , |Hz|∼= k0

ωμ0
|Eϕ|. (64)
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Expressions (64) tell us that the period of the high-frequency oscillatory patterns shown in Figs. 2–4
can be calculated by equating 2k0a to 2π, and then solving for frequency. For a = 100/πm the period,
which will be referred to as f̃ , is equal to

f̃ =
1

2a
√
μ0ε0

=
3π · 108

200
∼= 4.7 MHz, (65)

a value that is in agreement with the plotted curves.
As anticipated above, at frequencies higher than 1MHz the effect of the lateral wave is substantially

negligible. This aspect is pointed out in Fig. 5, which shows the spectra of the ground- and lateral-wave
contributions to the Hz-field in a frequency range comprised between 100 Hz and 100 MHz, together
with the total field (denoted by points). The electromagnetic parameters of the medium, as well as the
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lateral-wave (lw) components, computed at ρ =
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position of the field point, are taken to be the same as in the previous examples, and computations
have been performed truncating the infinite sums in Eq. (51) at l = 11. As is seen, at extremely low
frequencies the lateral wave interferes destructively with the ground wave, and, as a result, the total field
strength is about one order of magnitude smaller than those of the two contributions. When frequency
is increased, the lateral-wave field rapidly diminishes in magnitude, and this is strictly related to the
reduction of the skin depth δ1 in the conducting medium. In particular, the lateral wave does not affect
the total field if δ1 is far less than the distance of the field point from the edge of the loop (|ρ−a|). This
happens, for instance, at the frequency of 250 kHz, when δ1 = a/5 and ρ− a = 9a = 45δ1, as shown in
Fig. 5.

Following this rationale, increase of δ1 through a reduction of σ1 can mitigate the attenuation of
the amplitude-frequency spectrum of the lateral wave. Thus, in the limit as δ1→∞, corresponding to a
lossless medium, the lateral wave is expected to exist even in the far-zone of the antenna. Confirmation
of this expectation is provided by Fig. 6, which shows the frequency spectrum of |Hz| obtained under
the assumption of lossless dielectric. As is observed, at high frequencies now the lateral wave not only
significantly affects the total field, but offers the most important contribution.

To better understand the dependence of the lateral-wave strength on the distance from the edge of
the loop, expressed in skin depths, it suffices to take a glance at Fig. 7, which depicts the amplitude of the
total Hz-field against ρ at 250 kHz (solid line), together with those of the two wave contributions (dashed
line and points). The conductivity of the medium has been diminished by two orders of magnitude,
from σ1 = 25 mS/m down to σ1 = 0.25 mS/m. As is seen, at distance ρ = 1000/π = 10 a from the loop
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axis the effect of the lateral wave is no longer negligible with respect to that of the ground wave, and
this is in agreement with Eq. (54), which provides the following estimate of the ratio between the two
contributions

τ =
|H lw

z |
|Hgw

z |
∼=k

2
1J1 (k1a)
k2
0J1 (k0a)

|e−jk1ρ| ∼= 1.1. (66)

The proximity of τ to unity is to be attributed to the fact that ρ−a is only 4.5 times the skin depth δ1,
which is now equal to 2a. To reduce τ down to at most 0.1, so as to obtain an ineffective lateral wave, the
source-receiver distance ρ must exceed 580 m, which corresponds to 18.2 a. Thus, the lateral-wave field
may be considered really negligible when ρ − a > 17.2 a = 8.6 δ1, that is, in general, when ρ− a � δ1.
For instance, as clearly highlighted by Fig. 7, this occurs when ρ− a = 20 a = 10 δ1.
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Figure 7: Amplitude of Hz versus source-receiver distance, computed at the frequency of 250 kHz.

Finally, Fig. 7 also depicts the ρ-profile of the Hz-field arising from the vertical magnetic dipole
(i.e., small loop) approximation published in [26]. The fact that, when ρ is significantly greater than a,
the outcomes from the proposed and small-loop solutions are substantially overlapping, contributes to
validate the developed theory.

4. CONCLUSIONS

This work has focused on the classical problem of a large circular loop antenna carrying uniform current
and situated at the Earth’s surface. For such a problem, a totally analytical solution for the surface-
to-surface propagation case is currently available, which is valid in the quasi-static frequency range
and for the vertical magnetic field component only. In an attempt to overcome the limitations of this
approach, the present work has proposed a procedure that allows to derive the exact canonical solution
to the problem. The canonical solution describes all the radiated field components, and is valid in both
the quasi-static and non-quasi-static frequency regions. Numerical simulations have been performed to
illustrate the advantages of using the obtained expressions for the fields. It has been shown how the
amplitude-frequency spectrum of the vertical magnetic field arising from the canonical solution is highly
accurate, and that, in the considered examples, the quasi-static approximation fails at frequencies higher
than 210 kHz. It has been also shown that computational cost of the canonical solution is negligible
with respect to that of numerical techniques commonly used to evaluate Sommerfeld-type integrals.
Finally, the field components are given in a form that makes it possible to separately study the above
surface ground- and lateral-wave contributions in a wide frequency range.
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