
Progress In Electromagnetics Research C, Vol. 76, 33–41, 2017

Efficient Sparse Imaging Reconstruction Algorithm
for Through-the-Wall Radar

Lele Qu*, Xing Cheng, and Tianhong Yang

Abstract—Sparse reconstruction technique can be used to provide high-resolution imaging result for
through-the-wall radar (TWR) system. Since conventional sparse imaging reconstruction algorithms
usually require a tremendous amount of computer memory and computational complexity, it is very
difficult to apply in the practical large-scale TWR imaging applications. To solve the above problem,
an efficient sparse imaging reconstruction algorithm is proposed in this paper. The proposed imaging
method combines the spectral projection gradient L1-norm (SPGL1) algorithm with nonuniform fast
Fourier transform (NUFFT) technique to achieve imaging reconstruction. Benefiting from the function
handle operation of SPGL1 and computational efficiency of NUFFT, the proposed imaging algorithm
can significantly reduce the memory requirement and computation complexity. The simulated and
experimental results have shown that the proposed imaging method can significantly reduce the required
computer memory and computational cost while providing the similar recovered image quality as the
conventional sparse imaging method.

1. INTRODUCTION

Through-the-wall radar (TWR) imaging has drawn substantial attention due to its numerous civilian and
military applications in surveillance, reconnaissance and rescue operations [1]. For these applications,
it is crucial to design effective imaging algorithms to obtain clean and highly resolved image of a
scene of interest behind an opaque obstacle. In most TWR imaging scenarios, a wideband waveform
in conjunction with a large antenna aperture is required to achieve the highly resolved images. This
results in a great amount of measurement data, long data acquisition time, as well as large storage and
memory requirement. The compressive sensing (CS) and sparse reconstruction techniques have been
successfully applied to TWR imaging for speeding up data acquisition and achieving high-resolution
imaging. The first application of CS to TWR imaging was presented in [2] and further developed in [3–
6]. In particular, a number of robust sparse TWR imaging algorithms have been proposed for hostile
environments such as strong front wall clutter [7, 8] and multipath echo interference [9].

Although the existing sparse imaging approaches are capable of obtaining successful imaging
results, these algorithms require that the data dictionary matrix should be explicitly constructed before
the imaging process and thus are quite computationally intensive with huge memory burden, which
typically make these algorithms impractical for large-scale TWR imaging problems. Therefore, in
order to improve the efficiency both in terms of memory and computational complexity, an efficient
sparse imaging reconstruction algorithm for TWR system is proposed in this paper. In the proposed
imaging method, the spectral projection gradient L1-norm (SPGL1) algorithm [10] combined with
nonuniform fast Fourier transform (NUFFT) technique [11] is employed to reduce the required computer
memory and improve computational efficiency. Benefiting from the function handle operation of SPGL1
and computational efficiency of NUFFT, the proposed imaging algorithm can significantly reduce the
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memory requirement and accelerate the matrix-vector multiplication in the imaging reconstruction
process.

The remainder of this paper is organized as follows. Section 2 outlines signal model of sparse TWR
imaging problem. The proposed efficient sparse imaging reconstruction algorithm for TWR system is
presented in Section 3. Experimental results are provided in Section 4 to validate the performance and
efficiency of the proposed imaging approach. Section 5 concludes this paper.

2. SIGNAL MODEL

The TWR imaging problem is formulated assuming a stepped-frequency continuous-wave (SFCW) radar
system. The scene of interest to be imaged is divided into Q pixels in crossrange and downrange.
Consider an M -element line array of transceivers and N frequencies equispaced over the desired working
bandwidth, the target return at the mth (m = 0, . . . ,M − 1) antenna corresponding to the nth
(n = 0, . . . , N − 1) frequency can be expressed as

rm(n) =
Q−1∑
q=0

σqe
−j2πfnτm,q (1)

where σq is the reflection coefficient corresponding to the qth pixel, which is assumed to be independent
of frequency and transceiver location. fn = f0 + nΔf is the nth working frequency, f0 the starting
frequency, Δf the uniform frequency step, and τm,q the round-trip propagation time between the mth
antenna location and the qth pixel.

Vectoring the image of the investigated area into the Q × 1 scene reflectivity vector σ =
[σ0, σ1, . . . , σQ−1]T , the signal model of Eq. (1) can be expressed in an equivalent matrix-vector form as

rm = Ψmσ (2)

where rm = [rm(0), . . . , rm(1), . . . , rm(N − 1)]T is the N × 1 local measurement vector corresponding to
the mth antenna location. Ψm is the N × Q local dictionary matrix, and its nth row is given by

[Ψm]n =
[
e−j2πfnτm,0 , e−j2πfnτm,1 , . . . , e−j2πfnτm,Q−1

]
(3)

Considering that there are total M available antenna locations, the TWR imaging model is described
as

r = Ψσ + n (4)

where r = [rT
0 , . . . , rT

M−1]
T is the MN × 1 measurement vector, Ψ = [ΨT

0 , . . . ,ΨT
M−1]

T is the MN × Q
dictionary matrix. Without loss of generality, the Q×1 additive noise vector n is considered in Eq. (4).

3. EFFICIENT SPARSE TWR IMAGING METHOD

In this section, we propose the efficient sparse TWR imaging algorithm by combining the SPGL1
algorithm and NUFFT technique and analyze its improvements of computer memory requirement and
computational complexity.

3.1. SPGL1 Algorithm

In many TWR imaging scenarios, the observed scene of interest is inherently sparse, i.e., the data may
be represented with a few dominant coefficients in σ and others are very close to zero. As such, the
sparse solution of σ in Eq. (4) can be obtained by utilizing the basis pursuit de-noising (BPDN) strategy

σ̂ = arg min ‖σ‖1 s.t. ‖r − Ψσ‖2 < ε (5)

where ‖ · ‖1 and ‖ · ‖2 denote l1 and l2 norms, respectively. ε is the recovery error tolerance and can be
determined using the cross-validation technique [12].

It is noted that the computational burden of Eq. (5) is highly dependent on the size of discretized
pixels and the number of data measurements. Thus the TWR imaging problem is typically very difficult
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because of the huge size of the dictionary matrix Ψ and high computational burden imposed by a fully
TWR inversion algorithm. In particular, the SPGL1 software package [13] is employed to solve the
BPDN problem of Eq. (5). The foremost reason for choosing SPGL1 is that it can perform BPDN
method by using functional inputs for dictionary matrix Ψ instead of explicit enumeration of the
dictionary matrix Ψ. The function representation of Ψ can dramatically reduce constraints in creating,
storing and applying Ψ for the large-scale TWR imaging problem. Hence, the operator formalism is
indispensable. The products of matrix-vector are replaced with the specially designed function handles
to perform the action of Ψ and ΨH on arbitrary vectors.

3.2. Efficient Implementation of Operators Using NUFFT

In the SPGL1 algorithm, directly forming the matrices Ψ and ΨH is usually computationally infeasible
due to memory limitations. Fortunately, the forward operator Ψ and the adjoint operator ΨH are very
similar to discrete Fourier transform (DFT) matrices. In fact, Ψ and ΨH can be treated as type-I
NUFFT and type-II NUFFT, respectively. Then the matrix-vector multiplication of two operators can
be completed by NUFFT with high efficiency.

The basic idea of type-I NUFFT algorithm is to transform nonuniform samplings to uniform space
data. The one-dimensional type-I NUFFT is defined as

F (k) =
L−1∑
l=0

fle
−jkxl, k = −K

2
, . . . ,

K

2
− 1 (6)

where xl ∈ [0 2π] is the ununiform space data.
Assume that fc = (f0 + fN−1 + Δf)/2. The matrix-vector multiplication of Eq. (2) can be written

as

rm(n + N/2) =
Q−1∑
q=0

σqe
−j2π(fc+nΔf)τm,q

= e−j2πfcτm,q

Q−1∑
q=0

σqe
−j2πnΔfτm,q

= e−j2πfcτm,q

Q−1∑
q=0

σqe
−jnτ̂m,q n = −N

2
, . . . ,

N

2
− 1 (7)

where τ̂m,q = 2πΔfτm,q, rm(n+N/2) is essentially the measurement data collected at the mth antenna
location. It is observed that σq, n and τ̂m,q in Eq. (7) are equivalent of fl, k and xl in Eq. (6), respectively.
Hence, Eq. (7) can be treated as the type-I NUFFT and efficiently calculated through fast Gaussian
gridding-based NUFFT technique [11]. Since there are a total of M antenna locations, the forward
operator Ψ can be regarded as M evaluations of type-I NUFFT.

The type-II NUFFT algorithm is used to calculate the transformation of uniform space data into
ununiform space data. The one-dimensional type-II NUFFT is defined as

f(xl) =

K
2
−1∑

k=−K
2

F (k)ejkxl l = 0, . . . , L − 1 (8)

where F (k) is the uniformly sampled data, xl ∈ [0 2π] is the ununiform space data.
The matrix-vector multiplication ΨH

mrm can be written as

f(aq) =
N−1∑
n=0

rm(n) expj2πfnτm,q

=
N/2−1∑

n=−N/2

rm(n + N/2)ej2π(fc+nΔf)τm,q
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= ej2πfcτqm ·
N/2−1∑

n=−N/2

rm(n + N/2)ejn2πΔfτm,q

= ej2πfcτqm ·
N/2−1∑

n=−N/2

rm(n + N/2)ejnaq q = 0, . . . , Q − 1 (9)

where rm(n + N/2) is again essentially the measurement data collected at the mth antenna position,
and aq = 2πΔfτm,q is the nonuniform space data corresponding to the mth antenna position. It is
noted that rm(n + N/2), n and aq in Eq. (9) are equivalent to F (k), k and xl in Eq. (8), respectively.
Hence Eq. (9) can be regarded as type-II NUFFT and calculated with fast Gaussian gridding-based
NUFFT technique. Since there are a total of M antenna locations, the adjoint operator ΨH involves
M evaluations of type-II NUFFT.

4. SIMULATION AND EXPERIMENTAL RESULTS

4.1. Simulation Results

In this section, we evaluate the performance of the proposed imaging scheme using synthesized data.
A stepped-frequency signal consisting of 200 equally spaced frequencies covering the 1 to 2.99 GHz
frequency band with a frequency step of 10 MHz are used for imaging reconstruction. A monostatic
synthetic line array, consisting of 51-element locations with an inter-element spacing of 2 cm is employed.
Therefore the total number of the measurement data is 200 × 51 = 10200. A homogeneous wall of
thickness 0.2 m and a dielectric constant 4 is placed in front of the array at a standoff distance of
0.5 m. As shown in Fig. 1(a), four point targets located at (−0.64, 0.4) m, (0.64, 0.4) m, (−0.64, 1.6) m
and (0.64, 1.6) m with reflection coefficients all equal to 0.1 are considered in the sparse scene. The
region to be imaged is chosen to be 2m(crossrange)× 2 m (downrange) and divided into 50× 50 = 2500
pixels. Additive complex white Gaussian noise is added to the measurement data with a signal-to-
noise ratio (SNR) of 10 dB. The wall reflection is assumed to be removed by subtracting the empty
scene measurements from the measurement with targets. Numerical experiments are implemented on
a desktop with Intel(R) Core(TM) i5-3470U CPU at 3.2 GHz with an 8 GB memory with MATLAB
platform.

For the traditional SPGL1 imaging algorithm, the dictionary matrix has a size of 10200 × 2500 =
25500000. A double-precision floating point variable is kept in memory by 8bytes. Each element of the
dictionary matrix is a complex number and requires 16 bytes in memory. This means that nearly 389 MB
data memory is required for the storage of the dictionary matrix. However, for the NUFFT-based SPGL1
imaging algorithm, only the two-way traveling time of each pixel for 51 monostatic antenna locations
should be calculated offline and stored in the memory. There are a total of 51 × 2500 = 127500 time
delays to be calculated and thus only a total of 0.97 MB computer memory is required for the storage
of the values of time delays. Since the memory requirements of the NUFFT-based SPGL1 has no
relationship with the number of transmitted frequencies, the memory requirement of the NUFFT-based
algorithm is much less than that of the conventional SPGL1 algorithm. Figs. 1(b) and (c) respectively
report the reconstruction results obtained by means of the conventional SPGL1 algorithm and NUFFT-
based SPGL1 imaging algorithm. The true target positions are indicated with black rectangles. It is
observed that the imaging result of the proposed NUFFT-based SPGL1 imaging method is as good
as that with the conventional SPGL1 imaging method. The total running time of the traditional and
NUFFT-based SPGL1 imaging method is 2.6 s and 2.2 s, respectively.

In order to provide a quantitative analysis of the reconstruction accuracy of the proposed imaging
method, we define the normalized mean squared error (NMSE) as

NMSE = ‖f̂ − f‖2
2/‖f‖2

2 (10)

where f̂ is a column vector, and each element of f̂ represents the value of each pixel of the reconstructed
imaging result. f is also a column vector with each element denoting the value of each pixel of original
scene. The NMSE for the traditional SPGL1 and NUFFT-based SPGL1 imaging results versus different
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Figure 1. (a) Geometry of the original scenario. (b) Imaging result with the traditional SPGL1
algorithm. (c) Imaging result with the NUFFT-based SPGL1 algorithm.

SNR levels are provided in Fig. 2, where results are computed as the mean of NMSE from 30 independent
experiments. It can been seen that the NMSE decreases as the SNR increases. Furthermore, the NMSE
of the proposed NUFFT-based SPGL1 imaging method is relatively larger than that of the conventional
SPGL1 imaging method. This phenomenon is essentially caused by a few sidelobes in the imaging result
introduced by the calculation approximation error of NUFFT.

To compare the memory performance of the classical SPGL1 and the proposed NUFFT-based
imaging method, the number of discretized pixels is changed, and the required computer memories for
two imaging methods are compared. Fig. 3 gives the memory requirement of two imaging methods
as a function of the number of discretized pixels. It is observed that increasing the number of pixels
increases memory requirement of two imaging methods. Moreover, the proposed NUFFT-based SPGL1
imaging method requires much less memory compared to the traditional SPGL1 imaging method and
is practical for large-scale TWR imaging applications. When the total number of pixels increases to
2500 · 24 = 40000, the required memory of NUFFT-based SPGL1 algorithm is nearly 1/446 times that
of the traditional SPGL1 algorithm.

Another advantage of the proposed imaging method is the computational efficiency. The running
time consumed by the conventional and proposed SPGL1 imaging algorithm against the number of
discretized pixels are shown in Fig. 4, where each value is evaluated based on the average of 10 trials.
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Figure 2. NMSE comparison of two imaging methods under different SNR values.
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Figure 3. Memory requirement comparison of two
imaging methods.
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Figure 4. Running time comparison of two
imaging methods.

Benefiting from the computational efficiency of NUFFT for matrix-vector multiplication, the proposed
NUFFT-based SPGL1 imaging method is much faster than the traditional imaging method, especially
when the number of discretized pixels is relatively large. When the total number of pixels increases to
2500 · 24 = 40000, the speed up ratio approaches nearly 4.

4.2. Experimental Results

The proposed NUFFT-based SPGL1 sparse imaging method is evaluated on the experimental TWR
data collected in the Radar Imaging Lab of the Center for Advanced Communications at Villanova
University. The wall is built from a wooden frame, which is fasten with 0.019 m plywood on one side
and 0.016 m gypsum wallboard on the other side. A 69-element linear array of length 1.5 m is synthesized
with an inter-element spacing of 0.022 m, and a stepped-frequency signal of 1 GHz bandwidth centered
at 2.5 GHz with a frequency step size of 5 MHz is used to image the scene. The nonhomogeneous wall
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Figure 5. Ground-truth of the observed scene.

has a thickness of 0.127 m and is placed at a standoff distance of 0.0127 m from the front face of the
antennas. More detailed information about the experimental setup is provided in [14]. The scene to be
imaged consists of nine targets: a sphere, three dihedrals, four trihedrals and a cylinder. Fig. 5 shows the
true positions of nine targets in the observed scene. The imaged scene is chosen to be have a downrange
of [1, 7]m and a crossrange of [−2, 2] m and divided into 121×81 spatial grids with an interval of 0.05 m
in both downrange and crossrange. At each measurement position, 200 frequency measurement ranging
from 2GHz to 2.995 GHz with a step of 5 MHz are utilized for imaging reconstruction. In addition,
background subtraction is performed on the raw data to remove the strong wall reflection signal.

The imaging reconstruction results of the experimental data using two imaging methods are
illustrated in Fig. 6. The true target locations are indicated by the black rectangles. It is observed
from Fig. 6 that both the traditional and NUFFT-based SPGL1 sparse imaging methods can accurately
detect and locate eight targets. Due to its weak return with very low SNR, the small trihedral at a
downrange of 5.7 m is missed in both Fig. 6(a) and Fig. 6(b). The imaging results also indicate that the
NUFFT-based SPGL1 imaging method can also reconstruct the real data image as the standard SPGL1
imaging method with nearly the same quality. However, while the traditional SPGL1 imaging method
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Figure 6. Imaging results of experimental data. (a) Imaging result by the traditional SPGL1 algorithm.
(b) Imaging result by the NUFFT-based SPGL1 algorithm.

requires a memory of 1.92 GB and takes 9.6 s to generate its imaging result, the proposed NUFFT-
based imaging method only requires a computer memory of 4.7 MB and takes 5.4 s to achieve image
reconstruction. It is concluded that the proposed NUFFT-based imaging method can dramatically
reduce the required computer memory and improve the computational efficiency. Thus it can be a good
candidate algorithm for imaging the large investigated area or on-site imaging applications.

5. CONCLUSION

In this paper, we have proposed an efficient sparse TWR imaging algorithm which combines the SPGL1
algorithm and NUFFT technique. The simulated and experimental results have shown that compared
with the conventional SPGL1 sparse imaging reconstruction algorithm, the proposed sparse imaging
method can significantly reduce the required computer memory and computational cost, and achieve
similar recovered image quality. Hence the proposed NUFFT-based SPGL1 sparse imaging method is
more practical for large-scale TWR imaging applications.
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