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A Fourier Phase Mode Approach for Chebyshev Pattern Synthesis
in Circular Antenna Array

Mavulluri Ganesh* and Konidala R. Subhashini

Abstract—In this article, a novel phase mode analysis for a circular antenna array is discussed. This
proposition experiments on the synthesis of Dolph-Chebyshev pattern for circular geometry employing
directional element 1 + cos(φ). Here, for pattern synthesis a modified uniform sampling method is
proposed, and for investigation of continuous current excitation in a circular array, a Fourier phase-
mode approach is proposed. The synthesis process permits generation of complex weights for each
element to produce the Chebyshev pattern with a desired beamwidth or Side Lobe Level (SLL). The
radius is a key factor for a circular geometry and also decides the pattern synthesis, which is determined
by using the phase mode concept. Also, this article contributes to the formulation of a mathematical
relationship between the number of phase modes (P ) and the number of antenna elements in the array
(N) such as N = 2(P − 1).

1. INTRODUCTION

Nowadays, circular arrays have many practical applications in radar, sonar, mobile and wireless
communications [1–6]. For the design of circular arrays, one has to adequately choose the number
of antennas in the array, their positions along the circle, the circle’s radius, and the feeding currents
(amplitudes and phases) of the antenna elements. The primary design objective of antenna array
geometry is to determine the positions of array elements that together produce a radiation pattern
towards the desired pattern as closely as possible [7]. Due to circular and symmetrical nature
of the circular array, it is convenient to analyze the excitation of a circular array in terms of its
Fourier components or phase modes, for many practical applications. The new approach employs a
transformation technique, first proposed by Davies [8]. Here the phase modes to be considered is
equivalent to elements of a linear array, thus adding all the phase modes co-physically produces a
beam in particular direction, equivalent to the boresight direction of the linear array. In practice by
approximating the continuous excitation function for obtaining the desired pattern by a finite number
of elements, the basic amplitude and phase mode concept does not change, and also if the aperture
excitation function contains harmonics up to a maximum order m and total of P , then the antenna
array must contain at least 2P elements in order to reproduce all the spatial harmonics [9]. Dolph-
Chebyshev arrays were first introduced by Dolph in 1946 [10]. The computation and synthesis of current
distributions for Dolph-Chebyshev patterns for linear arrays were further developed by others [11–13].
The synthesis of a circular array with isotropic elements are documented in [14, 15, 23–26]. Some special
cases of directive elements were discussed in [16, 17]. The development in [18] introduced the phase mode
method pattern synthesis, which can deal with both isotropic elements and directive elements cases on
pattern synthesis for a circular array. Most circular (and cylindrical) arrays are made up of directional
elements since the pattern characteristics of circular and cylindrical arrays cannot be represented in
terms of the product of an element pattern and an array factor, and it is especially important to consider
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the array patterns with directional elements [1, 18]. [19, 20] reported the importance of directional
elements in pattern synthesis of circular arrays, by including directional elements in pattern synthesis,
thus the mutual coupling between the elements is reduced, and the element pattern, as well as elevation
pattern of the circular array, narrows.

The organization of this article is as follows. The mathematical formulations of a circular array with
the directional element are reported in Section 2. In Section 3, the numerical analysis and simulation
results are reported. Some concluding key observations are summarized in Section 4.

2. MATHEMATICAL FORMULATION

A far-field expression M(φ) for circular array with directional element function EL, weight function
magnitude Wn and phase αn are given as [18, 21, 22]

M(φ) =
N∑

n=1

WnEL(φ − φn) exp(jkr cos(φ − φn) + jαn) (1)

where N is the number of antennas in the array, r the circular array radius, φ the azimuthal plane,
φn the nth element’s azimuth position, j the imaginary unit, and k = 2π

λ the free-space wave number,
where λ is the wavelength. In Equation (1), phase (φn) is referenced to the center of the circle. As
shown in Figure 1, the antenna elements in the array are spaced φn along the circle, with each element
pointing in the radial direction. Therefore, the element function cannot be brought outside summation,
since it is a function of the element position. In order to accommodate directional elements into the
above development, the element pattern must be transformed into a set of Fourier series coefficients,
Dp, as given in Figure 2.

Figure 1. Circular antenna array.
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Figure 2. Directional element 1+cos(φ) pattern
in Fourier domain.

2.1. Phase Mode Analysis of Directional Elements

The far-field pattern of a circular array with the element pattern and weight function in continuous
form can be expressed as [18, 25].

M(φ) =
1
2π

∫ π

−π
W (ϕ)EL(φ − ϕ)ejkrcos(φ−ϕ)dϕ (2)

where W (ϕ) and EL(ϕ) are the complex weight function and directional element function of each
antenna element, respectively. Here, the notation φ designates the angle of the array pattern in the far
field, centered at the center of the array. The symbol ϕ designates the angle around the array and also
centered at the center of the array.
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Due to the circular nature of the array, the weight function is a periodic function with period 2π.
Thus one can expand W (ϕ) into a Fourier series as follows [27]

W (ϕ) =
∞∑

m=−∞
Cm exp(jmϕ) (3)

where:
Cm =

1
2π

∫ π

−π
W (ϕ)e−jmϕdϕ (4)

The series expansions of the weight function coefficients Cm are the phase modes of the excitation
function. Thus, each m in Equation (3) represents a mode number, and the phase varies 2π along the
circumference of circular array for each phase mode. In order to accommodate directional elements into
the above development, the element pattern must be transformed into a set of Fourier series coefficients,
Dp, as shown in Equation (5).

EL(ϕ) =
∞∑

p=−∞
Dp exp(jpϕ) (5)

where:
Dp =

1
2π

∫ π

−π
EL(ϕ)e−jpϕdϕ (6)

After simplification, the relation among weight function, element pattern and far-field pattern can be
found as

M(φ) =
∞∑

m=−∞

∞∑
p=−∞

CmejmφDp
1
2π

∫ π

−π
ej(m−p)(φ−ϕ)ejkrcos(φ−ϕ)dϕ (7)

=
∞∑

m=−∞

∞∑
p=−∞

CmejmφDpj
(m−p)Jm−p(kr)

where Jm−p(kr) is the Bessel function of order (m − p) and argument kr. On the other hand, the
far-field pattern for a circular array can be expressed as

M(φ) =
∞∑

m=−∞
Am exp(jmφ) (8)

Now by relating the excitation phase modes Cm and far-field phase modes Am from Equations (7) and
(8), we arrive at the following:

Cm = Am

( ∞∑
p=−∞

Dpj
(m−p)Jm−p(kr)

)−1

(9)

2.2. Selection of Radius of an Circular Array

In pattern synthesis of a circular array, the radius is a critical parameter since the near-field excitation
coefficients Cm are used to calculate the weight function W (ϕ) which is very sensitive to small variations
of r, and also the near-field excitation coefficients Cm (phase modes) are influenced by the Bessel function
Jm−p(kr). So in this paper, a suitable radius r is determined for the synthesis of the radiation pattern.
First, consider the desired radiation pattern as Chebyshev pattern with constraint such as side lobe
level (SLL) is −25 dB. For this, the mathematical far-field expression is given in Equation (8). After
applying phase mode analysis, the far-field expression in terms of phase modes including the element
function is given in Equation (7).

Now the radius is evaluated by considering the error between the desired radiation pattern near
SLL (dB) value, i.e., −25 dB and that near SLL (dB) values obtained from Equation (7) for different
r values. For r = 0.8555λ, the difference between near SLL (dB) value of desired pattern and the
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Figure 3. Graphical representation of evaluating radius for different phase modes. (a) 7 phase modes.
(b) 8 phase modes. (c) 9 phase modes. (d) 10 phase modes.

computed pattern from Equation (7) is approximately 0 dB. Similarly for r = 0.88λ, the difference
is 0.66 dB, and for r = 0.82λ the difference is −0.89 dB. Therefore, in this way, the suitable value of
radius r = 0.8555λ is determined with the minimum error in terms of near SLL (dB) values for P = 9
phase modes. In a similar way for 7, 8, 10 phase modes of circular array, the radius is evaluated, and
respective graphical representations are shown in Figure 3. This way of approach conceptually equates
the far-field excitation coefficients Am to the near-field excitation coefficients Cm.

2.3. Proposed Methodology of Uniform Sampling Method for Pattern Synthesis

Step 1. Choose desired chebyshev pattern from synthesized linear antenna array [18].
Step 2. Apply phase mode analysis discussed in Section 2.1 for circular array with directional
element find the Cm and evaluate the continuous current distribution from Equation (3).
Step 3. Divide the continuous interval of azimuth plane (−π to π) into −π : (2 ∗ pi/N) : π for
obtaining the angular element positions. where N is the number of antenna elements in the
circular array.
Step 4. From obtained element positions φn, sample the continuous current distribution magnitude
|W (φn)| and phase arg(φn) respectively to obtain the element excitations.
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3. NUMERICAL ANALYSIS AND SIMULATION RESULTS

This section surveys the proposed analysis effectively on different phase modes such as even and odd
phase modes. For odd phase modes P = 2m+1 where m is the highest positive harmonic, for example,
7 phase modes, the highest positive mode number is m = 3, and for even phase modes P = 2(m + 1)
where the variation of the mode number will be −(m + 1) : 1 : m or m : 1 : m + 1. The simulations are
performed on the i5 processor with 4GB RAM and MATLAB R2013a.

3.1. Case 1: 7 Phase modes (P = 7)

As the first case, P = 7 phase modes of a circular array are considered, which are the excitations
from the synthesized linear array [18]. As discussed in Section 2.1, the radius of a circular array for 7
phase modes is determined as 0.7359λ. And according to [18], in order to avoid aliasing of the phase-
mode spectrum and to radiate the useful unambiguous mode spectrum, the requirement of a number of
elements (N) based on the phase modes (P ) and chosen radius (r) is given as

P ≤ 2kr + 1 ≤ N (10)

where P is the number of phase modes and N the number of antenna elements in the array. In practice,
by approximating the continuous excitation function for obtaining the desired pattern by a finite number
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Figure 4. Radiation pattern for circular array
with 7 phase modes,11 antenna elements.

 -150  -100  -50 0 50 100 150
 -50

 -45

 -40

 -35

 -30

 -25

 -20

 -15

 -10

 -5

0

(phi) [deg]

be
am

 p
at

te
rn

 [d
B

]

ideal
Circular Array

Figure 5. Radiation pattern for circular array
with 7 phase modes, 12 antenna elements.
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Figure 6. Representation of amplitudes and phases at angular positions for N = 12 and P = 7. (a)
Amplitude. (b) Phase.
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of elements, if the aperture excitation function contains the total of phase modes P , then the antenna
array must contain at least 2P elements in order to reproduce the same desired pattern [9]. So in
this, the requirement is 7 ≤ 10.2428 ≤ (11, 12, 13, 14). So for 7 phase modes and 11 elements, the
radiation pattern is computed according to the proposed method as shown in Figure 4. As we noticed
from Figure 4, the pattern computed from the 7 phase modes 11 elements has an improved side-lobe
level (SLL) by an amount of −0.35 dB compared with the desired radiation pattern SLL of −25 dB.
So for obtaining the relevant design, the number of elements is increased to 12 instead of 11, and the
corresponding radiation pattern is as shown in Figure 5. The obtained radiation for a circular array
with 7 phase modes and 12 elements is much more similar to the desired radiation pattern. So for this,
the respective magnitude and phase plots are shown in Figure 6 according to the proposed method.

3.2. Case 2: 8 Phase Modes (P = 8)

Here, 8 phase modes for the synthesis of a circular array with Chebyshev pattern are considered. The
radius of an circular array for 8 phase modes is determined as 0.8208λ, and the possible requirement
of elements to synthesize the radiation pattern based on the standard limit given in Equation (12) is
8 ≤ 11.3092 ≤ (12, 13, 14, 15, 16). The radiation plot for 8 phase modes with 12 elements is shown in
Figure 7. As we notice from Figure 7, the pattern computed from the circular array with 8 phase modes
and 12 elements has an improved SLL by an amount of −1.01 dB compared with the desired radiation
pattern SLL of −25 dB. So for obtaining the relevant design, the number of elements is increased to 13
instead of 12, and the corresponding radiation pattern is shown in Figure 8. But from Figure 8 it is
observed that the radiation pattern obtained for 13 elements and 8 phase modes does not perfectly match
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Figure 7. Radiation pattern for circular array
with 8 phase modes,12 antenna elements.
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Figure 8. Radiation pattern for circular array
with 8 phase modes, 13 antenna elements.
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Figure 9. Radiation pattern for circular array with 8 phase modes, 14 antenna elements.



Progress In Electromagnetics Research M, Vol. 58, 2017 103

 -3  -2  -1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

phi (radians)

A
m

pl
itu

de
 e

xc
ita

tio
ns

Amplitude of Reconstructed Current Distribution
Amplitude excitation

 -3  -2  -1 0 1 2 3
 -3

 -2

 -1

0

1

2

3

4

phi (radians)

P
ha

se
 e

xc
ita

tio
ns

 (
ra

di
an

s)

Phase of Reconstructed Current Distribution
Phase excitation

(a) (b)

Figure 10. Representation of amplitudes and phases at angular positions for N = 14 and P = 8. (a)
Amplitude. (b) Phase.

the design goal and deviates by a value of −8.75 dB. The reason behind is that for this combination, i.e.,
8 phase modes, 13 elements and r = 0.8208λ, the number of distortion terms influences the radiation
pattern. Figure 9 shows the radiation plot for the circular array after we increase the number of elements
to 14. From Figure 9 it is observed that the radiation plot is very close to the desired radiation pattern.
For this, the respective magnitude and phase plots are shown in Figure 10. From the above case studies
of odd (7) and even (8) phase modes, it is evident that the number of elements by the proposed analysis
is 12 and 14, respectively, i.e., less than 2 elements in each case according to the minimum requirement
of elements as discussed in [9]. So for better perception, the proposed analysis is extended to P = 9
and P = 10 as a separate case i.e., case 3 and case 4.

3.3. Case 3: 9 Phase Modes (P = 9)

For a circular array with 9 phase modes, the suitable radius is determined as r = 0.8555λ, and the
standard limit for minimum requirement of elements is 9 ≤ 11.74 ≤ (12, 13, 14, 15, 16, 17, 18). Here
directly consider a circular array of 9 phase modes and 15 elements in order to evaluate the requirement
of elements according to the proposed analysis, i.e., N = 2(P − 1). The radiation plot for the circular
array with 9 phase modes and 15 elements is shown in Figure 11. The pattern computed from the
circular array with 9 phase modes and 15 elements has an improved SLL by an amount of −0.52 dB
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Figure 11. Radiation pattern for circular array
with 9 phase modes, 15 antenna elements.
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Figure 12. Radiation pattern for circular array
with 9 phase modes, 16 antenna elements.
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Figure 13. Representation of amplitudes and phases at angular positions for N = 16 and P = 9. (a)
Amplitude. (b) Phase.

compared to the desired radiation pattern SLL. So for obtaining the relevant design, the number of
elements is increased to 16 instead of 15, and the corresponding radiation pattern is shown in Figure 12.
Now from Figure 12, it is noticed that the radiation pattern obtained for 16 elements and 9 phase modes
is similar to the desired Chebyshev pattern. For this, the respective magnitude and phase plots are
shown in Figure 13.

3.4. Case 4: 10 Phase Modes (P = 10)

For the circular array with 10 phase modes according to the proposed analysis, the suitable radius
is determined as r = 1.255λ, and the possible requirement of elements according to standard limit is
10 ≤ 16.7628 ≤ (17, 18, 19, 20). So the radiation plot for the circular array with 10 phase modes and
17 elements is shown in Figure 14. It is observed from Figure 14 that the SLL deviates by an amount
of −8.75 dB compared to the design goal of −25 dB. So for obtaining the relevant design, the number
of elements is increased to 18 instead of 17, and the corresponding radiation pattern is as shown in
Figure 15. From Figure 15 we observed that the radiation pattern obtained for 18 elements is very
close to the desired radiation pattern. For this, the respective magnitude and phase plots are shown
in Figure 16. So from the above case studies, i.e., case 3 odd (9) phase modes and case 4 even (10)
phase modes, the number of required elements according to proposed analysis is 16 and 18 elements,
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Figure 14. Radiation pattern for circular array
with 10 phase modes and 17 antenna elements.
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Figure 15. Radiation for circular array with 10
phase modes, 18 antenna elements.
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Figure 16. Representation of amplitudes and phases at angular positions for N = 18 and P = 10. (a)
Amplitude. (b) Phase.

respectively. Therefore, from all cases, it is observed that to obtain the desired pattern, the minimum
number of elements required is N = 2(P − 1), where N is the number of antenna elements in the array
and P the number of phase modes. All these numerical values are tabulated in Table 1.

Table 1. Comparison table for different array sizes.

S. No P Radius (r) N = 2P [9] Proposed Analysis N = 2(P − 1)
1 7 0.7359 14 12
2 8 0.8208 16 14
3 9 0.8555 18 16
4 10 1.2555 20 18

4. CONCLUSION

This paper gives an inference to the selection of the number of antenna elements (N), number of phase
modes (P ) and choice of suitable radius (r) for a circular antenna array employing directional element
1 + cos(φ). The radiation properties of the circular array are clearly studied through the phase modes
and are very useful for the proposed analysis. According to the proposed analysis for both even and
odd phase modes, the requirement of minimum number of antenna elements for obtaining the desired
pattern is formulated as N = 2(P − 1), where P is the number of phase modes and N the number
of antenna elements in the array. The present communication is focused on the directional element
1+cos(φ) with the SLL constraint. In future research, this work can be extended for various directional
elements with multiple constraints.
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