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Electromagnetic Theory with Discrete Exterior Calculus

Shu C. Chen1 and Weng C. Chew2, *

Abstract—A self-contained electromagnetic theory is developed on a simplicial lattice. Instead of
dealing with vectorial field, discrete exterior calculus (DEC) studies the discrete differential forms of
electric and magnetic fields, and circumcenter dual is adopted to achieve diagonal Hodge star operators.
In this paper, Gauss’ theorem and Stokes’ theorem are shown to be satisfied inherently within DEC.
Many other electromagnetic theorems, such as Huygens’ principle, reciprocity theorem, and Poynting’s
theorem, can also be derived on this simplicial lattice consistently with an appropriate definition of
wedge product between cochains. The preservation of these theorems guarantees that this treatment of
Maxwell’s equations will not lead to spurious solutions.

1. INTRODUCTION

Finite difference (FD) and finite element methods (FEM) have been widely applied in
electromagnetics [1, 2]. And they are both based on the vectorial version of Maxwell’s equations. As is
well known, differential forms can be used to recast Maxwell’s equations in a more succinct fashion, which
completely separates metric-free and metric-dependent components [4–9]. Discrete exterior calculus
(DEC), a discrete version of differential geometry, provides a numerical treatment of differential forms
directly [10–12]. Compared to the popular finite difference method, DEC is based on unstructured
simplicial mesh as in FEM, e.g., triangular mesh for 2-D space and tetrahedral mesh for 3-D space.
Therefore, this method is adaptable to arbitrary complex structures. Moreover, as will be shown,
this method also exactly preserves important structural features of Maxwell’s equations as in Yee gird
applied to FD, e.g., Gauss’s law ∇·D = ρ and E = −∇φ. Meanwhile, unlike finite integration technique
(FIT) [15, 16], the dual mesh is constructed by connecting circumcenters instead of barycenters. In this
way, the Hodge star operators can be built as diagonal matrices. Effective dual volume can be applied
to incorporate the material information to include inhomogeneity as shown in [14].

Shown in [14], we have been able to solve eigenvalue problems, excitation problems, and scattering
problems with DEC method. It should be noted that the only limitation of our approach is that without
Delaunay triangulation, the positivity of Laplacian cannot be guaranteed [13, 14], which will lead to
instability of time domain analysis. However it is still of interest to investigate if a self-consistent and
self-contained discrete electromagnetic theory can be developed on simplicial mesh using DEC, which has
been accomplished based on Yee grid [3,4]. In this paper, we show that many electromagnetic theorems
still exist in this discrete electromagnetic theory with DEC, such as Huygens’ principle, reciprocity
theorem, Poynting’s theorem and uniqueness theorem. Therefore, all electromagnetic phenomena can
be predicted and explained with this discrete electromagnetic theory with a appropriate discretization
length scale. Besides, due to the charge conservation property, as will be shown, the numerical simulation
of Maxwell’s equations with DEC will not lead to spurious solutions [3, 17].

To develop this discrete electromagnetic theory with DEC, an appropriate discrete treatment of
wedge product [11,18] is crucial. The wedge product operator ∧ is used to construct higher degree forms
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from lower degree ones. Correspondingly, a discrete wedge product operator should be able to obtain
higher degree cochains from lower degree ones. For example, with a known primal 1-cochain E and dual
2-cochain D, an integral of the wedge product of these two cochains should represent stored electric
energy density E ·D. It should be noted that a wedge product between two primal or two dual cochains
is discussed in [11]. In this paper, a proper treatment of wedge product between a primal k-cochain and
a dual (n − k)-cochain is given. With this discrete wedge product, the discrete electric energy density
E · D, magnetic energy density H · B, and Poynting’s vector E × H can all be constructed. Moreover,
the convolution of Green’s function with current or charge fields can also be understood as a wedge
product. Therefore, Huygens’ principle for both scalar and electromagnetic waves can be derived in this
discrete world. And it is straightforward to show that many electromagnetic theorems, like Poynting’s
theorem and reciprocity theorem are also preserved.

In Section 2, discrete calculus based on DEC is introduced, including discrete gradient, curl, and
divergence for both primal and dual cochains. In Section 3, we define the discrete wedge product
between primal k-cochain and dual (n − k)-cochain in n-D space. In the next section, the discrete
Green’s functions and Huygens’ principle for scalar waves and vector waves are formulated and derived.
In addition, discrete Poynting’s theorem and reciprocity theorem are also derived.

2. DISCRETE CALCULUS WITH DEC

In DEC, continuous scalar or vector field are represented with cochains, which are column vectors.
Then the derivative operators acting on them are replaced by co-boundary or discrete exterior derivative
operators, which are highly sparse matrices. As mentioned, DEC is based on arbitrary simplicial mesh,
which is called the primal mesh, and the dual mesh is constructed by connecting nearest circumcenters.
Cochains defined on the primal and dual mesh is called primal cochains and dual cochains, respectively.
Due to the existence of boundaries, the dual mesh is truncated. Therefore, discrete calculus for dual
cochains will give rise to boundary terms.

2.1. Discrete Gradient, Curl and Divergence for Primal Cochains

2.1.1. Discrete Gradient

With a scalar function φ(r), a gradient can be defined. With DEC, a scalar function corresponds to a
0-cochain φ, which lives on N0 vertices {p1, . . . , pN0}, and it can be written as a N0 × 1 column vector:

φ =

⎛
⎝ φ1

...
φN0

⎞
⎠ , φi � φ(rpi) = φ(ri). (1)

If we view gradient of function φ(r), ∇φ(r), as a 1-cochain e, then the value of this 1-cochain along
the i-th primal edge li is defined as:

ei =
∫

li

∇φ(r) · dl = φ(rj1) − φ(rj2) = φj1 − φj2 =
∑

j

d
(0)
i,j φj (2)

where d(0)
i,j is the (i, j) element of discrete exterior derivative operator d̄(0). More specifically,

[
d̄(0)

]
i,j

= d
(0)
i,j =

⎧⎨
⎩

+1 if pj is the ending vertex of li,
−1 if pj is the starting vertex of li,
0 otherwise,

(3)

where the superscript “(0)” means that it only operates on 0-cochains. In fact, the rightmost of
Equation (2) is just the i-th element of 1-cochain d̄(0)φ, which means that the gradient relation e = d̄(0)φ
is naturally and exactly preserved.
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2.1.2. Discrete Curl and Stokes’ Theorem

A curl of a vector field, i.e., E(r), can measure its circulation or rotation about a point. In both 2-D
and 3-D spaces, we view this vector field as a 1-cochain E, because only a path integral of it gives rise
to a sensible physical meaning. Therefore, its curl ∇× E(r) corresponds to a 2-cochain b in both 2-D
and 3-D spaces.

In a 2-D or 3-D simplicial mesh, if there are N1 edges in total, 1-cochain E can be defined as:

E =

⎛
⎝ E1

...
EN1

⎞
⎠ , Ei �

∫
li

[
E(r) · l̂i

]
dl. (4)

Here, l̂i is the unit vector along the i-th primal edge li.

Figure 1. A primal face Si with oriented edges. Here n̂i is assumed as the positive direction of Si.

As shown in Figure 1, the value of 2-cochain b on i-th primal face Si can be derived from Stokes’
theorem as:

bi =
∫

Si

[∇× E(r)] · n̂idS =
∮

∂Si

E(r) · dl =
∑

lj∈∂Si

∫
lj

[
E(r) · l̂i,j

]
dl =

∑
j

d
(1)
i,j Ej. (5)

where ∂Si refers to the three primal edges around Si; l̂i,j is a unit vector surrounding Si clockwise and
along lj ; d

(1)
i,j is the (i, j) element of discrete exterior derivative operator d̄(1)

i,j .

[
d̄(1)

]
i,j

= d
(1)
i,j =

⎧⎪⎨
⎪⎩

+1 if l̂j = l̂i,j,

−1 if l̂j = −l̂i,j,
0 otherwise.

(6)

It can be seen that the rightmost of Equation (5) is the i-th element of d̄(1)E. Then the relation
b = d̄(1)E holds exactly in both 2-D and 3-D.

2.1.3. Discrete Divergence and Gauss’ Theorem

With a vector field D(r), its divergence can be defined in both 2-D and 3-D space. In 2-D, D(r) is
viewed as a primal 1-cochain† and its divergence ∇s ·D(r) corresponds to a primal 2-cochain σ. While in
3-D, D(r) is viewed as a primal 2-cochain with divergence ∇·D(r) corresponding to a primal 3-cochain
ρ.

For 2-D triangular mesh, if there are N1 edges, the primal 1-cochain D is defined as:

D =

⎛
⎝ D1

...
DN1

⎞
⎠ , Di �

∫
li

[
D(r) · (ẑ × l̂i)

]
dl. (7)

Here, ẑ × l̂i is a unit vector perpendicular to the i-th primal edge li.

† Generally, the electric displacement field D(r) is treated as a dual cochain. Here we only use it to illustrate the idea since the
divergence of magnetic field B(r) is always zero.
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(a) (b)

Figure 2. (a) Primal face Si in a 2-D mesh. (b) Primal volume Vi in a 3-D mesh.

Therefore, as shown in Figure 2(a), the value of 2-cochain σ on i-th primal triangle Si can be
derived by 2-D Gauss’ theorem:

σi =
∫

Si

[∇s ·D(r)] dS =
∮

∂Si

[D(r) · n̂] dl =
∑

lj∈∂Si

∫
lj

[D(r) · n̂i,j] dl = −
∑

j

d
(1)
i,j Dj , (8)

where n̂i,j = −ẑ × l̂i,j is a unit vector pointing outside Si and perpendicular to l̂j , and ∂Si, d
(1)
i,j are

introduced earlier.
Therefore, the rightmost of Equation (8) is the i-th element of −d̄(1)D. Then relation σ = −d̄(1)D

is exact. It should be pointed out that this negative sign is introduced by the definition of cochain D,
shown in Equation (7).

Similarly, in a 3-D tetrahedral mesh, if there are N2 triangular faces. The 2-cochain D is defined
as:

D =

⎛
⎝ D1

...
DN2

⎞
⎠ , Di �

∫
Si

[D(r) · n̂i] dS (9)

where n̂i is the unit vector normal to the i-th primal face Si.
Therefore, as shown in Figure 2(b), the value of 3-cochain ρ on i-th tet Vi can be derived by 3-D

Gauss’ theorem:

ρi =
∫

Vi

[∇ ·D(r)] dV =
∮

∂Vi

[D(r) · n̂] dS =
∑

Sj∈∂Vi

∫
Sj

[D(r) · n̂i,j] dS =
∑

j

d
(2)
i,j Dj . (10)

Here, ∂Vi is the closed surface of Vi, which includes four triangles; n̂i,j is a unit vector pointing outside
Vi and normal to primal face Sj; d

(2)
i,j is the (i, j) element of discrete exterior derivative operator d̄(2)

i,j ,
which is defined as [

d̄(2)
]
i,j

= d
(2)
i,j =

⎧⎨
⎩

+1 if n̂i,j = n̂j,

−1 if n̂i,j = −n̂j,

0 otherwise.
(11)

Notice that the rightmost of Equation (10) is the i-th element of d̄(2)D. Then relation ρ = d̄(2)D is
also exact.

2.2. Discrete Gradient, Curl and Divergence for Dual Cochains

In the previous section, we demonstrate the discrete gradient, divergence, and curl for cochains on
the primal mesh. Indeed, for dual cochains, similar relations can be derived. Here, dual cochains
are defined on dual cells,‡ which are constructed by connecting circumcenters, as shown in Figure 3.
And notice that, Gauss’ theorem and Stokes’ theorem can also be applied for complex structures, such
as polygons or polyhedrons. Therefore, in the same way, exact relations can also be constructed for
gradient, divergence and curl for dual cochains.
‡ Usually, dual faces or volumes are not simplices, as in Figure 3. So we use dual cells to denote them.
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However, since the dual mesh is deduced from the primal mesh by connecting nearest circumcenters,
the mesh is incomplete at the boundary. For example, in Figure 3, the dual edges d1e1 and e2d2 are in
fact “truncated” by the primal mesh boundary. And these two dual edges are not line segment between
two dual vertices, because there is no well defined dual vertices outside the primal mesh boundary.
Instead, dual edges on the boundary are constructed by connecting circumcenters (d1 and d2) and
centers of corresponding primal edges (e1 for p1p2, and e2 for p2p3). Moreover, the dual faces and
volumes surrounded by these boundary dual edges and faces are also incomplete. For example, the dual
face Ap2

§ in Figure 3 is only enclosed by three dual edges (solid lines): d1e1, e2d2, and d2d1. The other
two edges (dashed lines) e1p2 and p2e2 are half of primal edges. Due to this incompleteness of dual
mesh on the boundary, a certain kind of boundary condition needs to be imposed for discrete gradient,
curl, divergence of dual cochains.

Figure 3. Dual cells at the boundary (bold edges) in a 2-D mesh. Here, d1, . . . , d6 are circumcenters,
and e1, e2 are edge centers.

2.2.1. Discrete Gradient for Dual Cochains

In a 2-D mesh, a scalar function ψ(r) can also be treated as a dual 0-cochain ψ with length N2 on the
dual mesh:

ψ =

⎛
⎝ ψ1

...
ψN2

⎞
⎠ , ψi � ψ(rdi

) (12)

where di is the circumcenter of i-th primal face, also the i-th dual vertex. In 3-D meshes, the length of
this 0-cochain becomes N3, the number of tetrahedrons.

Then the gradient of ψ(r), ∇ψ(r), corresponds to a dual 1-cochain h. The value of this dual
1-cochain along dual edges strictly inside, which are not at the boundary, can be derived in the same
manner as we did for primal cochains in the previous section. In a 2-D mesh, along i-th dual edge Li:

hi =
∫
Li

[
∇ψ(r) · (ẑ × l̂i)

]
dl = ψ(rdj1

) − ψ(rdj2
) =

∑
j

d
(0)
dual,i,jψj =

∑
j

d
(1)
j,i ψj (13)

Here, the unit vector along dual edge Li is obtained by rotating unit vector along corresponding primal
edge li by 90 degrees anticlockwise,

L̂i = ẑ × l̂i

as illustrated in Figure 3 by the direction of dual edge d2d1 and primal edge p2p0. The last equality in
Equation (13) is because that in a 2-D mesh below relations hold true [12].

d̄(0)
dual =

(
d̄(1)

)T
and d̄(1)

dual = −
(
d̄(0)

)T
. (14)

§ In this paper, we use A to denote dual faces, which are usually polygons.
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Therefore, for cochain values defined on edges strictly inside, h =
(
d̄(1)

)T
ψ is exactly satisfied. While

in 3-D, since Equation (14) becomes [12]

d̄(0)
dual =

(
d̄(2)

)T
, d̄(1)

dual =
(
d̄(1)

)T
, d̄(2)

dual = −
(
d̄(0)

)T
, (15)

Then the equation becomes h =
(
d̄(2)

)T
ψ.

However, along dual edges at the boundary, such as d1e1 in Figure 3, Dirichlet or Neumann
boundary conditions need to be imposed. For these two kinds of boundary conditions, the value of
dual 1-cochain h on the boundary dual edges can be defined as:

hd1e1
=
∫ re1

rd1

∇ψ(r) · dl = c− ψ1, ψ = c on the boundary, (16)

hd1e1
=
∫ re1

rd1

∇ψ(r) · dl ≈ c |d1e1|, ∂ψ

∂n
= c on the boundary. (17)

Here, | . . . | means the length of a line segment.

2.2.2. Discrete Curl for Dual Cochains

For a vectorial case, if we have a vector field H(r), then it can be treated as a dual 1-cochain H on the
dual mesh as:

H =

⎛
⎝ H1

...
HN1

⎞
⎠ , Hi �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Li

[H(r) · (ẑ × l̂i)]dl, 2-D mesh

∫
Li

[H(r) · n̂i]dl, 3-D mesh
(18)

Then the curl of this vector field ∇× H(r) is represented by a dual 2-cochain d, and its value on dual
faces strictly inside can be derived the same as before, which means that

d = d̄(1)
dualH = −

(
d̄(0)

)T
H

for a 2-D mesh, and

d = d̄(1)
dualH =

(
d̄(1)

)T
H

for a 3-D mesh.
However, as mentioned, these relations are incomplete at the boundary. For example, in a 2-D

mesh as shown in Figure 3, the vale of d on Ap2 can be derived by Stokes’ theorem as:

dAp2
=
∫
Ap2

[∇× H(r)] · dS =
∮

∂Ap2

H(r) · dl =
∑

Lj∈∂Ap2

∫
Lj

H(r) · dl

= Hd1e1
+He2d2

+Hd2d1
+He1p2 +Hp2e2.

(19)

Here, the first three terms are the value of dual 2-cochain d̄(1)
dualH or − (d̄(0)

)t
H, associated with

dual face Ap2, while the last two terms He1p2 and Hp2e2 need to be determined by a certain boundary
conditions. For example, with perfect magnetic conductor (PMC) boundary condition, they are both
zero. For a general boundary condition, they have nonzero values which need to be left. Therefore, we
should have a corrected relation as below:

d = −
(
d̄(0)

)T
H + Js. (20)

Here, Js is a dual 2-cochain in this 2-D mesh, and represents the tangential component of H on the
boundary. In fact, if we restrict just on the boundary, which is a 1-D discrete manifold, this Js cochain
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is viewed as a dual 1-cochain. This cochain is only defined on the boundary dual faces. For example,
its value on Ap2 is

Js,Ap2
= He1p2 +Hp2e2 =

∫
e1p2,p2e2

H(r) · dl

= Ht (|e1p2| + |p2e2|) = Ht|L∂
p2
|.

(21)

Here, Ht is the average tangential value of H(r) field, and |L∂
p2
| = |e1p2| + |p2e2|. In practice, with

different boundary conditions, Js may have different values [14]. When there is no boundary, which
means that the space we consider is closed, although not possible in computational electromagnetics,
Js also disappears.

It should be noted that although a 2-D example is used to illustrate the curl operation on vector
field H(r), in 3-D space, the derivation would be exactly the same except that the dual face at the
boundary is no longer just associated with a vertex, e.g., Ap2 and p2. Instead, the dual face at the
boundary is associated with a primal edge, and below relation holds

d =
(
d̄(1)

)T
H + Js. (22)

Here, Js is also a dual 2-cochain, and can be viewed as a dual 1-cochain on the boundary, which is a
2-D discrete manifold now.

2.2.3. Discrete Divergence for Dual Cochains

The discrete divergence for dual cochains can also be induced similarly. Certain boundary conditions
are also needed to complete this relation. To be clear, we first consider the divergence of a vector field
D(r) in 2-D space. This field can be viewed as a dual 1-cochain D as:

D =

⎛
⎝ D1

...
DN1

⎞
⎠ , Di �

∫
Li

[D(r) · l̂i]dl. (23)

Here, l̂i, the unit vector along primal edge li, is normal to dual edge Li, shown in Figure 4. Then, by
Gauss’ theorem, the discrete divergence of this vector field ∇s ·D can be represented as a dual 2-cochain
σ. Strictly inside the boundary, following relation holds

σ = d̄(1)
dualD = −

(
d̄(0)

)T
D.

Figure 4. Dual cells at the boundary (bold edges) in 2-D space. ẑ direction is out of the paper.

At the boundary, the value of σ on dual face Ap2 in Figure 4 is written as:

σAp2
=
∫
Ap2

[∇s · D(r)] dS =
∮

∂Ap2

[D(r) · n̂] dl =
∑

Lj∈∂Ap2

∫
[D(r) · n̂] dl

= Dd1e1
+De2d2

+Dd2d1
+De1p2 +Dp2e2

(24)
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where n̂ is a unit vector normal to the boundary and pointing outside Ap2. Similarly, the first three
terms in the second line of Equation (24) are the value of dual 2-cochain d̄(1)

dualD or − (d̄(0)
)T
D on

this dual face Ap2, but the last two terms De1p2 and Dp2e2 are not included. Therefore, we should have
relation:

σ = −
(
d̄(0)

)T
D + λs. (25)

Here, λs is a dual 2-cochain representing the normal component of D on the boundary. If only
considering the boundary, which is a discrete 1-D manifold, λs is a dual 1-cochain. And it only contains
elements defined on the boundary dual faces. For example, on dual face Ap2, the value of λs is

λs,Ap2 = De1p2 +Dp2e2 =
∫

e1p2,p2e2

[D(r) · n̂] dl ≈ Dn|L∂
p2
| (26)

where Dn = D(r) · n̂ is the average normal component of D field. Therefore, with the value of Dn given
as a boundary condition, we can determine λs.

Figure 5. Dual face at the boundary (surrounded by dashed edges) in 3-D space. n̂ is a unit vector
normal to the surface, and A∂

p0
(orange region) is the dual 2-cell on the surface boundary associated

with p0.

In a 3-D mesh, the relation is quite similar. But now the vector field D(r) should be viewed as a
dual 2-cochain, and its divergence is a dual 3-cochain ρ, which represents the volume charge density
including a strictly inside component and a boundary (surface) component:

ρ = −
(
d̄(0)

)T
D + σs. (27)

Here, σs is a dual 3-cochain, and it also only contains elements on the boundary. As shown in Figure 5,
the value of σs on A∂

p0
is

σs,A∂
p0

=
∫
A∂

p0

(D(r) · n̂) dS ≈ Dn|A∂
p0
| (28)

where |A∂
p0
| refers to the area of A∂

p0
. Since the boundary surface ∂Ω can be viewed as a discrete 2-D

manifold, cochain σs is a dual 2-cochain on this manifold. If the normal component of D(r) field Dn

at the surface is given as a boundary condition, σs is determined.

2.3. Discrete Laplacian Operator

With discrete divergence and gradient defined for both primal and dual cochains, the Laplacian operator
∇·∇ can then be well defined for a scalar field φ(r). For simplicity, we treat this scalar field as a primal
0-cochain φ. Then the first gradient operator take the primal 0-cochain to primal 1-cochain d̄(0)φ.
Then, in 3-D space, for next divergence operation to function properly, a Hodge star operator is needed
to map this primal 1-cochain to a dual 2-cochain:

d̄(0)φ→ �(1)d̄(0)φ
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where the superscript of Hodge star operator means the degree of cochains it acts on. Then as discussed
earlier in Equation (27), the divergence of this dual 2-cochain will introduce a boundary term:

∇ · ∇φ(r) ⇒ −
[(

d̄(0)
)T

�(1) d̄(0)

]
φ+ ∂nφ. (29)

where ∂nφ is the boundary term introduced by discrete divergence acting on dual 2-cochain �(1)d̄(0)φ,
and it is a dual 3-cochain in the whole space and a dual 2-cochain on the boundary surface.

A vectorial version of this, ∇ × ∇× operator‖, can be written similarly. We will then examine
how this operator applies to a vector field E(r). First, this vector field E(r) can be viewed as a primal
1-cochain E. Then the first curl operator acts as d̄(1) and will generate a primal 2-cochain:

∇× E(r) ⇒ d̄(1)E. (30)
Then a hodge star operator is needed for the second curl operator to function appropriately, which leads
to a dual 1-cochain �(2)d̄(1)E. Then the second curl operator will introduce an extra boundary term as
in Equation (20):

∇×∇× E(r) ⇒
[(

d̄(1)
)T

�(2) d̄(1)

]
E + iωμJs. (31)

Here, coefficient iωμ is added to be consistent with Maxwell’s equations, and Js represents the tangential
component of ∇× E(r) or H(r) on the boundary.

3. WEDGE PRODUCT

In exterior calculus, wedge product is used to construct higher degree forms from lower degree ones.
For example, with two 1-forms e and h in 3-D space, their wedge product e ∧ h is a 2-form. And this
corresponds to the fact that the cross product of two vector fields E(r) and H(r) gives rise to a new
vector field S(r) = E× H. Similarly, a wedge product between a 1-form e and a 2-form d in 3-D space
gives rise to a 3-form e ∧ d, which refers to a scalar field generated by dot product between two vector
fields. In fact, the dot product between electric field E(r) and displacement field D(r) is proportional
to electric energy density, which can be integrated over a volume to obtain stored electric energy.

In this paper, we only need to introduce a discrete treatment of wedge product between a primal
cochain and its corresponding dual cochain, which was described briefly in [12]. With a primal k-cochain
b and a dual (n−k)-cochain h, their wedge product should give rise to a n-cochain, or a volume cochain.
In practice, we are more interested in the integration of a volume form or a volume cochain, so it is not
crucial whether this n-cochain should be a primal one or dual one.

Since cochains are column vectors, we use an inner product between two column vectors to represent
the volume integration of their wedge product. For example, with a primal 1-cochain E representing
the electric field and dual 2-cochain D for the electric displacement field in a given mesh, the stored
electric energy (up to a constant difference) can be represented as:∫

[E(r) · D(r)] dV ⇒ ET ·D (32)

Here, the dot product is valid since a dual 2-cochain have the same length with a primal 1-cochain,
which is N1, the number of primal edges.

Similarly, we can also represent the magnetic energy in a discrete fashion, which is an inner product
between a primal 2-cochain B and a dual 1-cochain H both with length N2∫

[B(r) ·H(r)] dV ⇒ BT ·H (33)

Moreover, we can also use this to represent the integration of two scalar functions, φ(r) and ρ(r).
We think φ(r) and ρ(r) as a primal 0-cochain φ and dual 3-cochain ρ. Then the integration of their
product over a volume will be: ∫

[φ(r) ρ(r)] dV ⇒ φT · ρ. (34)

‖ Strictly speaking, this is not the Laplacian operator for a vector field, −∇∇· needs to be added.
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Next we would like to show this treatment of discrete wedge product is rigorous under local constant
field assumption on arbitrary 2-D surfaces. Since the relation in Equation (34) is trivial, we will focus
on the wedge product between two vector fields. To show this, a mathematical identity needs to be
introduced.

3.1. A Mathematical Identity

Figure 6. A triangle with primal edges l1, l2, l3 and dual edges s1, s2, s3. Here, d0 is the circumcenter.

In Figure 6, we use l̂1, l̂2, l̂3 to represent three unit vectors along three primal edges, and li, si to
denote the length of each primal and dual edge for simplicity. Then, below relation holds true:

l1s1l̂1l̂
T
1 + l2s2l̂2 l̂

T
2 + l3s3l̂3 l̂

T
3 = SĪ (35)

where S is the area of this triangle, and Ī is a 2× 2 identity matrix. We will prove this in the appendix.
Then with two local constant two-dimensional vector field E(r) and D(r), the integration of their

dot product over the triangle in Figure 6 is∫
[E(r) ·D(r)] dS ≈ [E · D]S = E · SĪ ·D

= E ·
(

3∑
i=1

lisil̂i l̂
T
i

)
·D

=
3∑

i=1

[
(E · l̂i)li

] [
(l̂Ti · D)si

]

=
3∑

i=1

EiDi

(36)

where Ei = (E · l̂i)li is the value of cochain E on primal edge li, and Di = (D · l̂i)si is the value of
cochain D on dual edge si. In a 2-D mesh with multiple triangles, the value of dual cochain D on each
dual edge normally comes from two triangles, which can be combined. Then the relation becomes∫

[E(r) ·D(r)] dS =
N2∑
i=1

∫
Ai

[E(r) · D(r)] dS ≈
N1∑
j=1

EjDj = ET ·D (37)

where Ai refers to i-th primal face. Therefore, Equation (37) shows that the dot product between a
primal 1-cochain and a dual 1-cochain is a good approximation of the integration of E · D.

The relation in Equation (35) is also true with l̂i changing to n̂i = ẑ × l̂i

l1s1n̂1n̂
T
1 + l2s2n̂2n̂

T
2 + l3s3n̂3n̂

T
3 = SĪ (38)

With this relation, we can prove∫
[B(r) · H(r)] dS ≈

N1∑
j=1

BjHj = BT ·H (39)
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in a 2-D mesh in the same way.
Moreover, we can also consider the integration of E×H on a 2-D surface, which is not necessarily

a plane, as a wedge product∫
[E(r) × H(r)] · n̂ dS = −

∫
[E(r) · (n̂× H(r))] dS

≈ −
N1∑
j=1

Ej

[
l̂Tj · (n̂ ×H)sj

]

= ET ·H

(40)

where n̂ is the normal unit vector of this surface.
It should be pointed out that in a general 3-D mesh, although the counterpart relation of Equation

(35) does not hold exactly, we still adopt inner product in Equations (37) and (39) as the volume
integration of discrete primal-dual wedge product. With this discrete treatment of wedge product, we
can derive the discrete version of Huygens’ principle, Poynting’s theorem, and reciprocity theorem.

4. DISCRETE ELECTROMAGNETIC THEORY

With the discrete calculus introduced in Section 2, in 3-D space without a boundary, discrete Maxwell’s
equations can be written as

d̄(1)E = iωB, (41a)(
d̄(1)

)T
H = −iωD + J , (41b)

d̄(2)B = 0, (41c)

−
(
d̄(0)

)T
D = ρ, (41d)

where relations in Equation (15) have been applied.
For any k-cochain ωk, it is easy to verify that:

γk+2 = d̄(k+1)d̄(k)ωk = 0, k ≤ 1 in a 3-D mesh, and k = 0 in a 2-D mesh.

In fact, this is because, in the boundary of the boundary of a k-simplex, a (k − 2)-simplex always
appears twice with different signs [12]. In exterior calculus language, this means that any exact form
is automatically closed. The opposite way is also guaranteed by Poincaré lemma. Therefore, in a 3-D
mesh, due to relations d̄(1) · d̄(0) = 0 and d̄(2) · d̄(1) = 0, ∇×∇ = 0 and ∇·∇× = 0 are exactly preserved.
In fact, the second relation gives rise to charge continuity equation, also derived in [14].(

d̄(0)
)T ·

(
d̄(1)

)T
H = 0 ⇒

(
d̄(0)

)T
(−iωD + J) = 0 ⇒ iωρ+

(
d̄(0)

)T
J = 0 (42)

This means that Maxwell’s equations in DEC are consistent with charge conservation, which is the same
with continuous theory. Therefore, numerical simulations based on DEC will not generate spurious
charges.

Moreover, two constitutive relations are needed to complete Maxwell’s equations

D = �(1)
ε E and H = �

(2)
μ−1B. (43)

Here, two Hodge star operators �(1)
ε and �

(2)
μ−1 map primal cochains E and B to dual cochains D and

H, superscripts refer to the degree of cochains they are acting on, and subscripts ε and μ−1 means
that they are characterized by these two material information, which is described in detail in [14]. For
homogeneous medium, �(1)

ε = ε�(1) and �(2)
μ−1 = μ−1�(2).

Noted that the choice of E and B as primal cochains and H, D and J as dual cochains is only
by convention, not a requirement. We have shown that the other choice is beneficial for PEC boundary
condition implementation [14].
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4.1. Green’s Function

4.1.1. Scalar Waves

In continuous theory, a Green’s function of a wave equation is the solution of the wave equation with a
point source. When this point source solution is known, we can obtain the solution to a general source
through superposition. For example, the scalar wave equation in 3-D can be written as:

(∇2 + k2)ψ(r) = s(r). (44)

Then by treating ψ(r), s(r) as a primal 0-cochain ψ and a primal 3-cochain s (both are N0 × 1
column vectors), we can rewrite this equation in a discrete fashion as:[(

d̄(0)
)T

�(1) d̄(0) − k2�(0)

]
·ψ = −s. (45)

Noted that the space considered is assumed to be infinite, so that the boundary term is dropped.
The scalar Green’s function g(r, r′) is the solution to following equation:

(∇2 + k2)g(r, r′) = −δ(r − r′). (46)

Here, for each given r′, g(r, r′) should be treated as a N0 × 1 column vector (0-cochain). Then with
N0 possible r′, Green’s function g(r, r′) should be considered as a N0 ×N0 matrix ḡ. Similarly, for any
given r′, δ(r − r′) should be considered as a N0 × 1 column vector (3-cochain) with only one nonzero
entry with value 1, where r = r′. Therefore, a discrete δ(r − r′) can be replaced by a N0 ×N0 identity
matrix. [(

d̄(0)
)T

�(1) d̄(0) − k2�(0)

]
· ḡ = Ī. (47)

Here the boundary term is also dropped. Then,

ḡ = −
[(

d̄(0)
)T

�(1) d̄(0) + k2�(0)

]−1

(48)

is the discrete solution of Green’s function in an infinite homogeneous space. Notice that since Hodge
operators are diagonal, this discrete Green’s function is a symmetric matrix. This coincides with the
fact that for the continuous solution, g(r, r′) = g(r′, r).

Then we left multiply Equation (45) with ḡT , and right multiply Equation (47)’s transpose with
ψ:

ḡT · (45) ⇒ ḡT ·
[(

d̄(0)
)T

�(1) d̄(0) − k2�(0)

]
·ψ = −ḡT · s (49a)

(47)T · ψ ⇒ ḡT ·
[(

d̄(0)
)T

�(1) d̄(0) − k2�(0)

]
·ψ = ψ (49b)

Therefore, we can represent the solution ψ due to an arbitrary source s with Green’s function as:

ψ = −ḡT · s. (50)

Obviously, this is a discrete analog of the continuous version

ψ(r) = −
∫

V
dr′g(r, r′)s(r′). (51)

In fact, this can also be understood from wedge product between a primal 0-cochain and a dual
3-cochain. More specifically, for any given r, scalar field g(r, r′), with respect to r′, corresponds to a
primal 0-cochain, and s(r′) is viewed as a dual 3-cochain. In Section 3, we have introduced the volume
integration of a wedge product between these two cochains can be represented by an inner product.
Therefore, with N0 possible r, this integration can be represented by a matrix vector product.
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4.1.2. Vector Waves

For vector waves, a dyadic Green’s function is introduced to describe the solution to a Hertzian dipole
source. First, the equation for the vector wave in a homogeneous, isotropic medium is

∇×∇× E(r) − k2E(r) = iωμJ(r). (52)

where k = ω
√
με is the wave number.

Then, similarly, by treating E(r) and J(r) as a primal 1-cochain E and a dual 2-cochain J (both
are N1 × 1 column vectors), this vector wave equation can be written in a discrete fashion as:[(

d̄(1)
)T

�(2) d̄(1) − k2�(1)

]
·E = iωμJ . (53)

Here, the equation is assumed for the whole space, so boundary term is also dropped.
The dyadic Green’s function Ḡ(r, r′) is solution to following equation:

∇×∇× Ḡ(r, r′) − k2Ḡ(r, r′) = Ī δ(r − r′). (54)

Here, slightly different from the scalar case, for each given r′, Ḡ(r, r′) is a tensor field, which is a 3 × 3
matrix at any r. In fact, for each given Hertzian dipole current source placed at primal edge around r′,
if the unit vector along this primal edge is l̂′, then Ḡ(r, r′) · l̂′ is a vector field and can be treated as a
primal 1-cochain, which is a N1 × 1 (N1 is the number of primal edges) column vector. Then with N1

possible r′, Ḡ(r, r′) can be viewed as an N1 ×N1 matrix, and Īδ(r − r′) on the right hand side should
be treated as an N1 × N1 identity matrix. Then, with DEC, the equation for dyadic Green’s function
can be written as: [(

d̄(1)
)T

�(2) d̄(1) − k2�(1)

]
· Ḡ = Ī. (55)

Therefore,

Ḡ =
[(

d̄(1)
)T

�(2) d̄(1) − k2�(1)

]−1

(56)

is the discrete dyadic Green’s function in homogeneous, isotropic medium. Because Hodge star matrices
are diagonal, hence symmetric, this Ḡ is also a symmetric matrix. Combining Equations (53) and (55),
we can obtain

E = iωμḠT · J . (57)

Clearly, this is the discrete version of

E(r) = iωμ

∫
V

Ḡ(r, r′) · J(r′) dr′. (58)

We can also view Equation (57) as a discrete wedge product. To see this, we can write the value
of primal 1-cochain E on a primal edge li around r by using Equation (58):

Ei =
∫

li

[
l̂Ti · E(r)

]
dl = iωμ

∫
V

[∫
li

l̂Ti · Ḡ(r, r′)dl
]
· J(r′) dr′ (59)

For a given primal edge li,
∫
li
l̂Ti · Ḡ(r, r′)dl gives rise to a vector field, and can be viewed as a primal

1-cochain. In fact, this primal 1-cochain is just the i-th column of Ḡ. Therefore, the integration in
Equation (58) can be viewed as a wedge product between this primal 1-cochain and dual 2-cochain J .
From the discussion in Section 3, the integration of this wedge product can be carried out through a
vector inner product as in Equation (57).

So far, we have introduced the Green’s function for both scalar waves and vector waves. Although
we assumed homogeneous medium for simplicity, inhomogeneous medium can be considered similarly
with characterized Hodge star operators, which we discussed in [14]. Next we will include the boundary
effects and obtain Huygens’ principle for both scalar waves and vector waves.
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4.2. Huygens’ Principle

Huygens’ principle states that the wave field on a closed surface S can determine the field elsewhere.
This principle is valid for both scalar and vector waves. We will derive the discrete version of this
principle in the following. The scalar wave case is considered first.

4.2.1. Scalar Waves

When deriving Equations (45) and (47), we dropped the boundary term since the whole space is
considered. However, generally, the interested space is a finite region. Hence the boundary term
cannot be ignored.

Figure 7. The geometry for Huygens’ principle derivation. p0 is a vertex on the surface S, n̂ is the
unit normal vector. The orange shaded region A∂

p0
is obtained by connecting circumcenters of triangles

around p0 on S.

As shown in Figure 7, the considered region is bounded by surface S and Sinf, and the source only
exists within S. Then, by using the conclusion in Equation (29), the discrete scalar wave equation with
a boundary term can be written as:[(

d̄(0)
)T

�(1) d̄(0) − k2�(0)

]
· ψ − ∂nψ = 0. (60)

Here, since Sinf is located at infinity, its contribution is assumed to be zero. So ∂nψ has nonzero value
only on S. More specifically, ∂nψ is a dual 3-cochain with nonzero values only on the dual 3-cells
associated with vertices on S. In fact, as mentioned, ∂nψ can also be viewed as a dual 2-cochain on S,
which is a 2-D manifold. The value of ∂nψ on the dual 2-cell Ap0 on S in Figure 7 is

[∂nψ]A∂
p0

=
∫
A∂

p0

[∇ψ(r) · n̂] dS =
∫
A∂

p0

∂ψ

∂n
dS ≈ ∂ψ(rp0)

∂n
|A∂

p0
|. (61)

Here, the last approximation is given because this form is easier to implement boundary conditions.
The equation for scalar Green’s function is written as:[(

d̄(0)
)T

�(1) d̄(0) − k2�(0)

]
· ḡ − ∂nḡ = Ī. (62)

Here, ∂nḡ is a N0 ×N0 matrix denoting the boundary term, and its (i, j) element is defined as:

[∂nḡ]i,j =
∫
A∂

i

[∇g(r, rj) · n̂] dS =
∫
A∂

i

∂g(r, rj)
∂n

dS ≈ ∂g(ri, rj)
∂n

|A∂
i | (63)

where rj is the j-th primal vertex, and A∂
i is dual face on the boundary associated with i-th primal

vertex ri, such as A∂
p0

in Figure 7. With N∂
0 vertices on S, ∂nḡ will only have N∂

0 nonzero rows. It is
noted that each column of ∂nḡ can be viewed as a dual 3-cochain, or a dual 2-cochain on S, just as
∂nψ.
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Combining Equations (60) and (62), we can derive

ψ = ḡT · ∂nψ − (∂nḡ)T ·ψ (64)

Here, the two matrix-vector production can be understood as a series of wedge product between primal
0-cochains and dual 3-cochains as defined in Equation (34), or a wedge product between primal 0-
cochains and dual 2-cochains on 2-D manifold S, which refers to a surface integral. Clearly, this is a
discrete analog to the continuous theory:

ψ(r′) =
∮

S

[
g(r, r′)n̂ · ∇ψ(r) − ψ(r)n̂ · ∇g(r, r′)] dS. (65)

Moreover, if we set g(r, r′) = 0 for r ∈ S, then the first term on the right hand side of Equation
(64) will vanish and become

ψ = −(∂nḡ)T ·ψ. (66)

On the other hand, if we require n̂ · ∇g(r, r′) = 0 for r ∈ S, then instead, the second term of (64) will
disappear and

ψ = ḡT · ∂nψ. (67)

Equations (64), (66) and (67) are various forms of discrete Huygens’ principle for scalar field depending
on the definitions of g(r, r′). This principle states that only the value of ψ or ∂nψ on surface S are
needed to obtain the field value at any point between S and Sinf.

4.2.2. Electromagnetic Waves

For electromagnetic waves, we consider the same geometry, as shown in Figure 8. It is noted that the
red solid line L∂

d0d1
, connecting d0 and d1, is from d0 to middle point of primal edge p0p1 then to d1,

and not necessarily straight. And dual face Ap0p1 is perpendicular to p0p1, and is inside the mesh.

Figure 8. The geometry for vector Huygens’ principle derivation. Here, p0p1 is a primal edge on
surface S, Ap0p1 is the dual face associated with p0p1, d0 and d1 are the circumcenters of two triangles
containing p0p1, and L∂

d0d1
is the red solid line connecting d0 and d1.

Including a boundary term induced from the Laplacian operator, shown in Equation (31) in Section
2, in a source-free region bounded by surface S and Sinf, Equation (53) is adjusted as[(

d̄(1)
)T

�(2) d̄(1) − k2�(1)

]
·E + iωμJs = 0. (68)

The contribution of Sinf is also assumed to be zero, then Js has nonzero value only on S. More
specifically, Js is a dual 2-cochain with nonzero entities only on the incomplete dual faces at the
boundary, e.g., Ap0p1 in Figure 8. Due to the one to one relation between dual faces and primal edges,
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with N∂
1 primal edges on S, Js would have N∂

1 nonzero entries. For example, the value of Js defined
on the dual face Ap0p1 is

Js,Ap0p1
� 1
iωμ

∫ d1

d0

∇× E(r) · dl =
∫ d1

d0

H(r) · dl

=
∫ d1

d0

[n̂× H(r)] · (n̂× dl)

≈ |L∂
d0d1

|
|p0p1|

∫ p1

p0

[n̂× H(r)] · dl

(69)

It should be noted that Js is a dual 1-cochain on 2-D manifold S, since it is defined on dual edges on
S such as L∂

d0d1
. By writing as the second line of Equation (69), we can easily construct the wedge

product between Js and a primal 1-cochain on S, as we derived in Equation (40) in Section 3.
The third line of Equation (69) is listed because this form is easier to implement certain kind of

boundary condition, such as absorption boundary conditions (ABCs) and impedance boundary condition
(IBC). For example, the first-order ABC reads as

n̂× (∇× E) = iωμ0(n̂× H) ≈ −ik0n̂× (n̂× E).

Then, the line integral of n̂ × H in Equation (69) can be replace by the value of primal cochain E on
p0p1 [14].

Similarly, with a boundary term, the equation for vector Green’s function becomes[(
d̄(1)

)T
�(2) d̄(1) − k2�(1)

]
· Ḡ+ K̄ = Ī. (70)

Here, K̄ is an N1×N1 matrix with only N1,∂ nonzero rows, similar with ∂nḡ introduced for scalar wave.
The (i, j) element [K̄]i,j associated with j-th primal edge and i-th dual face at surface, which only has
one edge L∂

i on the surface, is defined as:

[
K̄
]
i,j

�
∫
L∂

i

[∫
lj

∇× Ḡ(r, r′) · dl′
]
· dl

=
∫
L∂

i

[
n̂×

∫
lj

∇× Ḡ(r, r′) · dl′
]
· (n̂ × dl)

≈ |L∂
i |

|li|
∫

li

[
n̂×

∫
lj

∇× Ḡ(r, r′) · dl′
]
· dl

(71)

It is noted that with the j-th primal edge lj,
∫
lj
∇×Ḡ(r, r′) ·dl′ gives rise to a vector field such as H(r).

The tangential component of this vector field on the boundary, as defined in Equation (71), should be
viewed as a dual 2-cochain in a 3-D mesh, or a dual 1-cochain on S, which is an N1 × 1 column vector
with N∂

1 nonzero entries, just as Js. Therefore, with N1 possible lj , these cochains form an N1 × N1

matrix, which is K̄.
Combining Equations (68) and (70), we can obtain the vectorial Huygens’ principle:

E = K̄T ·E − iωμḠT ·H‖ (72)

This formula can also be understood as a discrete wedge product between dual 1-cochains and primal
1-cochains on surface S. More specifically, E and each column of Ḡ are primal 1-cochains, while Js

and each column of Ḡ‖ are dual 1-cochains on S. Therefore, an inner product between them refers to
a surface integral. Equation (72) is a discrete analog of the continuous theory [1]

E(r) =
∫

S
dS
{
iωμḠ(r, r′) · n̂× H(r′) − [∇× Ḡ(r, r′)] · n̂× E(r′)

}
. (73)

The extra negative sign is due to the definition of normal unit vector n̂.
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4.3. Poynting’s Theorem

The complex Poynting’s theorem is written as [1]

∇ · (E × H∗) = iωH∗ ·B − iωE ·D∗ − E · J∗, (74a)∮
∂Ω

[(E × H∗) · n̂] dS =
∫

Ω
(iωH∗ ·B − iωE ·D∗ − E · J∗) dV. (74b)

where Equation (74b) is the integral form of Poynting’s theorem on domain Ω and its boundary ∂Ω.
In Section 3, we have introduced the way to represent the right hand side of Equation (74b) using

discrete wedge product as

RHS of (74b) ⇒ iω(H∗)T ·B − iωET ·D∗ −ET · J∗ (75)

Invoking the discrete Ampere’s law in Equation (41b) with a boundary,

−iωD + J =
(
d̄(1)

)T
H + Js. (76)

Equation (75) can be adjusted as

iω(H∗)T ·B −ET · J∗ −ET ·
[(

d̄(1)
)T
H∗ + J∗

s − J∗
]

= −ET · J∗
s (77)

Here we have applied d̄(1)E = iωB. Next we need to show that the left hand side of Equation (74b) is
represented by −ET ·J∗

s . In fact, E and Js are primal 1-cochain and dual 1-cochain on two-dimensional
manifold ∂Ω, representing the tangential components of E(r) and H(r) on the surface. In other words,
Js can also be written as a dual 1-cochain H‖ defined on the 2-D surface. For example, the value of
H‖ on L∂

d0d1
in Figure 8 is defined as

H‖,L∂
d0d1

� Js,Ap0p1
(78)

Then the discrete counterpart of the left hand side of Equation (74b) can be represented by the inner
product of E and Js or H‖, as shown in Equation (40). The negative sign is due to the contradiction
between the direction of dual edges on boundary, and normal direction of associated dual faces. For
example, in Figure 8, if the direction of p0p1 is assumed as l̂, which is from p0 to p1. Then, the normal
direction of dual face Ap0p1 is also l̂, while the direction of dual edge L∂

d0d1
on the surface is n̂× l̂, which

is from d1 to d0 and contradicts with the normal direction of Ap0p1 .
Therefore, we have shown that the discrete Poynting’s theorem still holds true and is written as

−ET · J∗
s = iωBT ·H∗ − iωET ·D∗ −ET · J∗

= iωBT · �∗μ−1 ·B∗ − iωET · �∗ε ·E∗ −ET · J∗ (79)

Here, the constitutive relations introduced in Equation (43) are applied, and the superscripts of Hodge
star operators are dropped for simplicity. With a lossless and source free region, Hodge star operators
are real, then


{−ET · J∗
s

}
= ω�{BT · �μ−1 ·B∗ −ET · �ε ·E∗} = 0. (80)

This means that no net time-average power-flow out of or into domain Ω.

4.4. Reciprocity Theorem

A medium is called reciprocal medium when its permittivity ε and permeability μ are symmetric tensors.
In a reciprocal medium, with an electric field E1 generated by J1 and E2 generated by J2, they should
satisfy

〈E2,J1〉 = 〈E1,J2〉 . (81)

We will prove this theorem within DEC only assuming two Hodge star operators �(1)
ε and �

(2)
μ−1 are

symmetric. In fact when the medium is isotropic, these two Hodge star operators are diagonal with
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DEC. With anisotropic medium, they are still symmetric, but not diagonal any more, which will be
shown in our future work.

Since E field and source J can be represented by a primal 1-cochain and dual 2-cochain, respectively,
the inner product in Equation (81) can be viewed as a wedge product between cochains. In other words,
we need to prove

ET
2 · J1 = ET

1 · J2. (82)
Cochains E1 and E2 are generated by source cochains J1 and J2 via equations[(

d̄(1)
)T

�
(2)
μ−1 d̄(1) − k2�(1)

ε

]
·E1 = iωJ1, (83a)[(

d̄(1)
)T

�
(2)
μ−1 d̄(1) − k2�(1)

ε

]
·E2 = iωJ2. (83b)

Therefore,

iωET
2 · J1 = ET

2 ·
[(

d̄(1)
)T

�
(2)
μ−1 d̄(1) − k2�(1)

ε

]
·E1

= ET
2 ·
[(

d̄(1)
)T

�
(2)
μ−1 d̄(1) − k2�(1)

ε

]T

·E1

= iωJT
2 ·E1.

(84)

Noted that this relationship is exact in this discrete space.

5. CONCLUSIONS

We have shown that by using DEC and a discrete wedge product, discrete electromagnetic theory can
be built on an arbitrary simplicial mesh. The fact that theorems of electromagnetic theory are still
preserved in this discrete world, shows that discrete electromagnetic theory with DEC is self-consistent
and self-contained. Therefore, these discrete theorems can be used to check the correctness of numerical
simulations. Moreover, the discrete Green’s functions can be used to solve complex scattering problems,
which will be explored in our future works.
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APPENDIX A. PROOF OF EQUATION (35)

Since this is a 2× 2 matrix equation, we only need to prove that both sides of Equation (35) acting on
an arbitrary 2-D vector give rise to the same result. Since any vector on a 2-D plane can be written as
a linear supposition of l̂1 and l̂2, we can only use these two vectors to prove our point.

RHS of (35) · l̂1 = Sl̂1 (A1)

LHS of (35) · l̂1 = l1s1l̂1 + l2s2

(
l̂T2 · l̂1

)
l̂2 + l3s3

(
l̂T3 · l̂1

)
l̂3 (A2)

For any triangle, the following relation holds true

l1l̂1 + l2 l̂2 + l3 l̂3 = 0 (A3)
Therefore,

LHS of (35) · l̂1 = l1s1l̂1 + l2s2

(
l̂T2 · l̂1

)
l̂2 − s3

(
l̂T3 · l̂1

)(
l1 l̂1 + l2 l̂2

)
(A4)

= l1

[
s1 − s3

(
l̂T3 · l̂1

)]
l̂1 + l2

[
s2

(
l̂T2 · l̂1

)
− s3

(
l̂T3 · l̂1

)]
l̂2 (A5)



Progress In Electromagnetics Research, Vol. 159, 2017 77

To prove that the right hand side of Equations (A2) and (A5) are identical, we need to prove the
following two relations

S = l1

[
s1 − s3

(
l̂T3 · l̂1

)]
(A6)

0 = l2

[
s2

(
l̂T2 · l̂1

)
− s3

(
l̂T3 · l̂1

)]
(A7)

As shown in Figure A1, we have the following relations

Figure A1. Geometry of an arbitrary triangle. Here, d0 is the circumcenter, l1, l2, l3 are three primal
edges, and d1, d2, d3 are three dual edges.

l̂T2 · l̂1 = − cos(θ2) (A8)

l̂T3 · l̂1 = − cos(θ1) (A9)

s1 − s3

(
l̂T3 · l̂1

)
= s1 + s3 cos(θ1) =

1
2
h1 (A10)

s2

(
l̂T2 · l̂1

)
− s3

(
l̂T3 · l̂1

)
= −s2 cos(θ2) + s3 cos(θ1) = 0 (A11)

Therefore, Equations (A6) and (A7) are proved, which leads to

LHS of (35) · l̂1 = RHS of (35) · l̂1 (A12)

Since the same derivation also works for l̂2,

LHS of (35) · l̂2 = RHS of (35) · l̂2 (A13)

So Equation (35) is proved.
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