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Helmholtz Equation in Transverse Circular Representation

Štefan Vǐsňovský*

Abstract—The use of transverse circular representation in circular cylinder coordinate system provides
an alternative approach to the solutions for vector Helmholtz partial differential equations (VH-PDE)
of electromagnetics. After separation, VH-PDE for electric (magnetic) field splits into a set of three
ordinary differential (Bessel) equations for two opposite transverse circular polarizations (TCP) and
the axial component. The approach is suitable for solving the problem of cylindrical waveguides and
cavities starting from transverse fields. The coupling between TCP fields via the axial component affects
nonrecirocal propagation in waveguides. The procedure is illustrated on a dielectric waveguide. It may
be extended to the media with circular eigen polarizations including those displaying magnetooptical
Faraday effect or optical activity.

1. INTRODUCTION

In circular cylinder coordinates, solutions to the vector Helmholtz partial differential equation in a
homogeneous medium (i) characterized at the angular frequency ω by scalar magnetic permeability μ(i)

and electric permittivity ε(i) [1–5] (
∇2 + ω2μ(i)ε(i)

)
E(i) = 0, (1)(

∇2 + ω2μ(i)ε(i)
)

H(i) = 0, (2)

employ the decomposition of electric, E(i) and magnetic H(i) fields into the components parallel to the
unit vectors �̂, ϕ̂, and ẑ, i.e.,

E(i) = E(i)
� �̂ + E(i)

ϕ ϕ̂ + E(i)
z ẑ,

H(i) = H(i)
� �̂ + H(i)

ϕ ϕ̂ + H(i)
z ẑ,

with the vector Laplacians of the form

∇2E(i) = �̂

(
∇2E(i)

� − 2
�2

∂E
(i)
ϕ

∂ϕ
− E

(i)
�

�2

)
+ ϕ̂

(
∇2E(i)

ϕ +
2
�2

∂E
(i)
�

∂ϕ
− E

(i)
ϕ

�2

)
+ ẑ∇2Ez, (3)

∇2H(i) = �̂

(
∇2H(i)

� − 2
�2

∂H
(i)
ϕ

∂ϕ
− H

(i)
�

�2

)
+ ϕ̂

(
∇2H(i)

ϕ +
2
�2

∂H
(i)
�

∂ϕ
− H

(i)
ϕ

�2

)
+ ẑ∇2H(i)

z . (4)

Here � and ϕ denote the transverse cylindrical coordinates and

∇2 =
∂2

∂�2
+

1
�

∂

∂�
+

1
�2

∂2

∂ϕ2
+

∂2

∂z2
.
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For the time, t and z dependence characterized by the complex factor exp[j(ωt − βz)],
the Maxwell equations provide the transverse field components expressed in terms of E

(i)
z and H

(i)
z

E(i)
� = −j

1
ω2ε(i)μ(i) − β2

(
β

∂E
(i)
z

∂�
+ ωμ(i) 1

�

∂H
(i)
z

∂ϕ

)
, (5)

E(i)
ϕ = −j

1
ω2ε(i)μ(i) − β2

(
β

1
�

∂E
(i)
z

∂ϕ
− ωμ(i) ∂H

(i)
z

∂�

)
, (6)

H(i)
� = v − j

1
ω2ε(i)μ(i) − β2

(
β

∂H
(i)
z

∂�
− ωε(i) 1

�

∂E
(i)
z

∂ϕ

)
, (7)

H(i)
ϕ = −j

1
ω2ε(i)μ(i) − β2

(
β

1
�

∂H
(i)
z

∂ϕ
+ ωε(i) ∂E

(i)
z

∂�

)
, (8)

where β represents the z component of the propagation vector.
The separation of Eqs. (1) and (2) is achieved with the products

E(i)
ν = E(i)

0 (�) ejνϕ exp [j (ωt − βz)] , (9)

H(i)
ν = H(i)

0 (�) ejνϕ exp [j (ωt − βz)] , (10)

where ν is an integer. Eqs. (1) and (2) then lead to a set of three equations for E(i)
ν (H(i)

ν ) where the
�̂ and ϕ̂ components are functions of both E

(i)
� (H(i)

� ) and E
(i)
ϕ (H(i)

ϕ ) and only the ẑ component is
a function of E

(i)
z (H(i)

z ) alone. The solution procedure starts from the ordinary differential (Bessel)
equation for E

(i)
z (�) or H

(i)
z (�) and the transverse components are deduced from Eqs. (5)–(8) [2–8].

In practice, there are situations of interest where |E(i)
z | and |H(i)

z | are much smaller than the
transverse field components |E(i)

� | (|H(i)
� |) and |E(i)

ϕ | (|H(i)
ϕ |) [3, 9, 10]. From a formal point of view, this

presents no problem in the exact analysis but may be a less convenient approach in the development of
approximations.

The present work employs an alternative procedure which provides solutions to the vector
Helmholtz partial differential equations (VH-PDE) in terms of transverse circularly polarized (TCP) field
components coupled via the axial field component. After separation, VH-PDE for electric (magnetic)
field splits into a set of three ordinary differential (Bessel) equations. The coupling between the
TCP components plays role in cylindrical waveguides displaying nonreciprocal propagation or optical
activity [7]. It also presents interest in optical angular momentum studies [8]. Its effect (often
undesirable) can be controlled by a proper choice of waveguide parameters. In Section 2, the Helmholtz
equations are expressed with the transverse fields decomposed in circularly polarized components. The
solutions for the cases ν = 0 and ν = ±1 are given in Section 3. Section 4 applies the procedure
to the analysis of dielectric waveguides of circular cross-sections with homogeneous core and cladding.
In the last section, Section 5, the procedure is summarized and illustrated on the case of monomode
waveguides where the effect of material parameters on TCP amplitudes is of a primary interest as it
includes conditions for weak guiding regime.

2. TRANSVERSE CIRCULAR POLARIZATIONS

With the circularly polarized (CP) unit vectors �̂± and unit vector ẑ, the field vectors in Eqs. (9) and
(10) (with the time factor ejωt omitted) can be decomposed to

E(i)
ν (�, ϕ, z) =

[
�̂+e−jϕE

(i)
ν+ (�, ϕ) + �̂−ejϕE

(i)
ν− (�, ϕ) + ẑE(i)

ν,z (�, ϕ)
]
e−jβz, (11)

H(i)
ν (�, ϕ, z) =

[
�̂+e−jϕH

(i)
ν+ (�, ϕ) + �̂−ejϕH

(i)
ν− (�, ϕ) + ẑH(i)

ν,z (�, ϕ)
]
e−jβz. (12)
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The circularly polarized unit vectors �̂± are related to the cylindrical unit vectors �̂ and ϕ̂ and to the
Cartesian unit vectors, x̂ and ŷ by

�̂± = 2−1/2 (�̂ ± jϕ̂) e±jϕ = 2−1/2 (x̂ ± jŷ) .

The fields decomposed into �̂, ϕ̂, and ẑ in the classical solution become

E(i)
ν (�, ϕ, z) =

{
2−1/2�̂

[
E

(i)
ν+ (�, ϕ) + E

(i)
ν− (�, ϕ)

]
+2−1/2jϕ̂

[
E

(i)
ν+ (�, ϕ) − E

(i)
ν− (�, ϕ)

]
+ ẑE(i)

ν,z (�, ϕ)
}

e−jβz, (13)

H(i)
ν (�, ϕ, z) =

{
2−1/2�̂

[
H

(i)
ν+ (�, ϕ) + H

(i)
ν− (�, ϕ)

]
+2−1/2jϕ̂

[
H

(i)
ν+ (�, ϕ) − H

(i)
ν− (�, ϕ)

]
+ ẑH(i)

ν,z (�, ϕ)
}

e−jβz. (14)

The decomposition to x̂, ŷ, and ẑ applied in the weak guiding approximation [3, 4, 9, 10] gives

E(i)
ν (�, ϕ, z) =

{
2−1/2x̂

[
e−jϕE

(i)
ν+ (�, ϕ) + ejϕE

(i)
ν− (�, ϕ)

]
+2−1/2jŷ

[
e−jϕE

(i)
ν+ (�, ϕ) − ejϕE

(i)
ν− (�, ϕ)

]
+ ẑE(i)

ν,z (�, ϕ)
}

e−jβz, (15)

H(i)
ν (�, ϕ, z) =

{
2−1/2x̂

[
e−jϕH

(i)
ν+ (�, ϕ) + ejϕH

(i)
ν− (�, ϕ)

]
+2−1/2jŷ

[
e−jϕH

(i)
ν+ (�, ϕ) − ejϕH

(i)
ν− (�, ϕ)

]
+ ẑH(i)

ν,z (�, ϕ)
}

e−jβz. (16)

The substitution of the vectors E(i)
ν and H(i)

ν given in Eqs. (11) and (12) into Eqs. (1) and (2) reduces
them to sets of ordinary differential (Bessel) equations separately for the electric field components E

(i)
ν+,

E
(i)
ν−, and E

(i)
ν,z,

�̂+e−jϕ

{
d2E

(i)
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d�2
+

1
�

dE
(i)
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d�
+
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)
− 1

�2
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]
E

(i)
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}

+�̂−ejϕ

{
d2E

(i)
ν−

d�2
+

1
�

dE
(i)
ν−

d�
+
[(

ω2μ(i)ε(i) − β2
)
− 1

�2
(ν + 1)2

]
E

(i)
ν−

}

+ẑ

{
d2E

(i)
ν,z

d�2
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1
�

dE
(i)
ν,z

d�
+
[(

ω2μ(i)ε(i) − β2
)
− 1

�2
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]
E(i)

ν,z

}
= 0, (17)

and separately for the magnetic field components H
(i)
ν+, H

(i)
ν−, and H

(i)
ν,z,

�̂+e−jϕ

{
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+

1
�

dH
(i)
ν+

d�
+
[(

ω2μ(i)ε(i) − β2
)
− 1

�2
(ν − 1)2

]
H

(i)
ν+

}
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+
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�
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(i)
ν−

d�
+
[(
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)
− 1
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}

+ẑ
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+

1
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+
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− 1

�2
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H(i)

ν,z

}
= 0. (18)

Each of the Bessel equations has two linearly independent solutions. In the problem of cylindrically
multilayered media, both solutions must be considered [11]. Here the procedure will be demonstrated
on a circular cylindrical dielectric waveguide formed by a core � ≤ a and a cladding � ≥ a with the
solution proportional to the Bessel function of a real argument Jν(κρ) in the region � ≤ a and with the
solution proportional to the modified Hankel function of the first kind of an argument imaginary pure



164 Vǐsňovský

H(1)
ν (jγ�) in the region � ≥ a. Then the solutions can be expressed using with the solutions proportional

to the amplitudes A
(i)
ν± and A

(i)
ν,z for the electric fields

E
(i)
ν+ = A

(i)
ν+Z(i)

ν−1

(
κ(i)�

)
ejνϕ,

E
(i)
ν− = A

(i)
ν−Z(i)

ν+1

(
κ(i)�

)
ejνϕ, (19)

E(i)
ν,z = A(i)

ν,zZ(i)
ν

(
κ(i)�

)
ejνϕ,

and the amplitudes B
(i)
ν± and B

(i)
ν,z for the magnetic fields

H
(i)
ν+ = B

(i)
ν+Z(i)

ν−1

(
κ(i)�

)
ejνϕ,

H
(i)
ν− = B

(i)
ν−Z(i)

ν+1

(
κ(i)�

)
ejνϕ, (20)

H(i)
ν,z = B(i)

ν,zZ(i)
ν

(
κ(i)�

)
ejνϕ.

Here the transverse component of propagation vector, κ(i), follows from the definition

κ(i)2 = ω2μ(i)ε(i) − β2. (21)

and Z(i)
ν (κ(i)�) denotes a cylindrical function of the order ν.

The solutions given by Eqs. (19) and (20) must be consistent with the Maxwell equations, i.e., with
the Faraday law

�̂+e−jϕ

[
jβE

(i)
ν+ + 2−1/2

(
d
d�

+
ν

�

)
E(i)

ν,z

]

+�̂−ejϕ

[
−jβE

(i)
ν− − 2−1/2

(
d
d�

− ν

�

)
E(i)

ν,z

]

+2−1/2ẑ

[
1
�
E

(i)
ν+ +

(
d
d�

− ν

�

)
E

(i)
ν+ − 1

�
E

(i)
ν− −

(
d
d�

+
ν

�

)
E

(i)
ν−

]

= −ωμ(i)
(
e−jϕ�̂+H

(i)
ν+ + ejϕ�̂−H

(i)
ν− + ẑH(i)

ν,z

)
, (22)

and with the Ampère law

�̂+e−jϕ

[
jβH

(i)
ν+ + 2−1/2

(
d
d�

+
ν

�

)
H(i)

ν,z

]

+�̂−ejϕ

[
−jβH
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(
d
d�

− ν

�

)
H(i)

ν,z

]

+2−1/2ẑ

[
1
�
H

(i)
ν+ +

(
d
d�

− ν

�

)
H

(i)
ν+ − 1

�
H

(i)
ν− −

(
d
d�

+
ν

�

)
H

(i)
ν−

]

= ωε(i)
(
e−jϕ�̂+E

(i)
ν+ + ejϕ�̂−E

(i)
ν− + ẑE(i)

ν,z

)
. (23)

Equations (22) and (23) are related by the duality transformation which requires E → ±H, H → ∓E,
and ε(i) ↔ μ(i). The substitutions of Eqs. (19) and (20) into Eqs. (22) and (23) provide for the Faraday
law

H
(i)
ν+ = − 1

ωμ(i)

(
jβA

(i)
ν+ + 2−1/2κ(i)A(i)

ν,z

)
Z(i)

ν−1e
jνϕ,

H
(i)
ν− =

1
ωμ(i)

(
jβA

(i)
ν− − 2−1/2κ(i)A(i)

ν,z

)
Z(i)

ν+1e
jνϕ, (24)

H(i)
ν,z =

21/2

ωμ(i)
κ(i)

(
A

(i)
ν+ + A

(i)
ν−
)
Z(i)

ν ejνϕ,
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and for the Ampère law

E
(i)
ν+ =

1
ωε(i)

(
jβB

(i)
ν+ + 2−1/2κ(i)B(i)

ν,z

)
Z(i)

ν−1e
jνϕ,

E
(i)
ν− = − 1

ωε(i)

(
jβB

(i)
ν− − 2−1/2κ(i)B(i)

ν,z

)
Z(i)

ν+1e
jνϕ, (25)

E(i)
ν,z = − 21/2

ωε(i)
κ(i)

(
B

(i)
ν+ + B

(i)
ν−
)
Z(i)

ν ejνϕ.

The relations among the amplitudes follow from Eqs. (19) and (20) and Eqs. (24) and (25)

A
(i)
ν+ =

1
ωε(i)

(
jβB

(i)
ν+ + 2−1/2κ(i)B(i)

ν,z

)
, (26)

A
(i)
ν− = − 1

ωε(i)

(
jβB

(i)
ν− − 2−1/2κ(i)B(i)

ν,z

)
, (27)

A(i)
ν,z =

−2−1/2κ(i)

ε(i)ω

(
B

(i)
ν+ + B

(i)
ν−
)

= 2−1/2j
κ(i)

β

(
A

(i)
ν+ − A

(i)
ν−
)

, (28)

B
(i)
ν+ = − 1

ωμ(i)

(
jβA

(i)
ν+ + 2−1/2κ(i)A(i)

ν,z

)
, (29)

B
(i)
ν− =

1
ωμ(i)

(
jβA

(i)
ν− − 2−1/2κ(i)A(i)

ν,z

)
, (30)

B(i)
ν,z =

+2−1/2κ(i)

μ(i)ω

(
A

(i)
ν+ + A

(i)
ν−
)

= 2−1/2j
κ(i)

β

(
B

(i)
ν+ − B

(i)
ν−
)

. (31)

The six amplitudes can be expressed in terms of two of them, e.g., using the axial A
(i)
ν,z and B

(i)
ν,z [2, 4, 5].

Here, the preferred selections employ the transverse amplitudes, i.e., A
(i)
ν± and B

(i)
ν± or A

(i)
ν+ and A

(i)
ν−,

etc.. Substitutions of the solutions from Eqs. (19) and (20) into Eqs. (11) and (12) provide

E(i)
ν (�, ϕ, z) =

[
e−jϕ�̂+A

(i)
ν+Z(i)

ν−1 + ejϕ�̂−A
(i)
ν−Z(i)

ν+1 + ẑA(i)
ν,zZ(i)

ν

]
ejνϕe−jβz, (32)

H(i)
ν (�, ϕ, z) =

[
e−jϕ�̂+B

(i)
ν+Z(i)

ν−1 + ejϕ�̂−B
(i)
ν−Z(i)

ν+1 + ẑB(i)
ν,zZ(i)

ν

]
ejνϕe−jβz. (33)

The amplitudes A
(i)
ν,z and B

(i)
ν,z can be replaced using Eqs. (28) and (31). This gives, with the factor

e−jβz omitted,

E(i)
ν (�, ϕ) =

[
e−jϕ�̂+A

(i)
ν+Z(i)

ν−1 + ejϕ�̂−A
(i)
ν−Z(i)

ν+1 + 2−1/2jẑ
κ(i)

β

(
A

(i)
ν+ − A

(i)
ν−
)
Z(i)

ν

]
ejνϕ, (34)

H(i)
ν (�, ϕ) =

[
e−jϕ�̂+B

(i)
ν+Z(i)

ν−1 + ejϕ�̂−B
(i)
ν−Z(i)

ν+1 + 2−1/2jẑ
κ(i)

β

(
B

(i)
ν+ − B

(i)
ν−
)
Z(i)

ν

]
ejνϕ. (35)

Note that the field components A
(i)
ν,z (B(i)

ν,z) parallel to ẑ depend on the CP amplitudes A
(i)
ν± (B(i)

ν±) parallel
to �̂±. Alternatively, the transverse (CP, i.e., perpendicular to ẑ) field components can be expressed in
terms of the amplitudes A

(i)
ν,z0 and B

(i)
ν,z0 for the axial (parallel to ẑ) components given in Eqs. (19) and

(20)

E
(i)
ν+ =

2−1/2

κ(i)

(
ωμ(i)B(i)

ν,z − jβA(i)
ν,z

)
Z(i)

ν−1e
jνϕ,

H
(i)
ν+ = −2−1/2

κ(i)

(
ωε(i)A(i)

ν,z + jβB(i)
ν,z

)
Z(i)

ν−1e
jνϕ,

E
(i)
ν− =

2−1/2

κ(i)

(
ωμ(i)B(i)

ν,z + jβA(i)
ν,z

)
Z(i)

ν+1e
jνϕ,

H
(i)
ν− = −2−1/2

κ(i)

(
ωε(i)A(i)

ν,z − jβB(i)
ν,z

)
Z(i)

ν+1e
jνϕ.
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3. SPECIAL CASES

In this section, the solutions will be given for the modal fields of the lowest orders 0 and ±1 which
determine the range of monomode operation in a circular cylindrical waveguide with a uniform core and
a uniform cladding [2, 5].

3.1. TE and TM waves

For ν = 0, the Helmholtz equations consists of Bessel equations for E
(i)
0,z and H

(i)
0,z which are of the same

form with the solutions proportional to Z(i)
0 . Also, the Bessel equations for E

(i)
0,±1 and H

(i)
±1 are of the

same form. Their solutions are proportional to Z(i)
±1. According to Eq. (28) the electric field component

E
(i)
0,z vanishes for −B

(i)
0+ = B

(i)
0− ≡ B

(i)
TE and A

(i)
0+ = A

(i)
0− ≡ A

(i)
TE, where B

(i)
TE = jβ

ωμ(i) A
(i)
TE. The solution

corresponds to the transverse electric (TE) wave

E(i)
TE =

(
�̂+e−jϕ − �̂−ejϕ

)
A

(i)
TEZ(i)

1 = j21/2ϕ̂A
(i)
TEZ(i)

1 , (36)

H(i)
TE =

jβ
ωμ(i)

(
�̂+e−jϕ + �̂−ejϕ

)
A

(i)
TEZ(i)

1 + 21/2ẑ
κ(i)

ωμ(i)
A

(i)
TEZ(i)

0

=
21/2j
ωμ(i)

(
�̂βZ(i)

1 − jẑκ(i)Z(i)
0

)
A

(i)
TE. (37)

According to Eq. (30), the magnetic field component H
(i)
0,z vanishes for −A

(i)
0+ = A

(i)
0− ≡ A

(i)
TM and

B
(i)
0+ = B

(i)
0− ≡ B

(i)
TM, where A

(i)
TM = − jβ

ωε(i) B
(i)
TM. The solution corresponds to the transverse magnetic

(TM) wave

H(i)
TM = − (�̂+e−jϕ − �̂−ejϕ

)
B

(i)
TMZ(i)

1 = −j21/2ϕ̂B
(i)
TMZ(i)

1 , (38)

E(i)
TM = − jβ

ωε(i)

(
�̂+e−jϕ + �̂−ejϕ

)
B

(i)
TMZ(i)

1 − 21/2ẑ
κ(i)

ωε(i)
B

(i)
TMZ(i)

0

= −21/2j
ωε(i)

(
�̂βZ(i)

1 − jẑκ(i)Z(i)
0

)
B

(i)
TM. (39)

3.2. Solutions for ν = ±1

For the special case of ν = ±1, Eqs. (34) and (35) provide

E(i)
+1 (�, ϕ) = �̂+A

(i)
+1+Z(i)

0 + �̂−A
(i)
+1−Z(i)

2 e2jϕ + ẑA
(i)
+1,zZ(i)

1 ejϕ, (40)

H(i)
+1 (�, ϕ) = �̂+B

(i)
+1+Z(i)

0 + �̂−B
(i)
+1−Z(i)

2 e2jϕ + ẑB
(i)
+1,zZ(i)

1 ejϕ, (41)

E(i)
−1 (�, ϕ) = �̂+A

(i)
−1+Z(i)

2 e−2jϕ + �̂−A
(i)
−1−Z(i)

0 − ẑA
(i)
−1,zZ(i)

1 e−jϕ, (42)

H(i)
−1 (�, ϕ) = �̂+B

(i)
−1+Z(i)

2 e−2jϕ + �̂−B
(i)
−1−Z(i)

0 − ẑB
(i)
−1,zZ(i)

1 e−jϕ. (43)

The use has been made of the parity relation [1]

Z(i)
ν = (−1)ν Z(i)

ν .

In the z components, the amplitudes A
(i)
±1,z and A

(i)
±1,z can again be replaced according to Eqs. (28) and

(31), i.e.,

A
(i)
±1,z = 2−1/2j

κ(i)

β

(
A

(i)
±1+ − A

(i)
±1−

)
,

B
(i)
±1,z = 2−1/2j

κ(i)

β

(
B

(i)
±1+ − B

(i)
±1−

)
.
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4. WAVEGUIDE

For the purpose of illustration, Eqs. (17) and (18) will be now applied to the analysis of a
simple cylindrically layered medium, a cylindrical dielectric waveguide. The waveguide is formed
by the structure consisting of a homogeneous core in the region 0 ≤ � ≤ a (i = 1) characterized
by μ(1) and ε(1) and a homogeneous cladding occupying the region a ≤ � (i = 2). In the core,
Z(1)

ν (κ(1)�) = Jν(κ�) represent Bessel functions of the first kind with the real argument κ�. In
the cladding, Z(2)

ν (κ(2)�) = H(1)
ν (jγ�) represent modified Hankel functions of the first kind, with the

argument imaginary pure jγ� (see Section 2).

4.1. Boundary conditions

The continuity of the field components parallel to the interface � = a follows from the projections of
fields to ϕ̂ and ẑ. Projections to ϕ̂ of the fields in Eqs. (34) and (35) are given by

ϕ̂ · E(i)
ν (�, ϕ) = ϕ̂ · �̂+e−jϕA

(i)
ν+Z(i)

ν−1e
jνϕ + ϕ̂ · �̂−ejϕA

(i)
ν−Z(i)

ν+1e
jνϕ, (44)

ϕ̂ · H(i)
ν (�, ϕ) = ϕ̂ · �̂+e−jϕB

(i)
ν+Z(i)

ν−1e
jνϕ + ϕ̂ · �̂−ejϕB

(i)
ν−Z(i)

ν+1e
jνϕ, (45)

where ϕ̂ · �̂+e−jϕ = 2−1/2j and ϕ̂ · �̂−ejϕ = −2−1/2j. Projections to ẑ of the fields in Eqs. (34) and (35)
provide

ẑ ·E(i)
ν (�, ϕ) = 2−1/2j

κ(i)

β

(
A

(i)
ν+ − A

(i)
ν−
)
Z(i)

ν ejνϕ, (46)

ẑ ·H(i)
ν (�, ϕ) = 2−1/2j

κ(i)

β

(
B

(i)
ν+ − B

(i)
ν−
)
Z(i)

ν ejνϕ. (47)

The amplitudes B
(i)
ν± can be replaced with A

(i)
ν± using Eqs. (26)–(31)

B
(i)
ν+ =

−j
2βωμ(i)

[(
2β2 + κ(i)2

)
A

(i)
ν+ − κ(i)2A

(i)
ν−
]
, (48)

B
(i)
ν− =

j
2βωμ(i)

[(
2β2 + κ(i)2

)
A

(i)
ν− − κ(i)2A

(i)
ν+

]
. (49)

The inverse relations follow from the duality transformation which requires A
(i)
ν± → B

(i)
ν±, B

(i)
ν± → −A

(i)
ν±,

and ε(i) ↔ μ(i), i.e.,

A
(i)
ν+ =

j
2βωε(i)

[(
2β2 + κ(i)2

)
B

(i)
ν+ − κ(i)2B

(i)
ν−
]
, (50)

A
(i)
ν− =

−j
2βωε(i)

[(
2β2 + κ(i)2

)
B

(i)
ν− − κ(i)2B

(i)
ν+

]
, (51)

Equations (48)–(51) show the coupling between the circularly polarized field components via the field
z-component typical for the circular cylinder symmetry. For example, the electric field amplitude A

(i)
ν+

with the circular polarization �̂+ is coupled to the magnetic field amplitudes B
(i)
ν+ and B

(i)
ν− with both

�̂+ and �̂−.
Expressed in a matrix form, the boundary conditions become⎛

⎜⎜⎜⎜⎜⎜⎝

a11 a12 a13 a14

Z(1)
ν−1 −Z(1)

ν+1 −Z(2)
ν−1 Z(2)

ν+1

κ(1)Z(1)
ν −κ(1)Z(1)

ν −κ(2)Z(2)
ν κ(2)Z(2)

ν

κ(1)

μ(1)
Z(1)

ν

κ(1)

μ(1)
Z(1)

ν −κ(2)

μ(2)
Z(2)

ν −κ(2)

μ(2)
Z(2)

ν

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

A
(1)
ν+

A
(1)
ν−

A
(2)
ν+

A
(2)
ν

⎞
⎟⎟⎟⎟⎟⎠ = 0, (52)
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where in the first row (continuity of Hϕ)

a11 =
1

μ(1)

[
−
(
2β2 + κ(1)2

)
Z(1)

ν−1 + κ(1)2Z(1)
ν+1

]
,

a12 =
1

μ(1)

[
κ(1)2Z(1)

ν−1 −
(
2β2 + κ(1)2

)
Z(1)

ν+1

]
,

a13 =
1

μ(2)

[(
2β2 + κ(2)2

)
Z(2)

ν−1 − κ(2)2Z(2)
ν+1

]
,

a14 =
1

μ(2)

[
−κ(2)2Z(2)

ν−1 +
(
2β2 + κ(2)2

)
Z(2)

ν+1

]
.

The second, third and fourth rows express the continuity of Eϕ, Ez and Hz, respectively.

4.2. Characteristic equation

The condition of zero determinant of the 4 × 4 matrix in Eq. (52) leads to the characteristic equation
(the guidance condition) for β [5]

β2
(
κ(1)2 − κ(2)2

)2 ν2

a2

= ω2κ(1)4κ(2)4

[
μ(1)

κ(1)

Z(1)′
ν

(
κ(1)a

)
Z(1)

ν

(
κ(1)a

) − μ(2)

κ(2)

Z(2)′
ν

(
κ(2)a

)
Z(2)

ν

(
κ(2)a

)
][

ε(1)

κ(1)

Z(1)′
ν

(
κ(1)a

)
Z(1)

ν

(
κ(1)a

) − ε(2)

κ(2)

Z(2)′
ν

(
κ(2)a

)
Z(2)

ν

(
κ(2)a

)
]

. (53)

Here κ(i)2 = ω2ε(i)μ(i) − β2 (i = 1, 2) and κ(1)2 − κ(2)2 = ω2(ε(1)μ(1) − ε(2)μ(2)). The derivatives at the

interface � = a, i.e., [dZ
(i)
ν (κ(i)�)

d(κ(i)�)
]�=a, are denoted by Z(i)′

ν (κ(i)a). The use has been made of the recursion
relations for cylindric functions [1]

Z(i)
ν+1

(
κ(i)�

)
=

ν

κ(i)a
Z(i)

ν

(
κ(i)�

)
−Z(i)′

ν

(
κ(i)�

)
,

Z(i)
ν−1

(
κ(i)�

)
=

ν

κ(i)a
Z(i)

ν

(
κ(i)�

)
+ Z(i)′

ν

(
κ(i)�

)
.

4.3. Amplitude Ratios

The relations among A
(i)
ν± follow from the equation system Eq. (52). From Eq. (52) with the first row

removed, the amplitudes expressed in terms of A
(1)
ν+ become

A
(1)
ν−

A
(1)
ν+

=

μ(1) ν

a

κ(1)2 − κ(2)2

κ(1)2κ(2)2
−
(

μ(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− μ(2)

κ(2)

Z(2)′
ν

Z(2)
ν

)

μ(1) ν

a

κ(1)2 − κ(2)2

κ(1)2κ(2)2
+

(
μ(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− μ(2)

κ(2)

Z(2)′
ν

Z(2)
ν

) , (54)

A
(2)
ν+

A
(1)
ν+

=
κ(1)Z(1)

ν

κ(2)Z(2)
ν

μ(2) ν

a

κ(1)2 − κ(2)2

κ(1)2κ(2)2
+

(
μ(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− μ(2)

κ(2)

Z(2)′
ν

Z(2)
ν

)

μ(1) ν

a

κ(1)2 − κ(2)2

κ(1)2κ(2)2
+

(
μ(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− μ(2)

κ(2)

Z(2)′
ν

Z(2)
ν

) , (55)

A
(2)
ν−

A
(1)
ν+

=
κ(1)Z(1)

ν

κ(2)Z(2)
ν

μ(2) ν

a

κ(1)2 − κ(2)2

κ(1)2κ(2)2
−
(

μ(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− μ(2)

κ(2)

Z(2)′
ν

Z(2)
ν

)

μ(1) ν

a

κ(1)2 − κ(2)2

κ(1)2κ(2)2
+

(
μ(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− μ(2)

κ(2)

Z(2)′
ν

Z(2)
ν

) . (56)
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Equivalently, these results can be deduced from Eq. (52), now with the second row removed

A
(1)
ν−

A
(1)
ν+

=

β2

μ(1)

κ(1)2 − κ(2)2

κ(1)2κ(2)2

ν

a
− ω2

(
ε(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− ε(2)

κ(2)

Z(2)′
ν

Z(2)
ν

)

− β2

μ(1)

κ(1)2 − κ(2)2

κ(1)2κ(2)2

ν

a
− ω2

(
ε(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− ε(2)

κ(2)

Z(2)′
ν

Z(2)
ν

) , (57)

A
(2)
ν+

A
(1)
ν+

=

κ(1)Z(1)
ν

μ(1)

κ(2)Z(2)
ν

μ(2)

β2

μ(2)

κ(1)2 − κ(2)2

κ(1)2κ(2)2

ν

a
+ ω2

(
ε(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− ε(2)

κ(2)

Z(2)′
ν

Z(2)
ν

)

β2

μ(1)

κ(1)2 − κ(2)2

κ(1)2κ(2)2

ν

a
+ ω2

(
ε(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− ε(2)

κ(2)

Z(2)′
ν

Z(2)
ν

) , (58)

A
(2)
ν−

A
(1)
ν+

=

κ(1)Z(1)
ν

μ(1)

κ(2)Z(2)
ν

μ(2)

β2

μ(2)

κ(1)2 − κ(2)2

κ(1)2κ(2)2

ν

a
− ω2

(
ε(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− ε(2)

κ(2)

Z(2)′
ν

Z(2)
ν

)

− β2

μ(1)

κ(1)2 − κ(2)2

κ(1)2κ(2)2

ν

a
− ω2

(
ε(1)

κ(1)

Z(1)′
ν

Z(1)
ν

− ε(2)

κ(2)

Z(2)′
ν

Z(2)
ν

) . (59)

The corresponding ratios in Eqs. (54)–(56) and (57)–(59) are related by Eq. (53).

5. DISCUSSION

The use of transverse circular representation in circular cylinder coordinate system enables simplified
solutions to the vector Helmholtz partial differential equation of electromagnetics. After separation, the
equation for electric (magnetic) field splits into a set of three ordinary differential, i.e., Bessel equations
for two opposite transverse circular polarizations, �̂+ and �̂−, and the axial ẑ component. The approach
is suitable for solving the problem of cylindrical waveguides and cavities starting from transverse field
components. It is illustrated on a circular cylindrical dielectric waveguide. Its monomode operation is
deduced from the solutions for ν = 0 and ν = ±1 given in Sections 3 and 4 and defined by the V -number
range,

V = ω
(
μ(1)ε(1) − μ(2)ε(2)

)1/2
a ≤ 2.405.

Table 1 provides the solutions to Eq. (40) at a fixed V = 2.4028 for several ε(1)/ε(2) ratios and
propagation constants in the cladding k(2) = ω(μ(2)ε(2))1/2 corresponding to the case ν = 1, with
restriction to μ(1)/μ(2) = 1. The model may be applied, e.g., to the evaluation of the trends in an optical
fiber operating at the vacuum wavelength, λvac = 1.55µm with the core radius 1µm < a < 36µm. At
the lowest ε(1)/ε(2) (ε(1)/ε(2) ≈ 1), the component propagating with �̂+ dominates. This justifies the
weak guiding approximation, i.e., A

(1)
+1−/A

(1)
+1+ ≈ 0. The same situation takes place for ν = −1 and �̂−

Table 1. Dependence of waveguide characteristics on permittivity ratio.

ε(1)/ε(2) 1.000143 1.00143 1.0143 1.1 1.143
k(2)a 200.932 63.5615 20.0677 7.59855 6.34597
βa 200.94 63.5856 20.1437 7.79353 6.5762
κa 1.64605 1.64631 1.64885 1.66507 1.67288
γa 1.75042 1.75021 1.74782 1.73237 1.72484

A
(1)
z /A

(1)
+1+ 0.00579243 0.0183079j 0.0578799j 0.151072j 0.179877j

A
(1)
+1−/A

(1)
+1+ −0.0000229546 −0.000236753 −0.00231887 −0.0153239 −0.0214017
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where the ratio A
(1)
−1+/A

(1)
−1− ≈ 0. The two solutions can be combined to construct the LP01 orthogonal

modes linearly polarized parallel to x̂ and ŷ [3].
The coupling between fields with �̂+ and �̂− presents interest in the development of approximations,

in the design of nonreciprocal waveguides, in optical angular momentum studies, etc. [3, 8]. The approach
may be applied to rectangular cylindrical waveguides in a way developed by Goell [6] and to the media
with circular eigen polarizations displaying magnetooptical Faraday effect or optical activity [7, 12].
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