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Inverse Scattering of a Conducting Cylinder in Free Space
by Modified Fireworks Algorithm

Kun-Chou Lee*

Abstract—In this paper, the inverse scattering of a conducting cylinder is given by modified fireworks
algorithm. Initially, the direct scattering is formulated as an integral equation, which contains the target
shape function. The scattering integral equation is then solved by the moment method. To achieve
image reconstruction, the target shape function is expanded as a Fourier series. The inverse scattering
is transformed into a nonlinear optimization problem. The variables are Fourier series coefficients
of the target shape function. The objective function is defined by comparing the scattered electric
fields of guessed and true shapes. This nonlinear optimization problem is then optimized by our
modified fireworks algorithm. The fireworks algorithm is a novel swarm intelligence algorithm for
global optimization. It is inspired by practical fireworks explosion. In this paper, it is suitably modified
so that it can treat the inverse scattering problem with fast convergence. Numerical results show that
the inverse scattering based on our modified fireworks algorithm can accurately reconstruct the target
shape with fast convergence.

1. INTRODUCTION

Inverse scattering plays a very important role in radar, remote sensing, non-destructive testing, etc.
For a conducting target, the inverse scattering techniques are basically divided into two categories.
The first category is based on the physical optics approximation and discrete Fourier transformation,
such as [1–5]. The main advantage of this category is that the computation is very efficient. However,
the inverse scattering technique of this category is limited to only a convex target with the smooth
surface The second category is to solve nonlinear scattering integral equations directly by numerical
methods, such as [6–10]. The main advantage of this category is that there is no limitation on the
target shape. However, the computation is time-consuming and even difficult due to the nonlinearity
and ill-posed problems. In [11], the technique of the second category is modified and further transformed
into a nonlinear optimization problem. Thus the inverse scattering becomes a nonlinear optimization
problem. This will make the inverse scattering scheme clear and easy since numerical techniques for
solving nonlinear integral equations have been replaced by optimization algorithms

In recent years, swarm intelligence has become important in nonlinear optimization. Such
optimization techniques are often inspired by some intelligent colony behaviors in nature. In particular,
the fireworks algorithm [12] mimics the explosion process of fireworks, and is an important technique
of swarm intelligence optimization. It is inspired by the emergent swarm behavior of fireworks. This
nonlinear optimization algorithm is implemented by simulating the explosion process of fireworks. In
terms of both optimization accuracy and convergence speed it has been proved to outperform the particle
swarm optimization algorithm, which is a well-known nature inspiration optimization algorithm [12, 13].
This motivates us to apply the fireworks algorithm to inverse scattering problem.
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In this paper, the firework algorithm [12] is modified and then applied to inverse scattering of a
conducting cylinder in free space Based on the scattering integral equation [14] and moment method [15],
the inverse scattering is first transformed into a nonlinear optimization. The variables are the Fourier
series coefficients [16]. The objective function is defined by comparing scattered electric fields from the
guessed and true shapes, respectively. Numerical results show that the target shape reconstructed by
the fireworks algorithm is very accurate and the convergence is fast.

The remainder of this paper is organized as follows. Section 2 describes the direct scattering.
Section 3 describes the inverse scattering. Section 4 gives the modified fireworks algorithm. Numerical
results are given in Section 5. Finally, conclusions are given in Section 6.

2. DIRECT SCATTERING

For simplicity without loss of generality, this study considers only two-dimensional problems. Consider
a perfectly conducting cylinder in free space illuminated by an incident plane wave

Ēi = Eiẑ = exp{−jk(x sin φi + y cos φi)}ẑ, (1)

as shown in Fig. 1. Note that the time harmonic factor exp(jωt) is omitted. In Eq. (1) and Fig. 1, k is
the wavenumber, and φi is an angle representing the incident direction. The target cylinder is infinitely
extended in ±ẑ directions. Let (ρ, φ) denote the polar coordinates in x-y plane. For any point on
the target boundary, its polar coordinates are characterized by a shape function ρ = h(φ). According
to [14], the scattered electric field at position (xy) is also ẑ-polarized and can be expressed as

ES(x, y) = −kη0

4

∫ 2π

0
H

(2)
0

(
k
√

[x − h(φ′) cos φ′]2 + [y − h(φ′) sin φ′]2
)

√
[h(φ′)]2 + [h′(φ′)]2JS(φ′)dφ′. (2)

In Eq. (2), η0 = 120π is the intrinsic impedance of free space, H
(2)
0 (·) the zero-order Hankel function

of the second kind, and JS(·) the surface current density. Note that the mark, prime, represents the
current source. According to the electromagnetic boundary condition, the total electric field is zero on
the target boundary. Thus for any point with polar coordinates (h(φ), φ) on the target boundary, we
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Figure 1. Geometry of a cylinder in free space illuminated by an incident plane wave Ēi = Eiẑ.
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have Ei = −ES , i.e.,

Ei(h(φ), φ) =
kη0

4

∫ 2π

0
H

(2)
0

(
k
√

[h(φ)]2 + [h(φ′)]2 − 2h(φ)h(φ′) cos(φ − φ′)
)

√
[h(φ′)]2 + [h′(φ′)]2JS(φ′)dφ′. (3)

To obtain scattered electric field ES , the surface current density JS(·) should be determined. By
using moment methods [15], JS(·) is expanded as

JS(φ′) =
NB∑
n=1

InBn(φ′), (4)

where I1, I2, . . . , INB
are unknown coefficients and B1(·), B2(·), . . . , BNB

(·) are known basis functions,
which are

Bn(φ′) =
{

1, (n − 1) · 2π/NB ≤ φ′ < n · 2π/NB

0, otherwise.
(5)

As unknown coefficients I1, I2, . . . , INB
are determined, JS(·) are obtained from Eq. (4). Substituting

Eqs. (4) and (5) into Eq. (3), we have

kη0

4
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∫ n·2π/NB

(n−1)·2π/NB

In
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(
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[h(φ)]2 + [h(φ′)]2 − 2h(φ)h(φ′) cos(φ − φ′)
)

√
[h(φ′)]2 + [h′(φ′)]2dφ′

}
= Ei(h(φ), φ) (6)

for any point with polar coordinates (h(φ), φ) on the target boundary. By setting φ = φm =
(m − 0.5) · 2π/NB , m = 1, 2, . . . , NB in Eq. (6), we obtain NB simultaneous equations as

NB∑
n=1

ZmnIn = Vm, m = 1, 2, . . . , NB , (7)

where

Zmn =
kη0

4

∫ n·2π/NB
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(8)

and

Vm = exp{−jk[h(φm) cos φm sin φi + h(φm) sin φm cos φi]}. (9)

From Eqs. (7)–(9), In (n = 1, 2, . . . , NB) can be obtained by solving the simultaneous equations. The
scattered field ES(x, y) at any position (xy) can be obtained by substituting In (n = 1, 2, . . . , NB) into
Eq. (4) and then into Eq. (2). The result is

ES(x, y) = −kη0

4

NB∑
n=1

In

∫ n·2π/NB

(n−1)·2π/NB

H
(2)
0

(
k
√

[x − h(φ′) cos φ′]2 + [y − h(φ′) sin φ′]2
)

√
[h(φ′)]2 + [h′(φ′)]2dφ′. (10)

3. INVERSE SCATTERING

Inverse scattering means to reconstruct the target shape from scattered fields. For convenience, the
target shape function is expanded into a Fourier series as

ρ = h(φ) = C0 +
NS∑
n=1

[Cn cos(nφ) + Sn sin(nφ)], (11)
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where NS is the maximum number of harmonics. Cn (n = 0, . . . , NS) and Sn (n = 1, . . . , NS) are
unknown real coefficients. As the target shape is non-canonical and complex, the expansion of Eq. (11)
may be inadequate. In such a case, the cubic spline interpolation [17] may be utilized instead to
expand the target shape. The inverse scattering problem becomes to determine Cn (n = 0, . . . , NS)
and Sn (n = 1, . . . , NS) from collection of scattered fields. To achieve adequate features of scattering
mechanisms, the target is illuminated by incident wave from NI different incident directions of φi. For
each incidence, the scattered electric fields are collected at NL different locations. The inverse scattering
problem becomes to find optimum values of Cn (n = 0, . . . , NS) and Sn (n = 1, . . . , NS) that minimize
the objective function

f =
NI∑
i=1

NL∑
l=1

(∣∣∣Eguess
i,l − Etrue

i,l

∣∣∣/∣∣∣Etrue
i,l

∣∣∣
)

, (12)

where Eguess
i,l and Etrue

i,l are scattered electric fields from the guessed and true shapes of the target,
respectively. The subscripts represent the l-th location of the i-th incidence. So far, the inverse scattering
has been transformed into a nonlinear optimization problem. The variables are Cn (n = 0, . . . , NS) and
Sn (n = 1, . . . , NS) in Eq. (11). As the objective function of Eq. (12) is minimized, the target shape
function of Eq. (11) is reconstructed. In this paper, the minimization of Eq. (12) is implemented by the
modified fireworks algorithm [12], as given in the next section.

4. MODIFIED BY FIREWORKS ALGORITHM

In this study, we modify the fireworks algorithm in [12] to implement the minimization of Eq. (12).
Note that the procedures of fireworks algorithm in this study are somewhat different from those of
reference [12]. We make some modifications by experiences so that they can converge well in our inverse
scattering problem. The idea of fireworks algorithm optimization is from practical fireworks and their
sparks [12]. When a firework is well manufactured, numerous sparks are generated and centralize the
explosion center. On the contrary for a bad firework explosion, quite few sparks are generated and
sparks scatter far from the explosion center. These two types of fireworks explosion are shown in Fig. 2.

  

(a) (b)

Figure 2. Explosions of (a) good and (b) bad fireworks.

Assume that the problem is
Minimizing f(r̄) for r̄ = (x1, x2, . . . , xD), (13)

under the constraint
αd ≤ xd ≤ βd, d = 1, 2, . . . ,D. (14)

In Eq. (13), r̄ is the location of a firework in potential space, and f(r̄) is its objective function. In
Eq. (14), αd and βd denote the lower and upper bounds of xd, d = 1, 2, . . . ,D, respectively. In Eqs. (13)
and (14), D is the number of dimensions for the location in potential space. A flowchart of the modified
fireworks algorithm is given in Fig. 3 Detailed procedures are given in the following.
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Figure 3. The flowchart of modified fireworks algorithm.

*Step-1: Initialize the locations of fireworks. Assume that there are N fireworks in total. Their initial
locations are selected randomly and denoted as r̄1, r̄2 . . . , r̄N .

*Step-2: Calculate the objective function values f(r̄i), i = 1, 2, . . . , N , for the N fireworks.
*Step-3: Find the maximum (ymax) and minimum (ymin) for objective function values of the N

fireworks.
*Step-4: Calculate the number of sparks for each firework. The number of sparks generated by the

i-th firework (located at r̄i) is given as

Si = MS · ymax − f(r̄i) + ξ
N∑

i=1

[ymax − f(r̄i)] + ξ

, i = 1, 2, . . . , N. (15)

where MS is a parameter controlling the total number of sparks generated by the N fireworks.
In Eq. (15), ξ is a constant to avoid zero division error. Note that Eq. (15) means that a better
firework, i.e., with smaller f(r̄i), generates more sparks. On the contrary, a worse firework, i.e.,
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with larger f(r̄i), generates less sparks. Bounds of Si, i = 1, 2, . . . , N , are chosen as

Si =

⎧⎨
⎩

round(a · M), Si < a · M
round(b · M), Si > b · M
round(Si), otherwise

, (16)

where a and b are constants, and 0 < a < b < 1.
*Step-5: Calculate the amplitude of explosion. The amplitude of explosion is given as

Ai = A · f(r̄i) − ymin + ξ
N∑

i=1

[f(r̄i) − ymin] + ξ

, i = 1, 2, . . . , N. (17)

where A denotes the maximum explosion amplitude. Note that Eq. (17) means that a better
firework, i.e., with smaller f(r̄i), has a smaller explosion amplitude. On the contrary, a worse
firework, i.e., with larger f(r̄i), has a larger explosion amplitude. Therefore, Eq. (17) hints that a
good firework generates sparks near the explosion center, whereas a bad firework generates sparks
scattering far from the explosion center.

*Step-6: Update locations of fireworks by random displacement. Assume that the i-th firework
(i = 1, 2, . . . , N) is located at r̄i = (xi,1, xi,2, . . . , xi,D). Its spark has random displacement with
respect to the firework. The spark location r̄S = (xS,1, . . . , xS,d, . . . , xS,D) is given as

xS,d = xi,d + Ai · rand(−1, 1), d = 1, 2, . . . ,D, (18)

where rand(−1, 1) is a random number between −1 and 1. Next calculate the objective function
value f(r̄S). If f(r̄S) is less than f(r̄i), r̄i is replaced by r̄S. The procedure of Eq. (18) together
with check of the objective function value will be repeated Si times, since there are Si fireworks
generated by the i-th firework.

*Step-7: Update locations of fireworks by random scale. The i-th firework (i = 1, 2, . . . , N) generates
a specific spark. Its location r̄S = (xS,1, . . . , xS,d, . . . , xS,D) is given as

xS,d = xi,d · Gaussian(1, 1), d = 1, 2, . . . ,D, (19)

where Gaussian(1, 1) is a Gaussian distribution random number with mean 1 and standard
deviation 1. Next calculate the objective function value f(r̄S). If f(r̄S) is less than f(r̄i), r̄i

is replaced by r̄S . The procedure of Eq. (19) together with check of the objective function value
will be repeated MG times, i.e., there are MG specific fireworks generated by the i-th firework.

*Step-8: Go to Step-3 until the number of iteration loops reaches a pre-specified threshold, i.e.,
maximum iteration loops.
In this study, we utilize the above modified fireworks algorithm to achieve inverse scattering.
Components of the firework location r̄ = (x1, x2, . . . , xD) of Eq. (13) represents Fourier series
coefficients of Eq. (11), i.e.,

r̄ = (x1, x2, . . . , xD) = (C0, C1, . . . , CNS
, S1, . . . , SNS

). (20)

The objective function of Eq. (13) is defined as Eq. (12). Following the above iteration procedures
of our modified fireworks algorithm, the optimum Fourier coefficients of the target shape can be
obtained. The target shape is then reconstructed by Eq. (11).

5. NUMERICAL RESULTS

In this section, numerical examples are given to illustrate the above image reconstruction algorithm.
Consider a perfectly conducting cylinder in free space illuminated by a plane wave of Eq. (1), as shown
in Fig. 1. The frequency of the incident wave is 3 GHz. The incident wave direction φi is chosen
as 0◦, 120◦, and 240◦, respectively. For each incidence, scattered electric fields are collected in eight
directions, which are φ = 0◦, 45◦, 90◦, 135◦, . . . , and 315◦, respectively. That is, we have NI = 3
and NL = 8 in Eq. (12). The distance between each receiver and the target is chosen as 12 m. Note
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that the scattered electric field is calculated by Eq. (10), which is suitable for both near and far fields.
Therefore, the choice of distance between a receiver and the target is not important. This study focuses
on numerical simulation for verifying that the fireworks algorithm can implement inverse scattering.
The basic consideration of the above antenna array arrangement is to capture features from all aspects
of the target. In the future, the optimal synthesis of an antenna array may be considered, as those
given in reference [18]. The NS in Eq. (11) is set to be 4, i.e., the target shape is characterized by a
Fourier series with 9(= 2 × 4 + 1) terms. Although the increase of NS improves the discrimination of
target shape, it will also lead to time-consuming computation. The optimal value of NS depends on the
degrees of freedom of scattered fields [19, 20]. However, this is not the focus of this study. This study
focuses on how the fireworks algorithm is embedded into the inverse scattering scheme. Note that the
goal of inverse scattering is to determine these 9 Fourier series coefficients and then reconstruct the
target shape as Eq. (11). The problem is first transformed into a nonlinear optimization problem as
Eq. (12) and then optimized by the modified fireworks algorithm as Section 4. In our modified fireworks
algorithm, the number of fireworks is chosen as N = 10. The location of each firework has 9 dimensions
(D = 9) to represent the 9-term Fourier series coefficients of the target shape function in Eq. (11). In
Step-1 of Section 4, the initial guess of each firework location is generated by an uniformly random
number within a fixed range The MS of Eq. (15), which is a parameter controlling the total number of
sparks is chosen as MS = 100. The ξ of Eqs. (15) and (17), which is a constant to avoid zero division
error, is chosen as ξ = 0.1. The a and b of Eq. (16) are chosen as a = 0.04 and b = 0.8, respectively.
The maximum explosion amplitudeA in Eq. (17) is set to be 10. The number of specific fireworks in
Step-7 of Section 4 is chosen as MG = 5.

In the first example, the target shape function is given as h(φ) = 0.4 + 0.1 cos(φ) + 0.03 cos(2φ) +
0.05 sin(φ) + 0.02 sin(3φ), which is convex as shown in Fig. 4. Following the above inverse scattering
procedures, the reconstructed target shape of different iteration loops is plotted in Fig. 4. The shape
error is defined as

Shape Error =
1

Mang

Mang∑
m=1

∣∣ρguess(φm) − ρtrue(φm)
∣∣

|ρtrue(φm)| , (21)

where ρguess(·) and ρtrue(·) represent the radius in polar coordinates for guessed and true shapes,
respectively. The φm (m = 1, 2, . . . ,Mang) denotes the sampling angle. In this study, φm is chosen as
1, 2, . . . , 360, i.e., Mang = 360. Fig. 5 shows the shape error with respective to iteration loops. Fig. 6
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Figure 4. The reconstructed target shape of the first example.
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Figure 5. The shape error with respective to
iteration loops for the first example.
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Figure 6. The objective function value with
respective to iteration loops for the first example.
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Figure 7. The reconstructed target shape of the second example.

shows the objective function value with respective to iteration loops. Fig. 4 to Fig. 6 show that the
reconstructed target shape is in good agreement with the true (answer) target shape. In addition, they
also show that the inverse scattering scheme based on our modified fireworks algorithm converges very
fast.

Note that the target shape of the previous example is convex so that there is no multiple scattering
effect. In the second example, the target shape function is given as h(φ) = 0.35 + 0.12 sin(2φ), which
is slightly concave as shown in Fig. 7. The other conditions are the same as those of the first example.
Following the above inverse scattering procedures, the reconstructed target shape of different iteration
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loops is plotted in Fig. 7. Fig. 8 shows the shape error with respective to iteration loops. Fig. 9 shows the
objective function value with respective to iteration loops. Fig. 7 to Fig. 9 show that the reconstructed
target shape is in good agreement with the true (answer) target shape. In addition, they also show
that the inverse scattering scheme based on our modified fireworks algorithm converges very fast. Since
the target shape of this example is slightly concave, our inverse scattering scheme can tolerate slight
multiple scattering.
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Figure 8. The shape error with respective to
iteration loops for the second example.
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Figure 9. The objective function value with
respective to iteration loops for the second
example.
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Figure 10. The reconstructed target shape of the third example.
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Figure 11. The shape error with respective to
iteration loops for the third example.
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Figure 12. The objective function value with
respective to iteration loops for the third example.

The shapes of the previous two examples are simple. In the third example, the target shape is given
as h(φ) = 0.38 + 0.1 sin(4φ). This shape is complex because it contains several concaves, as shown in
Fig. 10. The other conditions are the same as those of the previous two examples. Following the above
inverse scattering procedures, the reconstructed target shape of different iteration loops is plotted in
Fig. 10. Fig. 11 shows the shape error with respective to iteration loops. Fig. 12 shows the objective
function value with respective to iteration loops. Fig. 10 to Fig. 12 show that the reconstructed target
shape is in good agreement with the true (answer) target shape. They also show that the inverse
scattering scheme based on our modified fireworks algorithm converges very fast. Since the target shape
of this example contains several concaves, our inverse scattering scheme can tolerate strong multiple
scattering mechanisms.

Among all the three examples, the second example has the best converge. This is because both
the Fourier series coefficients and the shape of the second example are simple. Based on our modified
fireworks algorithm, the target shape can be well predicted within 30 iteration loops, which take about 9
minutes of execution time in personal computer. The above numerical simulation is coded using Fortran
programming language together with IMSL library. The hardware is a personal computer with Intel(R)
Core(TM) i7-4790 3.6 GHz CPU and 16 GB RAM.

6. CONCLUSION

This study successfully combines the moment method solution of scattering integral equations and our
modified fireworks algorithm to reconstruct the shape of a conducting cylinder in free space. The inverse
scattering problem is first transformed into a nonlinear optimization problem, and then optimized by
the modified fireworks algorithm. The fireworks algorithm is a swarm-based optimization algorithm. It
does not require any gradient operation. Therefore, the nonlinear characteristic between the input and
output may be complex, or even a black box. In addition, the initial guess of each firework location
does not affect the overall convergence. This is consistent with our numerical simulation experiences.

There exist many numerical approaches for solving nonlinear optimization problems, e.g., particle
swarm algorithms [13], genetic algorithms [21], and stimulated annealing algorithms [22]. In [12], the
fireworks algorithm has been proved to converge faster than the particle swarm algorithm. The genetic
algorithm implements optimization by binary searching. The fireworks algorithm converges faster than
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the genetic algorithm because transformations between decimal and binary systems are not required.
As mentioned in Section 4, the fireworks algorithm considers both the good (dense) and bad (sparse)
fireworks. It has less chance to get stuck in local optima than the simulated annealing algorithm.
With the use of our modified fireworks algorithm, the reconstructed target shape is accurate, and the
convergence is fast. In general, a nonlinear electromagnetic problem can be characterized by f(x̄) = 0,
where f(·) is a nonlinear function, and x̄ is a vector composed of all variables. According to the idea
of this study, it can be transformed into another optimization problem, which is to search an optimal x̄
minimizing |f(x̄)|. Therefore, the fireworks algorithm based procedures of this study can also be applied
to many other nonlinear electromagnetic problems, e.g., nonlinear antennas [21].
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