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Abstract—In scattering experiments, incident fields are usually produced by aperture antennas or
lasers. Nevertheless, incident plane waves are usually preferred to simplify theoretical analysis. The
aim of this paper is the analysis of the electromagnetic scattering from a perfectly electrically conducting
polygonal cross-section cylinder when a Gaussian beam impinges upon it. Assuming TM/TE incidence
with respect to the cylinder axis, the problem is formulated as electric/magnetic field integral equation
in the spectral domain, respectively. The Method of analytical preconditioning is applied in order to
guarantee the convergence of the discretization scheme. Moreover, fast convergence is achieved in terms
of both computation time and storage requirements by choosing expansion functions reconstructing the
behaviour of the fields on the wedges with a closed-form spectral domain counterpart and by means of
an analytical asymptotic acceleration technique.

1. INTRODUCTION

From a theoretical point of view, it is a normal practice to assume a plane wave as incident field
in scattering problems. This simplification is justified by the basic idea that a general incident field
can be represented in terms of continuous spectrum of plane waves. Following this line of reasoning,
much effort has been devoted in the past years to the analysis of the scattering of a plane wave from
perfectly electrically conducting (PEC) and dielectric objects. So, different techniques, such as method
of moments [1], finite elements method [2], boundary elements method [3], the geometrical theory of
diffraction and the uniform theory of diffraction [4, 5], and so on, have been proposed, depending on the
complexity and the electrical size of the involved objects.

However, experimental results in scattering problems are in general obtained by means of incident
fields produced by a radar antenna or a lens collimated laser beam. Moreover, the use of lasers has been
growing more and more in fields such as particle sizing, biomedicine, aerosol cloud penetration, and so
on. Hence, for such kind of applications, a shaped beam (Gaussian beam) represents a more realistic
incident field. It is worth noting that, despite a Gaussian beam can be represented as a continuous
spectrum of plane waves, the analysis of the scattering deserves attention since the convergence of a
numerical scheme is strictly related to the functional space to which the free term belongs [6]. On the
other hand, the field pattern obtained for a Gaussian beam does not exactly follow the geometrical optics
rules of reflection and transmission satisfied by a plane wave [7]. All these reasons have justified the need
to address the problem of the scattering of a Gaussian beam from PEC and dielectric objects [8–17].

The aim of this paper is the analysis of the electromagnetic scattering from a PEC polygonal cross-
section cylinder when a TM/TE polarized Gaussian beam orthogonally impinges onto the scatterer
surface. Since the polygonal cross-section can be reviewed as a collection of strips, integral equation
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Meridionale, Cassino 03043, Italy.



102 Lucido et al.

formulations can be obtained by means of the superposition principle. As usual, for TM incidence an
electric field integral equation (EFIE) is used, whilst for TE incidence a magnetic field integral equation
(MFIE) is preferred. Since no closed form solution is in general available for the problem at hand,
numerical methods have to be applied to find an approximation of the exact solution. However, the
approximate solutions obtained by discretizing and truncating first-kind or strongly-singular second-kind
integral equations cannot converge to the exact solution of the problem. Anyway, due the unboundedness
of the involved operator or of its inverse, the sequence of condition numbers diverges. In order to
overcome these problems, the Method of analytical preconditioning is applied in this paper [6]. After
defining the functional spaces to which the unknown and free term belong, it consists in individuating a
suitable expansion basis for the surface current density in a Galerkin scheme such that the most singular
part of the integral operator is invertible with a continuous two-side inverse. In this way, the integral
equation is recast as a matrix operator equation at which Fredholm theory can be applied [18]. The
selected expansion functions have a closed form spectral domain counterpart. This suggests to formulate
the problem in the spectral domain so that the convolution integrals can be interpreted as the Fourier
transforms in the complex plane of the expansion functions. Moreover, the choice of expansion bases
reconstructing the behaviour of the fields on the wedges [19] leads to a fast convergence, i.e., small
size of resulting coefficient matrix to achieve highly accurate results. The proposed method is efficient
even in terms of computation time since the elements of the coefficient matrix, which are improper
integrals of oscillating functions with a slow asymptotic decay in the worst case, are efficiently evaluated
by means of an analytical asymptotic acceleration technique. This approach has been successfully
applied in propagation, radiation and scattering problems involving PEC/dielectric 2D/3D structures
in homogeneous and layered media [20–38].

This paper is organized as follows. Section 2 is devoted to the formulation of the problem while the
solution is proposed in Section 3. Numerical results and comparisons with the classical point-matching
method (PMM) with piecewise linear basis functions applied to a spatial domain formulation are shown
in Section 4 and the conclusions summarized in Section 5.

2. FORMULATION OF THE PROBLEM

In Figure 1, the polygonal cross-section of a PEC cylinder is sketched. A coordinate system (x, y, z) is
introduced so that the z axis coincides with the cylinder axis. A 2-D aperture antenna is assumed to
produce a Gaussian beam independent of the z-coordinate variable (hence, the scattered electromagnetic
field is in turn invariant along the z axis) impinging onto the scatterer surface with an angle φ with
respect to the x axis. A local coordinate system (x′, y′, z) is located in the antenna’s aperture with the

 

Figure 1. Geometry of the problem.
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origin at the phase centre of the aperture itself in the position (x̄′, ȳ′). The L sides of the polygonal
cross-section can be reviewed as a collection of strips which are conveniently numbered clockwise. On
the i-th side, a local coordinate system (xi, yi, z) is introduced with the origin at the centre of the side
itself in position (x̄i, ȳi), ϕi denotes the orientation of the xi axis with respect to the x axis and 2ai is
the length of the i-th side.

2.1. Incident Gaussian Beam

For the sake of simplicity, the incident field is assumed to be linearly polarized along the z axis. Let us
assume the following Gaussian amplitude distribution in the aperture plane

F
(
x′, y′

)∣∣
y′=0

= F0e
−(x′/w0)2 (1)

where F ∈ {Einc
z ,H inc

z }, depending on the polarization of the incident field, and F0 is the central
amplitude and w0 the beam waist radius.

The incident field can be represented in terms of continuous spectrum of plane waves [8]

F
(
x′, y′

)
=

+∞∫
−∞

F̃ (u)e−j(ux′+R(u)y′)du, (2)

where

R(u) =

{ √
k2 − u2 |u| ≤ k

−j
√

u2 − k2 |u| ≥ k
, (3)

k = 2π/λ = ω
√

εμ is the wavenumber, λ the wavelength, ω the angular frequency, ε the dielectric
permittivity, μ the magnetic permeability of the medium, and F̃ (u) the Fourier transform of the
Gaussian amplitude distribution in the aperture plane with respect to x′, i.e.,

F̃ (u) =
1
2π

+∞∫
−∞

F
(
x′, y′

)∣∣
y′=0

ejux′
dx′ =

F0w0

2
√

π
e−(uw0/2)2 . (4)

It is simple to observe that

F
(
ρ′, ϕ′) ρ′→+∞∼ F0w0 sin ϕ′

√
jk

2ρ′
e−jkρ′e−(k cos ϕ′w0/2)2 (5)

where x′ = ρ′ cos ϕ′ and y′ = ρ′ sinϕ′, i.e., in the far field zone expression (2) can be approximated
with a Gaussian beam. Since this paper is aimed at presenting a full-wave approach, the continuous
spectrum of plane waves in Eq. (2) will be used as incident field.

By means of the following relations between coordinate systems{
x′ = −xisi + yici + X̄i

y′ = −xici − yisi + Ȳi
, (6a)

si = sin (φ − ϕi) , (6b)

ci = cos (φ − ϕi) , (6c)

X̄i =
(
x̄′ − x̄i

)
sin φ − (

ȳ′ − ȳi

)
cos φ, (6d)

Ȳi =
(
x̄′ − x̄i

)
cos φ +

(
ȳ′ − ȳi

)
sin φ, (6e)

the incident field on the i-th side of the cylinder surface can be simply written as follows

F (x, y)|yi=0 =

+∞∫
−∞

F̃ (u)e−j(uX̄i+R(u)Ȳi)ej(usi+R(u)ci)xidu. (7)
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2.2. Integral Equation Formulations

The incident field induces a surface current density on each side of the scatterer surface. The potential
function generated by the current on the i-th side is

Ai (xi, yi) =
μ

4j

ai∫
−ai

J i (x0)H
(2)
0

(
k

√
(xi − x0)

2 + y2
i

)
dx0 (8)

with i = 1, 2, . . . , L, where J i(·) is the surface current density on the i-th side, and H
(2)
0 (·) denotes the

Hankel function of second kind and order 0.
Once the physical behaviour of the surface current density is settled, a spectral domain

representation of the vector potential can be readily obtained. To this purpose, Meixner’s theory [19]
allows to state the following behaviour on the wedges

Jiz (xi) ,
∂

∂xi
Jixi (xi) ∼

xi→±ai

(1 ∓ xi/a1)
t±i (9)

where t±i ≥ −1/2. Moreover, the property

lim
xi→ai

Jiz (xi)

(ai − xi)
t+i

= lim
xi+1→−ai+1

Ji+1z (xi+1)

(ai+1 + xi+1)
t−i+1

, (10)

can be deduced, while the transverse component of the surface current density is continuous even on
the wedges.

The asymptotic behaviour of the Fourier transforms of the components of the surface current
density with respect to xi can be established by invoking Watson’s lemma [39], i.e.,

J̃iz(u)
|u|→+∞∼ η−iz

e−juai

ut−i +1
+ η+

iz

ejuai

ut+i +1
, (11a)

J̃ixi(u)
|u|→+∞∼ η+

ixi
e−juai + η−ixi

ejuai

2πju
, (11b)

where η±it with t ∈ {xi, z} are suitable parameters depending on the problem at hand.
Therefore, by means of the superposition principle, the following spectral domain representation

for the vector potential can be obtained

A (x, y) = −j
μ

2

L∑
i=1

+∞∫
−∞

J̃ i(u)
e−j|yi|R(u)

R(u)
e−juxidu, (12)

where the remarkable identity [40]
+∞∫

−∞
H

(2)
0

(
k

√
(xi − x0)2 + y2

i

)
e−jux0dx0 = 2

e−j(uxi+R(u)|yi|)

R(u)
(13)

has been used.
For a z-directed incident electric field (TM incidence), only TM solutions can be searched for, i.e.,

the current is directed along the z axis. An EFIE is obtained by imposing the total electric field to be
vanishing on the scatterer surface

Ez (x, y)||xj |≤aj , yj=0 = − Einc
z (x, y)

∣∣
|xj |≤aj , yj=0

(14)

with j = 1, 2, . . . , L, where

Ez (x, y) = −jωAz (x, y) = −ωμ

2

L∑
i=1

+∞∫
−∞

J̃iz(u)
e−j|yi|R(u)

R(u)
e−juxidu. (15)
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Analogously, only TE solution (transverse current) can be obtained by means of an incident
magnetic field directed along the z axis. An MFIE is obtained by imposing the boundary conditions on
the scatterer surface for the magnetic field

Hz (x, y)||xj |≤aj , yj=0 − Jjxj (xj) = − H inc
z (x, y)

∣∣
|xj |≤aj , yj=0

(16)

with j = 1, 2, . . . , L, where

Hz (x, y) =
1
μ
∇× A (x, y)|z =

1
2

L∑
i=1

sgn (yi)

+∞∫
−∞

J̃ixi(u)e−j|yi|R(u)e−juxidu, (17)

and sgn(·) denotes the signum function.

3. METHOD OF ANALYTICAL PRECONDITIONING

A fast converging discretization technique is presented in this section. It consists in the application
of Galerkin method with suitable expansion bases chosen in order to reconstruct the behaviour of
the surface current density on each side and even on the wedges with closed-form spectral domain
counterparts.

The following expansions for the longitudinal and transverse components of the surface current
density on the i-th side of the cylinder are considered

Jiz (xi) = J iz
−1χ

i

(
xh

ah
,
xi

ai

)
+ Jjz

−1χ
j

(
xi

ai
,
xj

aj

)
+

+∞∑
n=0

J iz
n ϕ

(t̄+i ,t̄−i )
n

(
xi

ai

)
, (18a)

Jixi (xi) = J ixi−1 χ̄ixi

(
xh

ah
,
xi

ai

)
+ J

jxj

−1 χ̄j

(
xi

ai
,
xj

aj

)
+

+∞∑
n=0

J ixi
n ϕ

(t+i +1,t−i +1)
n

(
xi

ai

)
, (18b)

where h, i and j are three consecutive sides,

χi

(
xh

ah
,
xi

ai

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ
(t+

h
,t̄−

h )
−1 (xh/ah)√√√√[

ξ
(t+

h
,t̄−

h )
−1

]2

+

[
ξ
(t−

i
,t̄+

i )
−1

]2
for yh = 0

ϕ
(t−

i
,t̄+

i )
−1 (−xi/ai)√√√√[

ξ
(t

+
h

,t̄
−
h )

−1

]2

+

[
ξ
(t

−
i

,t̄
+
i )

−1

]2
for yi = 0

, (19a)

χ̄i

(
xh

ah
,
xi

ai

)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̄
(t+

h
+1,t−

h
+1)

−1 (xh/ah)√√√√[
ξ̄
(t+

h
+1,t−

h
+1)

−1

]2

+

[
ξ̄
(t−

i
+1,t+

i
+1)

−1

]2
yh = 0

ϕ̄
(t−

i
+1,t+

i
+1)

−1 (−xi/ai)√√√√[
ξ̄
(t

+
h

+1,t
−
h

+1)
−1

]2

+

[
ξ̄
(t

−
i

+1,t
+
i

+1)
−1

]2
yi = 0

, (19b)

ϕ
(α,β)
−1

(x

a

)
=

aαξ
(α,β)
0

2β
ϕ

(α,β)
0

(x

a

)
, (19c)

ϕ̄
(α,β)
−1

(x

a

)
=

B(1+x/a)/2 (β, α)
B (β, α)

Π
(x

a

)
, (19d)

ϕ(α,β)
n

(x

a

)
=

(
1 − x

a

)α (
1 +

x

a

)β P
(α,β)
n (x/a)

ξ
(α,β)
n

∏(x

a

)
(19e)
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with n = 0, 1, . . .,

ξ
(α,β)
−1 =

√√√√√
a∫

−a

(
1 − x

a

)−α (
1 +

x

a

)−β [
ϕ

(α,β)
−1

(x

a

)]2
dx =

aαξ
(α,β)
0

2β
, (20a)

ξ̄
(α,β)
−1 =

√√√√√
a∫

−a

(
1 +

x

a

)−β [
ϕ

(α,β)
−1

(x

a

)]2
dx =

√
a21−β

1 − β

[
1 − 2

α

B (β, 2α)
B (β, α)2

]
, (20b)

ξ(α,β)
n =

√√√√√
a∫

−a

(
1−x

a

)α (
1 +

x

a

)β [
P

(α,β)
n

(x

a

)]2
dx=

√
a2α+β+1Γ (n + α + 1)Γ (n + β + 1)

n! (2n + α + β + 1) Γ (n + α + β + 1)
(20c)

where n = 0, 1, . . . are suitable normalization quantities; Π(·) is the unitary rectangular window; P
(α,β)
n (·)

is the Jacobi polynomial of order n with parameters α, β; Γ(·) denotes the Gamma function [41], while
Bz(·, ·) and B(·, ·) are the incomplete and complete Beta functions, respectively [41]. The coefficients
t̄±i are chosen in order to reconstruct the second order behaviour of the z-component of the surface
current density on the wedges adjacent to the i-th side (the expansion (18a) has been devised so that
the first two functions are only responsible for the reconstruction of the first order behaviour of the
current on the wedges, while the residual expansion series factorizes the second order edge behaviour
of the current itself). Moreover, the property in Eq. (10) and the continuity of the transverse current
across the wedges have been imposed.

Galerkin procedure leads to a matrix equation whose elements can be always represented as single
integrals. Indeed, by means of algebraic manipulations and the following remarkable identity [40]

1∫
−1

(1 − x)ν−1 (1 + x)μ−1 e−juxdx = 2μ+ν+1B (μ, ν) eju
1F1 (μ;μ + ν;−2ju) , (21)

where 1F 1 (· ; · ; ·) is the confluent hypergeometric function of first kind [41], the Fourier transforms of
the expansion functions in Eqs. (19c), (19d) and (19e) can be expressed in closed-form. Moreover, by
means of reciprocity, it is simple to individuate a representation of the matrix coefficients such that the
convolution integrals can be always interpreted as the Fourier transforms in the complex plane of the
expansion functions, i.e., they can be always reduced to algebraic products. To conclude, the matrix
coefficients are single improper integrals involving products of confluent hypergeometric functions of
the first kind, which, in the worst case, are efficiently evaluated by means of an analytical asymptotic
acceleration technique consisting of the extraction from the kernels of their asymptotic behaviour, while
the slowly converging integrals of the extracted parts are expressed in closed form.

Even the free term elements can be reduced to single integrals of the kind
+∞∫

−∞
F̃ (u)e−j(uX̄j+R(u)Ȳj)ϕ̃(αj ,βj)

m (aj (usj + R(u)cj)) du (22)

with m = 0, 1, . . . and j = 1, 2, . . . , L, where ϕ̃
(α,β)
m (·) denotes the Fourier transform of the general

expansion function. Due to the exponential decay of F̃ (·), the convergence of the integral in Eq. (22) is
very fast. On the other hand, the incident field is a regular function on the scatterer surface since
originating from a sources off the surface itself, i.e., it can be quickly reconstructed by means of
a uniformly converging series of polynomial. As a consequence, the sequence of free term elements
decreases very quickly (exponential decaying), and the analytical regularizing procedure first developed
in [21] for an impinging plane wave can be readily generalized to the case at hand.
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4. NUMERICAL RESULTS

In this section, the fast convergence of the presented method in terms of computation time and storage
requirements will be shown.

To this purpose, the following normalized truncation error is introduced

err(N) = ‖JN+1 − JN‖/‖JN‖, (23)

where ‖ · ‖ is the usual Euclidean norm, and JM is the vector of all the expansion coefficients of the
currents on all the sides evaluated with M terms on each side.

In Figure 2, the normalized truncation error for the scatterer sketched in the inset with AB = a/2,
BC = a/4, CD = a

√
5 + 2

√
2/4, DA = a/

√
2, BÂD = π/4, CB̂A = 3π/4, DĈB = π/4−arctan(1/(2

√
2+

1)), CD̂A = π/4 + arctan(1/(2
√

2 + 1)) is plotted for a = λ, 2λ, 4λ, 8λ as a function of the number of
expansion functions N used on each of the L sides of the polygonal cross-section. An aperture antenna,
with phase centre at a distance ρ = 50λ from the midpoint of the side AB, generates a TM/TE polarized
Gaussian beam with waist radius w0 = 5λ impinging onto the scatterer surface with an angle φ = π/2.
As can be seen, after considering a reasonable number of expansion functions, depending on the size
of the cylinder, needed to accurately reconstruct the compact part of the discretized operator, the
convergence becomes very fast in all the examined cases. Consequently, highly accurate results are
obtained by using few expansion functions. As an example, a normalized truncation error less than

(a) (b)

Figure 2. Normalized truncation error for the geometry sketched in the inset and different sides
length when a (a) TM and (b) TE polarized Gaussian beam impinges onto the scatterer surface.
AB = a/2, BC = a/4, CD = a

√
5 + 2

√
2/4, DA = a/

√
2, BÂD = π/4, CB̂A = 3π/4, DĈB =

π/4 − arctan(1/(2
√

2 + 1)), CD̂A = π/4 + arctan(1/(2
√

2 + 1)), w0 = 5λ, ρ = 50λ, φ = π/2.

(a) (b)
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(c) (d)

Figure 3. Surface current density for the geometry sketched in the inset of Figure 2(a) and
different sides length when a TM polarized Gaussian beam impinges onto the scatterer surface with
an angle (a) φ = 0, (b) φ = π/2, (c) φ = π and (d) φ = 3π/2. AB = a/2, BC = a/4,
CD = a

√
5 + 2

√
2/4, DA = a/

√
2, BÂD = π/4, CB̂A = 3π/4, DĈB = π/4 − arctan(1/(2

√
2 + 1)),

CD̂A = π/4 + arctan(1/(2
√

2 + 1)), w0 = 5λ, ρ = 50λ, |Ez| = 1 V/m. Lines: this method; circles:
PMM.

 

 (c) (d)

(a) (b)

Figure 4. Surface current density for the geometry sketched in the inset of Figure 2(b) and
different sides length when a TE polarized Gaussian beam impinges onto the scatterer surface with
an angle (a) φ = 0, (b) φ = π/2, (c) φ = π and (d) φ = 3π/2. AB = a/2, BC = a/4,
CD = a

√
5 + 2

√
2/4, DA = a/

√
2, BÂD = π/4, CB̂A = 3π/4, DĈB = π/4 − arctan(1/(2

√
2 + 1)),

CD̂A = π/4 + arctan(1/(2
√

2 + 1)), w0 = 5λ, ρ = 50λ, |Hz| = 1A/m. Lines: this method; circles:
PMM.
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10−1, 10−2, 10−3 is achieved by using a number of expansion functions on each side ranging from 3, 6, 10
to 19, 23, 26, respectively. On the other hand, more that 25 integrals per second are evaluated on a laptop
equipped with an Intel Core 2 Duo CPU T9600 2.8 GHz, 3 GB RAM, running Windows XP by means

 

(c) (d)

(a) (b)

Figure 5. Bistatic radar cross section for the geometry sketched in the inset of Figure 2(a) and
different sides length when a TM polarized Gaussian beam impinges onto the scatterer surface with
an angle (a) φ = 0, (b) φ = π/2, (c) φ = π and (d) φ = 3π/2. AB = a/2, BC = a/4,
CD = a

√
5 + 2

√
2/4, DA = a/

√
2, BÂD = π/4, CB̂A = 3π/4, DĈB = π/4 − arctan(1/(2

√
2 + 1)),

CD̂A = π/4 + arctan(1/(2
√

2 + 1)), w0 = 5λ, ρ = 50λ, |Ez| = 1 V/m. Lines: this method; circles:
PMM.

 

(a) (b)
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(c) (d)

Figure 6. Bistatic radar cross section for the geometry sketched in the inset of Figure 2(b) and
different sides length when a TE polarized Gaussian beam impinges onto the scatterer surface with
an angle (a) φ = 0, (b) φ = π/2, (c) φ = π and (d) φ = 3π/2. AB = a/2, BC = a/4,
CD = a

√
5 + 2

√
2/4, DA = a/

√
2, BÂD = π/4, CB̂A = 3π/4, DĈB = π/4 − arctan(1/(2

√
2 + 1)),

CD̂A = π/4 + arctan(1/(2
√

2 + 1)), w0 = 5λ, ρ = 50λ, |Hz| = 1A/m. Lines: this method; circles:
PMM.

(a) (b)

Figure 7. Normalized truncation error for the geometry sketched in the inset and different distances
of the aperture antenna from the cylinder surface when a (a) TM and (b) TE polarized Gaussian beam
impinges onto the scatterer surface. a = λ, AB = a/2, BC = a/4, CD = a

√
5 + 2

√
2/4, DA = a/

√
2,

BÂD = π/4, CB̂A = 3π/4, DĈB = π/4 − arctan(1/(2
√

2 + 1)), CD̂A = π/4 + arctan(1/(2
√

2 + 1)),
w0 = λ/100, φ = 50π/2.

of an adaptive Gaussian quadrature routine. Since N2L2 integrals have to be numerically evaluated in
the TE case while they can be reduced to NL(NL + 1)/2 in the TM case due to reciprocity, it is not
difficult to understand that highly accurate results can be obtained very quickly (with a computation
of at most few minutes).

For the sake of completeness, the components of the surface current density and the bistatic
radar cross section (BRCS) for the same geometry and incident field of the previous example when
φ = 0, π/2, π, 3π/2 and a = λ, 8λ are sketched in Figures 3, 4 and 5, 6, respectively. In order to validate
the obtained numerical results, comparisons with the PMM with piecewise linear basis functions applied
to a spatial domain formulation are provided showing a very good agreement. It is worth noting that
such a method requires in the worst case 1000 expansion functions and a computation time of about 30
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(a) (b)

Figure 8. Surface current density for the geometry sketched in the inset of Figure 7 and different
distances of the aperture antenna from the cylinder surface when a (a) TM and (b) TE polarized
Gaussian beam impinges onto the scatterer surface. a = λ, AB = a/2, BC = a/4, CD =
a
√

5 + 2
√

2/4, DA = a/
√

2, BÂD = π/4, CB̂A = 3π/4, DĈB = π/4 − arctan(1/(2
√

2 + 1)),
CD̂A = π/4 + arctan(1/(2

√
2 + 1)), w0 = λ/100, φ = 50π/2, (a) |Ez| = 1 V/m and (b) |Hz| = 1 A/m.

minutes in order to obtain a reasonable reconstruction of the behaviour of the surface current even on
the wedges.

The last example is aimed at showing the effectiveness of the proposed method even when the waist
radius is very small with respect to the cylinder cross-section, for different distances of the aperture
antenna from the cylinder surface. In Figures 7 and 8, the normalized truncation error and the surface
current density for the same scatterer of the previous examples with a = λ, when an aperture antenna,
with phase centre at distances ρ = λ/5, λ/2, λ, 2λ from the midpoint of the side AB generates a TM/TE
polarized Gaussian beam with waist radius w0 = λ/100 impinging onto the scatterer surface with an
angle φ = π/2, are, respectively, sketched. As can be seen, the convergence is very good even when the
aperture antenna is close to the scatterer surface.

5. CONCLUSIONS

In this paper, the analysis of the electromagnetic scattering from PEC polygonal cross-section cylinders
when a Gaussian beam impinges upon it has been addressed by means of a very effective method. As
clearly shown in the Numerical Results section, fast convergence is achieved in terms of both computation
time and storage requirements. Future perspective is the extension of the method to problems in which
both dielectric and conducting cylinders are involved.
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