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Electromagnetic Scattering from a Zero-Thickness PEC Disk: A
Note on the Helmholtz-Galerkin Analytically Regularizing Procedure

Mario Lucido1, *, Francesca Di Murro2, and Gaetano Panariello1

Abstract—Recently, a new analytically regularizing procedure, based on Helmholtz decomposition and
Galerkin method, has been proposed to analyze the electromagnetic scattering from a zero-thickness
perfectly electrically conducting disk. The convergence of the discretization scheme is guaranteed and
of exponential type, i.e., few expansion functions are needed to achieve highly accurate solutions.
However, it leads to the numerical evaluation of improper integrals of asymptotically oscillating
and slowly decaying functions. Asymptotic acceleration techniques allow to obtain faster decaying
integrands without overcoming the problem of the oscillating nature of the integrands themselves, i.e.,
the convergence of the integrals becomes slower and slower as the accuracy required for the solution
is higher. In this paper, by means of algebraic manipulations and a suitable integration procedure in
the complex plane, an alternative expression for the scattering matrix coefficients involving only fast
converging proper integrals is devised. As shown in the numerical results section, the proposed technique
is very effective and drastically outperforms the classical analytical asymptotic acceleration technique.

1. INTRODUCTION

Electric field integral equation (EFIE) is frequently used in the analysis of the electromagnetic scattering
from perfectly electrically conducting (PEC) surfaces. Since no closed form solution is in general
available, one needs to apply a discretization scheme in order to find an approximate solution. However,
for such first-kind weakly-singular or hyper-singular integral equations, the convergence of discretization
schemes cannot be guaranteed, and the sequence of condition numbers of truncated system is divergent
due to the unboundedness of the integral operator or of its inverse [1]. In order to overcome these
problems, a general approach, detailed in [2], has been extensively applied to the analysis of propagation,
radiation and scattering problems [3–16], combining analytical regularization and discretization of the
integral operator in a single step. By means of Galerkin method with a complete set of basis functions
that makes the most singular part of the integral operator invertible with a continuous two-side inverse,
the integral equation at hand is recast as a matrix equation at which Fredholm alternative can be
applied [17].

In a recent paper [18], the analysis of the electromagnetic scattering from a zero-thickness PEC
disk has been carried out by means of a new analytically regularizing procedure based on Helmholtz
decomposition and Galerkin method. An EFIE in the vector Hankel transform domain for the surface
curl-free and divergence-free contributions of the surface current density has been devised. A second-
kind Fredholm infinite matrix-operator equation has been obtained by selecting a complete set of
orthogonal eigenfunctions of the most singular part of the integral operator as expansion basis. It
is interesting to note that such functions reconstruct the physical behaviour of the surface current
density at the centre and the edges of the disk, thus leading to a convergence of exponential type, and
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admit closed-form spectral domain counterparts in terms of Bessel functions of first kind, so that the
convolution integrals are always reduced to algebraic products. However, the obtained matrix coefficients
are improper integrals of asymptotically oscillating and slowly decaying functions to be numerically
evaluated. In order to overcome this problem, in [18] the classical analytical asymptotic acceleration
technique proposed in [19–21] has been used. It consists of the extraction from the kernels of their
asymptotic behaviour, while the slowly converging integrals of the extracted parts are expressed in closed
form. However, such a technique allows to obtain faster decaying integrands without overcoming the
most important problem of their oscillating nature. For this reason, the convergence of the accelerated
integrals becomes slower and slower as the accuracy required for the solution is higher.

This paper is aimed at overcoming the bottleneck of the technique proposed in [18]. By means
of algebraic manipulations and a suitable integration procedure in the complex plane, an alternative
expression for the scattering matrix coefficients involving only fast converging proper integrals is devised.
As shown in the Numerical Results section, the proposed technique is very effective and drastically
outperforms the analytical asymptotic acceleration technique used in [18].

2. PROPOSED SOLUTION

The integrals to be numerically evaluated are [18]
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a is the radius of the disk, k0 the wavenumber in vacuum, Jν(·) the Bessel function of first kind and
order ν [22], n the general cylindrical harmonic, and k and h denote the general test function and basis
function, respectively.

The accurate and efficient evaluation of the improper integrals in Eq. (2) is a key point. This is due
to the oscillating nature and the slow asymptotic decay of their integrands. In [18], in order to accelerate
the asymptotic decay of such integrands, suitable asymptotic contributions have been extracted from
the kernels and the integrals of the extracted contributions expressed in closed form, obtaining the
following alternative expressions for the integrals in Eq. (2)

Ī
(|n|)
k,h =

+∞∫
0

J|n|+2k+5/2 (aw) J|n|+2h+5/2 (aw)

⎛
⎝√

k2
0 − w2 − j

k0√
π

Q∑
q=0

Γ (q + 1/2) (w/k0)
1−2q

(2q − 1) q!

⎞
⎠ dw

w2

+j
1
2π

Q∑
q=0

(ak0)
2q Γ2 (q + 1/2) Γ (|n| + k + h + 5/2 − q)

(2q − 1) Γ (k − h + q + 1) Γ (−k + h + q + 1) Γ (|n| + k + h + 7/2 + q)
, (3a)

I
(|n|)
k,h =

+∞∫
0

J|n|+2k+3/2 (aw) J|n|+2h+3/2 (aw)

⎛
⎝ 1√

k2
0 − w2

− j
1

k0
√

π

Q∑
q=0

Γ (q + 1/2) (w/k0)
−1−2q

q!

⎞
⎠ dw

+j
1
2π

Q∑
q=0

(ak0)
2q Γ2 (q + 1/2) Γ (|n| + k + h + 3/2 − q)

Γ (k − h + q + 1)Γ (−k + h + q + 1) Γ (|n| + k + h + 5/2 + q)
, (3b)



Progress In Electromagnetics Research Letters, Vol. 71, 2017 9

where 0 ≤ Q̄ < |n|+ k + h +5/2, 0 ≤ Q < |n|+ k + h + 3/2, and Γ(·) denotes the Gamma function [22].
Unfortunately, such a technique does not change the oscillating nature of the integrands. This means
that, higher accurate solutions are associated to slower converging integrals.

A different technique, completely overcoming the problems detailed above, will be presented in the
following.

By means of the recurrence formula for the Bessel functions [22]
2ν
z
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hence, the numerical evaluation of the matrix coefficients is reduced to the numerical evaluation of the
integrals in Eq. (2b).

For the sake of symmetry, it can be supposed k ≥ h. Now, the functions
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with l ∈ {1, 2}, where H
(l)
ν (·) = Jν(·)+ j(−1)ν+1Yν(·) is the Hankel function of the lth kind and order ν

and Yν(·) is the Bessel function of second kind and order ν, are analytical in the regions of the complex
plane z = w + jw̄ delimited by the contours Cl sketched in Figure 1.

Figure 1. Integration contours in the complex plane.

Hence, by means of Cauchy’s integral theorem it is possible to write
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∮
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Starting from the behaviour for small and large arguments of the Bessel functions of the first kind
and the Hankel functions [22], i.e.,
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it is simple to conclude that the integrands in Eq. (7) have no singularity in z = 0 being k ≥ h, while
they decay asymptotically as 1

/
z2 for l = 1 and 0 ≤ arg(z) < π, and for l = 2 and −π < arg(z) ≤ 0.

Therefore, by means of Jordan’s lemma, it is simple to rewrite formula (7), for l = 1 and l = 2,
respectively, as follows
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By taking the difference between Eqs. (9a) and (9b), and making the substitution w = k0 sin t, it
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for k ≥ h, which are proper integrals of bounded continuous functions.

3. NUMERICAL RESULTS

This section shows the accuracy and efficiency of the presented technique. The simulations are performed
on a laptop equipped with an Intel Core 2 Duo CPU T9600 2.8-GHz 3-GB RAM, running Windows XP
and the integrals evaluated by means of a Gauss-Legendre quadrature routine.

The absolute value of the ρ-component of the surface current density in the position ρ/a = 0.63,
ϕ = 0 deg on a disk with k0a = 5, for an impinging TM polarized plane wave with |H| = 1A/m,
θi = 60 deg and ϕi = 0 deg, obtained by using both formulas (3) and (11), is reported in Tables 1 and 2

Table 1. |Jρ| with varying the number of expansion functions used (N) and the relative accuracy (R)
in the numerical evaluation of the integrals. The integrals in Eq. (3) are evaluated by extracting only
the first order asymptotic behaviour of the integrands. k0a = 5, ρ/a = 0.63, ϕ = 0deg., TM incidence
with |H| = 1A/m, θi = 60 deg. and ϕi = 0 deg., 17 cylindrical harmonics.

N
Formulas (3) Formula (11)

R = 10−4 R = 10−8 R = 10−12 R = 10−4, 10−8, 10−12

3 1.465654273544891 1.465686798125570 1.465686933804895 1.465686945736443
4 1.450861632719635 1.450886927996987 1.450887077271100 1.450887089102934
5 1.437604865025232 1.437630774338152 1.437630927568240 1.437630939374279
6 1.437424654408773 1.437450633393541 1.437450786640072 1.437450798447578
7 1.437455424674373 1.437481406588271 1.437481559831062 1.437481571638675
8 1.437455979674769 1.437481961742863 1.437482114985662 1.437482126793269
9 1.437455963063291 1.437481945141001 1.437482098383801 1.437482110191411
10 1.437455962717336 1.437481944795007 1.437482098037807 1.437482109845413
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by using 17 cylindrical harmonics (the maximum number of cylindrical harmonics to be used has been
estimated as in [23]), and as the number of expansion functions used (N) and the relative accuracy (R)
in the numerical evaluation of the integrals change. In Table 1, the integrals in Eq. (3) are evaluated
by extracting only the first order asymptotic behaviour of the integrands, while the first order and
second order asymptotic behaviours of the integrands are pulled out in order to obtain the results in
Table 2. As can be seen, the results obtained by using the representation in Eq. (11) are independent
of R, and the values obtained by using Eq. (3) tend to the ones obtained by means of Eq. (11) as the
accuracy required for the solution increases. Moreover, by comparing the results in Tables 1 and 2, it
is interesting to note that the accuracy of the solution is substantially independent of the number of
asymptotic terms extracted, which, conversely, significantly affects the computation time (as will be
shown in the following).

Table 2. |Jρ| with varying the number of expansion functions used (N) and the relative accuracy (R)
in the numerical evaluation of the integrals. The integrals in Eq. (3) are evaluated by extracting the first
order and the second order asymptotic behaviour of the integrands. k0a = 5, ρ/a = 0.63, ϕ = 0 deg.,
TM incidence with |H| = 1A/m, θi = 60 deg. and ϕi = 0 deg., 17 cylindrical harmonics.

N
Formulas (3) Formula (11)

R = 10−4 R = 10−8 R = 10−12 R = 10−4, 10−8, 10−12

3 1.465564828374628 1.465686888239401 1.465686934691235 1.465686945736443
4 1.450771704572309 1.450887027812345 1.450887077125728 1.450887089102934
5 1.437515443753201 1.437630872450123 1.437630928450345 1.437630939374279
6 1.437335251045673 1.437450731040232 1.437450787518923 1.437450798447578
7 1.437366022842356 1.437481504920134 1.437481559708562 1.437481571638675
8 1.437366577729281 1.437482059872345 1.437482114831655 1.437482126793269
9 1.437366561068543 1.437482043473452 1.437482098223401 1.437482110191411
10 1.437366560910234 1.437482042819726 1.437482097867398 1.437482109845413

(a) (b)

Figure 2. Ratio between the CPU time needed to reconstruct the solution as obtained by using (3)
with respect to (11) with varying N and for different values of R. The integrals in (3) are evaluated
by extracting (a) only the first order or (b) the first order and the second order asymptotic behaviour
of the integrand. k0a = 5, ρ/a = 0.63, ϕ = 0 deg., TM incidence with |H| = 1A/m, θi = 60 deg. and
ϕi = 0deg., 17 cylindrical harmonics.
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In Figure 2, the ratio between the CPU time needed to reconstruct the solution as obtained by
using Eq. (3) with respect to Eq. (11) is reported with varying N for different values of R. In the first
case, the integrals in Eq. (3) are evaluated by extracting only the first order asymptotic behaviour of
the integrands, while in the second case, the first order and second order asymptotic behaviours of the
integrands in Eq. (3) are pulling out. The second case examined is about 6 times faster than the first
one. Despite that, the representation in Eq. (11) drastically outperforms the one in Eq. (3) in both the
examined cases as the number of expansion functions used is higher and the accuracy required for the
solution is as higher.

4. CONCLUSIONS

In a recent paper, the analysis of the electromagnetic scattering from a zero-thickness PEC disk has
been addressed by means of a guaranteed-convergence method leading to the numerical evaluation of
improper integrals of asymptotically oscillating and slowly decaying functions. In this paper, a new
expression for such a kind of integrals in terms of fast converging proper integrals is devised. As shown
in the Numerical Results section, the proposed technique is very effective and drastically outperforms
the classical analytical asymptotic acceleration technique.
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