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Object Segmentation for Linearly Polarimetric Passive Millimeter
Wave Images Based on Principal Component Analysis
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Abstract—Traditional passive millimeter wave imaging (PMMW) mechanism measures intensity-only
radiometric energy of the scene, and the limited information restricts the subsequent process of target
detection and recognition. Polarimetric phenomena provide an extra dimension of information and are
utilized to improve the PMMW imaging performance. Based on linear polarization characteristics for
terrain identification in our previous work, the horizontal, vertical and 45 degree linearly polarimetric
images are obtained by manually changing the polarization orientation of the radiometer with a self-
designed rotating installation. Then the related Stokes parameters and the linearly polarized angle are
calculated for principal component analysis (PCA). Pixels with similar polarimetric characteristic are
clustered in the score-plot feature space. Then the clusters are extracted to realize object segmentation
of the raw image. Three types of objects including metallic stuff, lawn and concrete park are finally
segmented, demonstrating that the proposed segmentation is feasible and effective.

1. INTRODUCTION

Passive millimeter wave (PMMW) imaging technique is widely used in scene surveillance, homeland
security of concealed object detection (CWD) [1, 2] and remote sensing due to its all-weather working
ability, good penetrating performance, and high temperature contrast in outdoor environment [3, 4].
Polarimetric PMMW images provide an extra dimension of information beyond intensity-only
radiometric energy of the scene [5, 6], thus a number of researchers are working on passive polarimetric
imager design. Some of them have successfully achieved the fully-polarimetric devices [7–9], while others
mainly focus on linearly (especially horizontal and vertical) polarized system due to the expensive
hardware cost [10–15]. In previous work [16–18], we fixed a mechanically scanned single pixel 94GHz
radiometric imaging system. The radiometer is assembled with a Cassegrain antenna fed by a linearly
polarized horn, and is conically scanned in azimuth-elevation coordination to realize large view imaging.
A self-designed rotating fixture shown in Fig. 1 helps to manually change the direction of the horn, and
the angle scale enables quantitative rotation to achieve any linear polarization. With this device in [18],
we experimentally researched linear polarization characteristics of various terrains at W-band, and
obtained a group of horizontal, vertical and linearly 45 degree polarized radiometric images for a car-
park. In this paper, we propose a multi-image method for subsequent image processing work. Stokes
parameters related to linear polarization and the linearly polarized angle is calculated and analyzed.
Principal component analysis (PCA) [19] is utilized for object segmentation of the images. In PCA
eigenvector score plot, pixels with similar polarimetric characteristics of the Stokes parameters or the
linear polarization angle distribute closely and form a cluster. The clusters are segmented and extracted
on the score plot to realize object segmentation for the imaged view.
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Figure 1. The 94 GHz radiometer with the self-designed rotating fixture.

2. STOKES PARAMETERS AND LINEARLY POLARIZED IMAGES

The reason we choose the park shown in Fig. 2(a) for the tested view is that it includes several
most typical objects in PMMW detecting fields. The linearly polarized PMMW images shown in
Figs. 2(b)∼2(d) are measured in the same overlooking observation with the height about 10 m. The
azimuth angle is ranged from −15◦ to 25◦ stepped by 0.1◦, while the elevation angle is from 6◦ to
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Figure 2. The optical Photo of the car-park and a group of overlooking PMMW images measured in
different linear polarizations: (a) photo of the scene, (b) image in horizontal polarization, (c) image in
vertical polarization, and (d) image in linear 45 degree polarization.



Progress In Electromagnetics Research M, Vol. 61, 2017 171

45◦ with the step of 0.5◦ to observe polarization difference. For the real aperture antenna, the spatial
resolution is proportional to the range with the ratio of antenna beam width of 1.5◦. Correspondingly,
the spatial resolution of the pixels in the image is ranged from 0.26 m to 0.37 m. Comparing the four
pictures, it can be seen that:

(1) The PMMW images are of lower resolution than the optical photo and present different
intensities with different polarizations;
(2) The concrete park and asphalt road display large intensity difference between horizontal and
vertical polarizations;
(3) The street lampshade and cars are of steady low temperatures, as the metallic stuff almost
completely reflects the “cold” sky temperature in all polarizations;
(4) As for the lawn, it appears in high temperatures in every polarization because of its low
reflectivity caused by diffuse reflection;
(5) In Figs. 2(b) and 2(d), the mirror images of the short walls below iron railings and particularly
the cars are obviously visible, indicating that the concrete park has smooth surface of high reflec-
tivity at millimeter-wave band.

The PMMW image is generally represented in thermodynamic temperature. Denote the above raw
data as TH , TV and T45, where the subtitle of H, V , and 45 are respectively shorted for horizontal,
vertical, and 45◦ linear polarizations, and we can calculate the first three Stokes parameters in Eq. 1[8].

S0 = TH + TV

S1 = TH − TV = 2TH − S0

S2 = T45 − T−45 = 2T45 − S0

S3 = TRHC − TLHC = 2TRHC − S0

. (1)

Stokes parameters can completely describe all polarizations of the radio wave, in which S0 denotes
the total radiometric intensity in all polarizations, S1 the difference between horizontal and vertical
intensities, S2 the difference between 45◦ and −45◦ polarizations, and S3 the difference between right-
handed circulated intensity RRHC and left-handed intensity RLHC . The circulated polarizations are
not discussed in this paper, and the linearly polarized angle

α =
1
2
arctan

S2

S1
(2)

is also computable as S1 and S2 are known. Fig. 3 shows the calculated first three Stokes parameters
and the linearly polarized angle of the scene.

In Fig. 3(a), the total radiometric intensity of the scene is illustrated, and it is obvious that the
metallic objects of the cars and the street lampshade appear in a very low temperature, and the lawn
appears in the highest temperature in contrast. The mirror images of the cars and short walls can be
identified from its background of the concrete park. Fig. 3(b) shows the difference between horizontal
and vertical polarizations, and the concrete park and asphalt road are featured in this view. From
the Stokes parameter S2 of Fig. 3(c), the big temperature difference mainly occurs at the edge of the
non-planar object such as the cars, which is verified in Fig. 3(d). This is because the millimeter waves
are diffracted instead of reflected at these locations.

3. PRINCIPAL COMPONENT ANALYSIS

At this stage, we have obtained a set of images of the park, including the linearly polarized PMMW
temperatures, corresponding Stokes parameters and the linearly polarized angle. PCA is an expert in
converting a set of possibly linearly-correlated observations into a set of values of linearly-uncorrelated
variables called principal components (PCs). It is essentially an orthogonal linear transformation, which
is usually used for dimension reduction. The property of the transformation is that the first PC has the
largest possible variance, and each succeeding PC in turn has the highest variance possible under the
constraint that it is orthogonal to the preceding PCs [19].

Assume the raw images and the Stokes parameter images as a data set of xi, i = 1, 2, · · ·N, xi ∈ Rd,
where d = 6 for dimensions of TH , TV T45, S0, S1, and S2, and N for the pixel number of each image.
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Figure 3. Stokes parameters and the linearly polarized angle of the scene: (a) S0, (b) S1, (c) S2, and
(d) α.

According to the observation range and interval, here N = 501 × 79, and all the images are resized to
N × 1. Mathematically, the PCA process is searching a group of optimal orthogonal unit vectors via
linear transformation such that

Cx = UΛUT , (3)

where
Cx = E[(x − E(x)(x − E(x))T ]

=
1
N

N∑

i=1

(xi − mx)(xi − mx)T

mx = E[x] =
1
N

N∑

i=1

xi

(4)

are covariance matrix and mean vector of the data set, respectively; U = [u1, u2, · · · , ud] represents
eigenvector matrix of the covariance matrix; Λ = diag([λ1, λ2, · · · , λd]

T ) represents eigenvalue matrix,
satisfying λ1 ≥ λ2 ≥ · · · ≥ λd. ui is the eigenvector corresponding to i-th maximum eigenvalue λi. Then
PC i is the projection from matrix X = [x1, x2, · · · , xN ] onto ui.

PCi = Xui, (5)

4. IMAGE SEGMENTATION BASED ON PCA

Because Stokes parameters in Eq. 1 are essentially linear combinations of the polarized temperatures, the
calculated eigenvalue matrix has only three non-zero values, corresponding to three principal components
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Figure 4. Principal components of the data set: (a) PC1, (b) PC2, and (c) PC3.

of PC1, PC2, PC3. As shown in Fig. 4, PC1 contains the most energy of the data set and shows an
overall intensity characteristics, PC2 mainly highlights the areas of metallic objects, and PC3 features
radiometric difference among various terrains. All characteristics of the raw data are remained during
PCA process.

Score plot is a point-by-point statistical means that helps to reveal principal component features
among multiple pixels. Its horizontal and vertical coordinates are two selected principal components
respectively. Each pixel would be positioned in the score plot coordinate according to its principal
component values. Pixels with similar values for both selected principal components are clustered in
the score plot, i.e., they are pixels of the same feature. If these clusters are segmented, the categories
of objects are separated from their background. In this paper, we add the linearly polarized angle α to
the score plot coordinates, and draw the following four plots shown in Fig. 5.

The features of the images are involved in score plot by density of the point. Generally speaking,
the dense area is corresponding to the background pixels, while the sparse areas are more likely image
details. For example in Fig. 5(a) of PC3-PC1, all the points are basically clustered in two sides of
the dotted lines, corresponding to the backgrounds of lawn and the concrete park respectively in the
real scene. This is because the intensity of PC1 is almost the same, while two backgrounds are easily
distinguished in PC3. We totally extract three clusters of points, which we label as C1, C2 and C3 in
Figs. 5(b)∼5(d). Relocating these pixels to image space in Fig. 6, it is obvious that C1 and C3 clusters
represent the lawn and the concrete terrains respectively, and C2 cluster is for the metallic objects
of cars and the street lampshade. This result is consistent with what can be clearly seen in Fig. 2,
indicating the correctness and effectiveness of the segmentation. The reason why we use PCA instead
of straightly processing Fig. 2 is mainly for the following considerations:

(1) For scene-based image processing method like threshold segmentation and edge detection, the
features are based on the relationship between different pixels in one image. While working on
multi-image process problem, it is defective as it ignores the features reflected at a certain pixel in
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Figure 5. PCA score plots: (a) PC3-PC1, (b) α-PC3, (c) PC2-PC1, and (d) α-PC2.
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Figure 6. Segmentation result.

different images. As a result, a false metallic object of puddle, which displays similar radiometric
temperature in horizontal polarization but a higher temperature in vertical polarization, would be
wrongly segmented for example.
(2) Both threshold segmentation and edge detection methods involve a lot of parameter selection
stuff, which may cause different results. Besides, edge detection is generally sensitive to noise, and
the obtained edge is usually discontinuous.
(3) In many situations, it is required to deal with large number of images, and PCA method is
expert in dimension reduction.
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5. CONCLUSION

This paper proposes an effective object segmentation approach for linearly polarimetric PMMW images
based on PCA method. Objects present different polarization characteristics due to their own inherent
attributes, and these characteristics can be extracted and utilized to improve detection and recognition
performance of PMMW imaging system. Restricted by our available hardware condition, the circulated
polarization is not involved to realize full-polarized imaging in this paper. We believe that the full-
polarization technique is future development trend, and it is also what our next research will focus
on.
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