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Generalized Exponential Matrix Technique Application

for the Evaluation of the Dispersion Characteristics
of a Chiro-Ferrite Shielded Multilayered Microstrip Line

Samiha Daoudi1, Fatiha Benabdelaziz1, Chemseddine Zebiri2, *, and Djamel Sayad3

Abstract—In this work, a new analytical matrix formulation approach for the characterization of a
microwave planar structure printed on a complex medium is detailed. The approach is based on the
Generalized Exponential Matrix Technique (GEMT) combined with the Method of Moments (MoM)and
Galerkin’s procedure. The mathematical calculation development is a robust approach that exclusively
uses matrix formulations starting from Maxwell’s equations until the derivation of a compact form of
the Green’s tensor of the studied structure. Reduced complexity and calculation simplicity foundation
of the applied approach have actually incited the authors to consider the case study of a complex
bianisotropic lossy chiral substrate medium. The complexity of the medium is expressed by full tensors
form of all four constitutive parameters: permittivity, permeability and magnetoelectric parameters,
each is represented by a nine-element tensor. To investigate the electromagnetic behavior of complex
media, results of particular bianisotropy cases are presented and discussed. Original results of the
biaxial chiral anisotropy case are carried out, discussed and compared with data available in literature.

1. INTRODUCTION

Since the first carried out research works on planar transmission lines in 1952, the microstrip line
coplanar line and slot line have become the most known and commonly used planar transmission lines
in microwave technology and microwave integrated circuits (MIC) devices [1]. Nowadays, transmission
line-based microwave devices are largely used in telecommunication systems to constantly improve the
overall performances by reducing the size, weight, and cost [2].

Microstrip lines are used at frequencies from a few megahertz to tens of gigahertz. Their fabrication
technology offers at the same time simplicity and facility of realization and integration in microwave
devices. Covered microstrips with air gap between the dielectric substrate and the ground plane present
less losses than the conventional microstrip lines [3].

The Generalized Exponential Matrix Technique (GEMT) in the spectral domain is a rigorous
method used to characterize the interaction of electromagnetic waves with bianisotropic multilayer
structures. This technique, proposed by Tsalamengas [4], is used to study source radiations and wave
propagation problems in multilayer structures with bianisotropic media [5]. This technique exhibits an
elegant and systematic formulation. It has been developed by combining the Fourier transform with
the matrix analysis method [6, 7].

In the last few years, the linear complex materials have gained much attention in electromagnetic
applications. Among these materials the bianisotropic media, characterized by four independent
constitutive tensors, are well mentioned. Theoretical research works have known an important progress
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dealing with their electromagnetic characterization and possibilities of potential applications of complex
bianisotropic materials have greatly increased [6–8]. Complex media, such as magnetoelectric (ME)
materials [9], have recently attracted much researcher attention. The ME effect [10] in complex materials
is known as a product tensor property, which results from the cross interaction between different
orderings of the two phases in the composite [10]. The chiral is considered as a complex medium.
It is used as substrates and superstrates in the design of printed antennas [11]. The resolution of
Maxwell’s equations, in such structures, was not completely finished before 2001 [12]. Since then, the
interaction of electromagnetic fields with chiral materials has been studied, in which the chiral medium
is used in many applications, microstrip substrates and superstrates [13, 14], and waveguides [15].
The propagation characterization in bianisotropic medium transmission lines have also prompted some
interesting works [6, 16].

In this study, we develope a GEMT-based mathematical formulation for a covered suspended
bianisotropic substrate microstrip line using the MoM and the Galerkin’s procedure in the spectral
domain. The effect of the medium bianisotropy on the dispersion characteristics is presented
and analyzed. Results are compared with the isotropic case reported in literature showing good
agreements [16, 17].

The novelty of this work lies in a complete matrix formulation of calculation development starting
from Maxwell’s equations until the derivation of the Green tensor avoiding any intermediate unnecessary
calculations. In addition to the consideration of the losses in the dielectric substrate which have never
been considered in previous works, this matrix formulation approach allows us to overcome excessive
intermediate heavy calculations that are unnecessary in this approach which may lead to eventual
mistakes.

2. THEORY

2.1. Constitutive Parameters of Chiro-Ferrite Media

The studied bianisotropic substrate microstrip line structure is presented in Fig. 1. The upper and
lower layers (region 1 and 3) are isotropic dielectrics.
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Figure 1. Geometry of the studied suspended microstrip line structure.

In general, bianisotropic media are characterized by the following constitutive relations [18].

�B = [μ] �H + ([χ] + j[ξ])
√

μ0ε0
�E

�D = [ε] �E + ([χ] − j[ξ])
√

μ0ε0
�H

(1a)

where �E, �H, �D and �B are the electric field, magnetic field, electric flux density and magnetic flux density,
respectively. [ε] and [μ] are the electric permittivity and magnetic permeability tensors, respectively.
ε0 and μ0 are the free space permittivity and permeability, respectively. [χ] is the non-reciprocity
(Tellegen), tensor and [ξ] is the chirality (Pasteur) tensor.

In fact, this study is based on a Pasteur and Tellegen medium, which is a general anisotropic chiral,
(i.e., [χ] = 0 and [ξ] �= 0 [18] or [χ] �= 0 and [ξ] = 0).
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The linear stationary dispersive bianisotropic materials can be described by the following
constitutive relations in the frequency domain

�D = ε0 [ε (ω)] �E +
√

ε0μ0 [ξ (ω)] �H

�B = μ0 [μ (ω)] �H +
√

ε0μ0 [η (ω)] �E
(1b)

where the time dependence (ejwt) is assumed. In the Cartesian coordinate system, the tensors of the
relative permittivity [ε(ω)] and relative permeability [μ(ω)] are given by:

[ε (ω)] =

[
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

]
, [μ (ω)] =

[
μxx μxy μxz

μyx μyy μyz

μzx μzy μzz

]
(2a)

and the magnetoelectric tensors [ξ(ω)] and [η(ω)] are given by:

[ξ (ω)] =

[
ξxx ξxy ξxz

ξyx ξyy ξyz

ξzx ξzy ξzz

]
, [η (ω)] =

[
ηxx ηxy ηxz

ηyx ηyy ηyz

ηzx ηzy ηzz

]
(2b)

The bianisotropic medium is a generalization of the anisotropic and chiral media [19]. Different types of
anisotropic media are possible: uniaxial, biaxial, gyrotropic,. . . , as it is possible to have only one nonzero
element of the nine-element matrix [20]. In [14] and [21], a special case of the above magnetoelectric
elements was treated. An important step in the distinction between anisotropic media comes through
splitting the constitutive parameter dyadic matrix x (x = ε, μ, ξ and η) into two parts, symmetric and
antisymmetric [22].

x =

[
xx xxy xxz

xyx xy xyz

xzx xzy xz

]
=

[
xx 0 0
0 xy 0
0 0 xz

]
︸ ︷︷ ︸

symmetric→uniaxial,biaxialanisotropy

+

[ 0 xxy xxz

xyx 0 xyz

xzx xzy 0

]
︸ ︷︷ ︸

antisymmetric→gyrotropicanisotopy

(3a)

This can be simplified into:

x = xxūxūx + xyūyūy + xzūzūz︸ ︷︷ ︸
symmetric

+ xgūz × I︸ ︷︷ ︸
antisymmetric

(3b)

where:

xg =

[ 0 xxy xxz

xyx 0 xyz

xzx xzy 0

]
(3c)

and I is the unit dyadic matrix.
The symmetric part of the dyad “x” has a principal axis along x, y or z direction, and these

elements determine the uniaxial and biaxial anisotropy. The other elements xg (antisymmetric) define
the gyrotropic anisotropy of the medium. When all the constitutive parameters are scalar, the medium
is said to be biisotropic.

According to the gyrotropic bianisotropy of constitutive parameters ξ and η, it is possible to define
several medium types, depending on the form of the constitutive tensors in Equation (2). Some cases of
linear complex media are considered in [23–28]; in [24, 25], two cases: ξ = η = 0 and ξ = −η, in [23–27],
the case: ξ = η �= 0, and in [24, 28] the case: ξ �= η.

2.2. Matrix Formulation

Calculation developments, starting from Maxwell’s equations and using the spectral domain GEMT,
lead to a 1st order differential equation for the transverse electromagnetic field components as functions
of their derivatives in the ith region [6]:

∂
[
f̃ (i) (α, β, z)

]
∂z

=
[
P(i)

]
4×4

[
f̃ (i) (α, β, z)

]
(4a)
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and:

[
f̃ (i) (α, β, z)

]
=

⎡
⎢⎢⎢⎢⎣

Ẽ
(i)
x (α, β, z)

Ẽ
(i)
y (α, β, z)

H̃
(i)
x (α, β, z)

H̃
(i)
y (α, β, z)

⎤
⎥⎥⎥⎥⎦ (4b)

[P] = jκ0 {[A] + [B] [C][D]} (4c)

where

[A] =

⎡
⎢⎣

−ηyx −ηyy −Z0μyx −Z0μyy

ηxx ηxy Z0μxx Z0μxy

Υ0εyx Υ0εyy ξyx ξyy

−Υ0εxx −Υ0εxy −ξxx −ξxy

⎤
⎥⎦ =

[
[ηT ] Z0 [μT ]

−Υ0 [εT ] − [ξT ]

]
(4d)

[B] =

⎡
⎢⎣

−j (κ0ηyz + κx) −jωμ0μyz

j (κ0ηxz − κy) jωμ0μxz

jωε0εyz j (κ0ξyz − κx)
−jωε0εxz −j (κ0ξxz + κy)

⎤
⎥⎦ =

⎡
⎢⎢⎣

− (ηyz + κn
x) −Z0μyz(

ηxz − κn
y

)
Z0μxz

Υ0εyz (ξyz − κn
x)

−Υ0εxz − (
ξxz + κn

y

)
⎤
⎥⎥⎦ (4e)

[C] =
−1

(εzzμzz − ξzzηzz)

[
Z0μzz ξzz

−ηzz −Υ0εzz

]
(4f)

[D] =
[

Υ0εxz Υ0εyz

(
ξxz − κn

y

)
(ξyz + κn

x)
− (

ηxz + κn
y

) − (ηyz − κn
x) −Z0μxz −Z0μyz

]
(4g)

where κn
x = κx

κ0
and κn

y = κy

κ0
are the normalized x and y wavenumber components, and Z0 = 1

Υ0
=

√
μ0

ε0

is the free space characteristic impedance.
[P] denotes a z-independent matrix. In all previous works [6, 7], matrix P is calculated explicitly,

while in this study it is kept in its matrix form, where the elements are derived from the constitutive
relations. This matrix is the first form which characterizes the medium in our matrix formulation study.
The elements of such a matrix are not necessarily developed; the matrix is inserted in its raw form. The
general solution of Equation (4a) is given by:⎡

⎢⎣
Ex (z)
Ey (z)
Hx (z)
Hy (z)

⎤
⎥⎦ = exp ([P] · z)

⎡
⎢⎣

Ex (0)
Ey (0)
Hx (0)
Hy (0)

⎤
⎥⎦ (5)

which has a general solution of the form:⎡
⎢⎣

Ex (z)
Ey (z)
Hx (z)
Hy (z)

⎤
⎥⎦ = T (κx, κy , z)

⎡
⎢⎣

Ex (0)
Ey (0)
Hx (0)
Hy (0)

⎤
⎥⎦ (6a)

and
f̃ (i) (α, β, z(i)) = T (κx, κy, z) f̃ (i) (α, β, z(i − 1)) (6b)

According to Cayley-Hamilton theorem, the transition matrix is expressed under the following form

T (z) = c0I + c1P + c2P2 + c3P3. (7)

where cj (j = 0, 1, 2, 3) are scalar expansion coefficients that can be given by solving the Vandermode
linear algebraic system. According to Equation (6a), we realize the advantage of using this technique.
We notice that it is sufficient to know the transition matrices T(κx, κy, z) of the structure limit (upper
and lower) layers. Multiplying the layers transition matrices and applying the boundary conditions
between the dielectric layers containing the conductors give the Green’s tensor which models the
structure.
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T(κx, κy, z) is calculated in the formulation of the GEMT by means of the Cayley Hamilton theorem
in conjunction with Muller’s method to determine the complex function roots.

Muller’s method is a generalization of the secant method used to find real or complex zeros of a
function and is an iterative method which requires three starting points (p, f(p)), (p1, f(p1)), and (p2,
f(p2)). A parabola is made to fit the three points, then a quadratic formula is used to find a root of the
quadratic approximation for the next root. It is shown that close to a root Muller’s method converges
more quickly than the secant method and almost as quickly as the Newton method.

2.3. Boundary Conditions and Green’s Matrix Tensor Evaluation

According to the conditions in the vicinity of a perfect conductor, the electric and magnetic field
components for regions z ⊆ [0, d1] and z ⊆ [d2, d3] are:⎡

⎢⎢⎣
Ex (z)
Ey (z)
Hx (z)
Hy (z)

⎤
⎥⎥⎦ = f (1) (α, β, z) = [L1]

[
C̃1

C̃4

]
(8a)

⎡
⎢⎢⎣

Ex (z)
Ey (z)
Hx (z)
Hy (z)

⎤
⎥⎥⎦ = f (3) (α, β, z) = [L3]

[
C̃2

C̃3

]
(8b)

with

[L1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−αnγ0

ωε0
jβ

−βγ0

ωε0
−jαn

−jβ coth (γ0d1) −αnγ0

ωμ0
coth (γ0d1)

jαn coth (γ0d1) − β

ωμ0
coth (γ0d1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8c)

[L3] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αnγ0

ωε0
jβ

βγ0

ωε0
−jαn

−jβ coth (γ0d3)
αnγ0

ωμ0
coth (γ0d3 )

jαn coth (γ0d3)
β

ωμ0
coth (γ0d3)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8d)

and
C̃1 = C1 sinh (γ0d1) (8e)

C̃2 = C2 sinh (γ0d3) (8f)

C̃3 = C3 sinh (γ0d3) (8g)

C̃4 = C4 sinh (γ0d1) (8h)
Applying the general solution of the GEMT and enforcing the boundary conditions imposed by the
conducting strips, we get: ⎡

⎢⎢⎢⎢⎣
Ẽ

(3)
x

Ẽ
(3)
y

H̃
(3)
x

H̃
(3)
y

⎤
⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎣

Ẽ
(2)
x

Ẽ
(2)
y

H̃
(2)
x

H̃
(2)
y

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
0

−J̃
(2)
y

J̃
(2)
x

⎤
⎥⎥⎥⎦ (9)
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According to Equation (9), we obtain the matrix equation which relates the transverse components of
the electric and magnetic fields to the transverse current densities [6].

[T] [L1]
[

C̃1

C̃4

]
= [L3]

[
C̃2

C̃3

]
+

⎡
⎢⎢⎣

0
0
J̃y

−J̃x

⎤
⎥⎥⎦ (10a)

[L](4,2) = [T] · [L1](4,2) (10b)

[L](4,2) ·
[

C̃1

C̃4

]
= [L3](4,2) ·

[
C̃2

C̃3

]
+

⎡
⎢⎢⎣

0
0
J̃y

−J̃x

⎤
⎥⎥⎦ . (10c)

We denote by [L] and [L3] the transfer matrices for the structures which contain the layers with
(0 ≤ z ≤ d1) and (d2 ≤ z ≤ d3).

[FM]

⎡
⎢⎢⎣

C̃1

C̃4

C̃2

C̃3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
J̃y

−J̃x

⎤
⎥⎥⎦ (11a)

[FM](4,4) =
[
L(4,2) L3(4,2)

]
(11b)

Using Cramer’s rule for the determination of the constants obtained by enforcing the boundary
conditions in the air-dielectric interface, we get the following matrix form for these constants:

[C1] =

[
FM (1, 1) FM (1,2) FM (1,4)
FM (2, 1) FM (2, 2) FM (2,4)
FM (4, 1) FM (4, 2) FM (4,4)

]
(12a)

[C2] =

[
FM (1, 1) FM (1,2) FM (1,4)
FM (2, 1) FM (2, 2) FM (2,4)
FM (3, 1) FM (3, 2) FM (3,4)

]
(12b)

[C3] =

[
FM (1, 1) FM (1,2) FM (1,3)
FM (2, 1) FM (2, 2) FM (2,3)
FM (4, 1) FM (4, 2) FM (4,3)

]
(12c)

[C4] =

[
FM (1, 1) FM (1,2) FM (1,3)
FM (2, 1) FM (2, 2) FM (2,3)
FM (3, 1) FM (3, 2) FM (4,3)

]
(12d)

where [C1] is obtained by deleting the 3rd row and 3rd column of [FM](4,4), [C2] obtained by deleting the
4th row and 3rd column of [FM](4,4), [C3] obtained by deleting the 3rd row and 4th column of [FM](4,4),
[C4] obtained by deleting the 4th row and 4th column of [FM](4,4), and [C1] obtained by deleting the
3rd row and 3rd column of [FM](4,4).

This matrix formulation exhibits a compact form with the advantage of being easily integrated in
the calculation code.

At the air-dielectric interface z = d2, the continuity of the field tangential components has to be
satisfied. By determining the expressions of the constants [C1], [C2], [C3] and [C4], the expressions of
the electric and magnetic fields are evaluated at the interface air-dielectric. Hence, the novel matrix
form of the elements of the Green tensor Gij(αn, γ) is obtained according to the following system of
equations.

Ẽx = G11 (αn, γ) j̃x + G12 (αn, γ) j̃y (13a)

Ẽy = G21 (αn, γ) j̃x + G22 (αn, γ) j̃y (13b)
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where

G11 (αn, γ) =
(

L (1, 1) · Δ [C2] − L (1, 2) · Δ [C4]
Δ

)
(13c)

G12 (αn, γ) =
(

L (1, 1) · Δ [C1] − L (1, 2) · Δ [C3]
Δ

)
(13d)

G21 (αn, γ) =
(

L (2, 1) · Δ [C2] − L (2, 2) · Δ [C4]
Δ

)
(13e)

G22 (αn, γ) =
(

L (2, 1) · Δ [C1] − L (2, 2) · Δ [C3]
Δ

)
(13f)

where Δ is the determinant of [FM](4,4).

2.4. Resolution of the System

By enforcing the boundary conditions imposed on the field components and the current distributions
at the air-dielectric interface, the integral equations are converted into a homogeneous system of linear
equations. The resolution of the equation det(γ) = 0 is carried out using the spectral domain MoM and
Galerkin’s procedure [6, 8, 17]. For lossy media, a complex propagation constant γ = α+ jβ is expected.

3. RESULTS AND DISCUSSION

3.1. Validation of Results

Figures 2 and 3 show the case study of 2 and 3-layer structures (Fig. 1) compared with results reported
in literature [16, 29]. Our obtained results are in good agreement with the studied cases. A slight shift
that does not exceed 8% is observed which is mainly due to the consideration of the dielectric losses.
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)2 ratio of the suspended microstrip line structure for different
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In this study, we take into account the losses combined with the chiral medium with a biaxial
anisotropy, a case that has never been treated in literature. Original results are obtained and discussed
for the case of a monolayer structure.
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3.2. Effect of the Chirality on the Complex Propagation Constant

The following figures present the effect of the chirality parameter ξ and η of a monolayer microstrip
line structure (d3 = 0 mm in Fig. 1). Initially we examine the effect of the axial chirality element by
element.

The values of the magnetoelectric elements, whether they are real or imaginary, positive or negative,
directly affect the effective constant as well as the losses.

According to Fig. 4(a), the notion of non-reciprocity is remarkable when changing the sign of the
purely imaginary magnetoelectric element ξxx, with an increase in (β/κ0)2 when imaginary positive-
valued ξxx increases and a decrease when imaginary negative-valued ξxx decreases. This effect reversed
with respect to (α/κ0)2 parameter, which is clearly illustrated by Fig. 4(c).

The increase in real values of ξxx leads to a slight decrease in (β/κ0)2 and a significant increase in
the ratio (α/κ0)2 (Figs. 4(a) and (b)). Real positive values of ξxx have more effect than negative ones;
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these effects on (α/κ0)2 and (β/κ0)2 are reversed with respect to the sign of the parameter ξxx.
Figs. 4, 5 and 6 illustrate the effect of chirality for εr = 2.53, 9.4 and 20, respectively. We observe

that the increase in εr induces an increase in the chirality effect (ξxx is kept constant) on both (α/κ0)2
and (β/κ0)2 parameters. In particular, for a negative imaginary magnetoelectric element, we observe
a delayed appearance of the fundamental mode increasingly with the increase εr (5 GHz for εr = 2.53,
15 GHz for εr = 9.4 and 20 GHz for εr = 20). The effective permittivity starts approximately from the
reference (isotropic case + ∼= [0.5 ∗ (εr + 1) + Δf(εr, ξxx)]) in all treated cases.

Regarding the magnetoelectric element ξyy (Fig. 7), its effect on the parameters (α/κ0)2 and (β/κ0)2
is insignificant, due to the choice of the geometrical orientation of the treated structure (Fig. 1). Figs. 8
and 9 present the combined effect of ξzz with εr = 2.53 and 9.4, respectively, which is marked by
almost identical effects relative to ξzz. The magnetoelectric elements ηzz have the same effect as that
of parameter (−ξzz) as illustrated by Figs. 10, 11 and 12.
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4. CONCLUSION

A detailed analytical development of Maxwell’s equations for the characterization of a complex medium
multilayer transmission line structure is presented. This study is based on the Generalized Exponential
Matrix Technique combined with the method of moments and Galerkin’s procedure. The analytical
formulation of the problem is carried out through a matrix formulation approach that excludes all
calculation complexities and avoids excessive developments of intermediate elements, in particular
Equations (4c) and (13c)–(13f). This results in a compact matrix form of the Green’s tensor. This
matrix formulation approach facilitates the characterization study of a complex medium structure with
full tensors of the constitutive parameters with the consideration, for the first time, of the substrate
dielectric losses. A multitude of diverse and interesting results has been obtained, which are consistent
with the literature. Among them, only the cases of exploitable applications have been interpreted.
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