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A Matching-Pursuit Based Approach for Detecting and Imaging
Breast Cancer Tumor
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Abstract—In this study, the scattering map of the breast is reconstructed by applying the matching-
pursuit algorithm (MPA) to the simulation data obtained by the monostatic inverse synthetic aperture
radar (ISAR) principle, and the locations of the tumors are determined by considering the peaks on
the scattering map. The MPA iteratively searches the true solution by assuming every discrete point
in the solution space to be a scattering center by dividing the imaging region onto a discrete grid. In
order to obtain images with better resolution, the fine granularity of the grid for accurate solutions is
provided at the expense of increased processing times. First, our approach based on MPA is tested on
simulated data generated by MATLAB for breast tumor detection and imaging. Perfect reconstruction
for the locations of the hypothetical breast tumor points is attained. Then, a full-wave electromagnetic
simulation software named CST Microwave Studio (CST MWS) is used to generate backscattered
electric field data from a constructed scenario in which a tumor is located in a breast model. Next,
we use the collected data from the defined scenarios as an input to our algorithm. Resultant images
provide successful detection and imaging of the tumor region within the breast model. The accuracy
of the MATLAB and the CST MWS simulation results demonstrate the availability of our MPA-based
focusing algorithm to be used effectively in medical imaging.

1. INTRODUCTION

It is well known that breast cancer has the highest incidence among women all around the world [1–3].
Although it is a gradually growing disease, it causes death of the patient in the case of metastasize.
Therefore, in the early stages of breast cancer, detection and diagnosis of breast tumor raise the chance
of survival. Yet, the most effective applied technique for detecting and imaging the breast tumor is
X-ray mammography [3, 4]. On the other hand, this method has two main drawbacks: the need to
apply ionizing radioactive radiation and compress the breast that can be really uncomfortable and even
painful. Although radiated X-rays are usually at low-power levels, same part of the body, i.e., chest
region, cannot be scanned in short periods of time, which surely restricts the examination intervals of
the patient. These disadvantages of the X-ray mammography technique led the researchers to explore
new alternative methods such as magnetic resonance imaging (MRI) [3, 5] and ultrasound imaging
(USI) [1, 3]. MRI is a magnetic resonance based imaging modality that eliminates the shortcomings o
X-ray mammography and obtains highly resolved medical images. On the other hand, MRI is a relatively
more expensive technique and provides lower specificity about the disease. Another method is the USI
which is based on reconstructing the image using reflected sound waves from the breast. Although USI
method looks more cost-effective compared to MRI, it has the same disadvantage of applying physical
pressure to breast to let acoustic waves to better penetrate deeper regions. Furthermore, there is a need
for employing coupling/matching gel which also creates an extra discomfort to the patient.
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Above mentioned drawbacks have been the motivation for the researchers to work on
detection/imaging algorithms based on metabolic changes and various tissue characteristics such as
elasticity, temperature, optical properties and electromagnetic conductivity/permittivity. Studies on
imaging the biological matters, especially breast tissues, based on the electric permittivity feature have
gained acceleration in the last decades [6, 7]. Recent studies have revealed that the dielectric constant
value of a diseased tissue is much higher than that of the healthy one in microwave frequencies [6, 7].
Therefore, this substantial contrast between the healthy and unhealthy tissues constitutes a basis for
the microwave detection/imaging techniques. It has been reported by various researchers that these
techniques have the advantages of being cheaper, providing comfortable employment of the scanning
process and ease in application that can apparently mitigate the drawbacks of the above mentioned
technologies [8–13]. Furthermore, using low power and providing non-ionizing microwave radiation are
also notable benefits of these tools.

In recent years, many studies have been completed on microwave imaging techniques. The studies
on the diagnosis and imaging of breast cancer with microwave imaging tools can be classified as
tomography-based and radar-based microwave imaging [10, 14–20]. Both methods use illumination of
the breast with electromagnetic (EM) waves in the microwave frequency range and exploit the scattered
signal for the detection and imaging. The scattered EM wave can provide various information such as
physical size, distance from the skin, tumor and other tissues.

While tomography-based microwave imaging (TBMI) forms the dielectric scattering map of the
breast, radar-based microwave imaging (RBMI) makes use of amplitude differences in the scattering
signal and provides simple and powerful reconstructed amplitude-based images of the interested
region. There are various numerical studies in the literature on diagnosis, detection and imaging
of breast cancer with the use of microwave imaging such as circular [21] and indirect holographic
reconstruction [22], confocal microwave imaging [13], multistatic adaptive microwave imaging [11],
field mapping algorithm [23], hybrid reconstruction [24] and delay and sum procedures with various
alternatives [8, 25]. In [21], fibroglangular tissue structures mimicking the real breast tissues are used
in a rotating platform filled with impedance matching liquid, and the scattering waves acquired with
the help of Vivaldi antennas are processed with the holographical imaging method. In study [22], a
parabolic dish antenna is used to measure reflections from the breast phantom placed in oil at 9.4 GHz
frequency. Also, a gun hidden in a bag and a Perspex tube are used in the measurements, and indirect
holography method is applied. Fear et al. [13] used the method of confocal microwave imaging based
on arrival times and amplitudes of scattering waves by acquiring data from the numerically modelled
breast, and the breast tumor of 6 mm in size was imaged in three-dimensions.

In this study, the scattering map of the breast is formed by applying the matching-pursuit algorithm
(MPA) to the simulation data obtained by employing the inverse synthetic aperture radar (ISAR)
concept such that tumor locations are determined accordingly. The MPA is a powerful search algorithm
that was previously applied in various fields such as recovering sparse signals in telecommunication
systems and extracting the scattering centers in radar imaging [26–34]. In this work, we set out to
develop an MPA-based focusing algorithm for detecting and imaging tumor tissues in the breast. The
regions of the tumor locations are determined by considering the peak points in the reconstructed images
produced by our algorithm. Firstly, the algorithm is applied to a case with a model composed of perfect
point scatterers in MATLAB programming environment. Results obtained from MATLAB generated
data have proved the validity and robustness of the proposed technique. Afterwards, the algorithm is
tried with data gathered with a full-wave electromagnetic simulation software named CST Microwave
Studio. It is demonstrated that our MPA based technique has the ability to successfully locate and
image the modelled tumor structures within the breast model.

2. BREAST TUMOR DETECTION BASED ON MATCHING PURSUIT
ALGORITHM

Our approach in detecting and localizing breast tumor is based on collecting the backscattered
electromagnetic (EM) waves in monostatic inverse synthetic aperture radar (ISAR) configuration. As
shown in Figure 1, the backscattered data are gathered in a circular manner around the perimeter of
the breast for a total of N distinct multi-static measurements.
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Figure 1. Simulation data derivation setup.

For the algorithm, we assume that the breast tissue is linear, homogeneous and isotropic. Provided
that the main reflection from the air-to-breast skin is range-gated, any point inside the breast whose
dielectric permittivity is different from that of the breast tissue will produce backscattered electric field
in the frequency domain as follows [35]:

Es(f, φ) = A0e
−j( 4πf

v )R(φ) (1)

where f , A0 and φ represent the frequency, amplitude of the electric field and angle of the measurement
location, respectively. The Euclidean distance R can be expressed in terms of the cylindrical angle
variable φ as

R (φ) =
√

(xa − R0 cos φ)2 + (ya − R0 sin φ)2 (2)

and phase velocity v is,

v =

{
c on air

c√
εr

inside breast (3)

where (xa, ya), c, εr and R0 denote the position of the antenna, velocity of the light in free space,
dielectric constant of the medium, and tumor distance relative to the origin of the breast, respectively.
For the sake of straightforwardness, we propose a simple breast model with ideal tumor structures of
dielectrics such that tissue medium beneath the breast is considered homogeneous, linear and isotropic.
Therefore, the tissue and tumors can be represented by different relative electric permittivity values.

As illustrated in Figure 1, the breast or the phantom is illuminated in the monostatic configuration
while the antenna is moved on a circular path of a total of N distinct points that correspond to
different look angle values of φ. The center of the circle is the breast’s origin, and the radius of the
measurement circle is about 1 to 3 centimeters greater than the actual radius of the breast or the
phantom. The frequency-diverse backscattered electric field is collected at every discrete location such
that we obtain a two-dimensional (2D) field data matrix in the frequency-aspect domain. Expectably,
the resultant electric field data contain information about the skin and tumor points. Then, detection
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and reconstructing the scattering map of the breast containing tumors are carried out with the aid of
MPA using the obtained data.

To be able to successfully detect and locate the tumors within the breast, collected electric field
Es(f, φ) with the help of N static measurements needs to be focused. Provided that there is a total of M
point scatterers that may represent tumors inside the breast, the electric field in Eq. (1) is generalized
to give

Es (f, φ) =
M∑
i=1

Ei (f, φ)

=
M∑
i=1

Aie
−j(4πf

v )Ri(φ) (4)

where Ai and Ri(φ) =
√

(xa − Ri0 cos φ)2 + (ya − Ri0 sin φ)2 represent the scattering amplitude and
the distance from the radar for the ith point scatterer inside the breast. Here, Ri0 represents the ith
scattering point inside the breast. It is clear that the exact location of the ith scattering point, i.e.,
(xi0, yi0) equals the following:

(xi0, yi0) = (Ri0 cos φ,Ri0 sinφ) (5)

It is obvious from Eq. (4) that the 2D Fourier relationship between the frequency-and-aspect and
the tumor’s x-and-y location does not provide a direct transformation because tumor’s range distance
varies as the radar’s look angle changes. Therefore, direct inverse Fourier transformation will not yield
a focused radar image of the scattering region within the breast region since the basis functions within
the summation over angles in Eq. (4) are not orthogonal to each other. To overcome this problem, we
adopt the well-known matching-pursuit algorithm (MPA) [26, 36] to extract the model parameters such
as scattering amplitude and scattering location iteratively, and then reconstruct the scattering map of
the breast.

In our approach to this problem, we rewrite Eq. (4) to have the model defined as the following:

Es (f, φ) =
M∑
i=1

Ai · hi (f, φ, xi, yi) (6)

Here, hi (f, φ, xi, yi) is the basis function of the ith scattering center and given by

hi (f, φ, xi, yi) = e−j( 4πf
v )

√
(xa−xi)

2+(ya−yi)
2

(7)

Having the collected electric field as a function of frequency and aspect, our main aim is to determine
a model that best approximates the collected electric field with as few scattering center points as
possible. The unknown parameters are the position of the scattering location, (xi, yi), and the scattering
amplitude, Ai.

The steps of our MPA implementation can be briefly expressed as follows:
(i) In each iteration of our MPA implementation, we project the collected backscattered electric field

onto every possible scattering center basis over 2D imaging plane. The location that gives the largest
projection is selected as the strongest scattering center. The search process can be expressed as

A = max
(x,y)

{〈Es, h (f, φ, x, y)〉} (8)

where the inner product is defined as [36],

〈Es, h〉 =
∫
f

∫
φ

Esh
∗dφdf (9)

Here, this inner product gives the maximum likelihood or the correlation between the measured
scattered electric field Es and the modelled base function h. Of course, this correlation becomes
maximum when the search over x’s and y’s coincides with the real values of a scattered center
location at (xi, yi). At this point, we record the values of (xn, yn) and An, and move to the second
step.
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(ii) In each iteration of our MPA implementation, the residual electric field matrix is obtained by
subtracting the electric field data related to the strongest scattering center from the residual electric
field matrix from the previous iteration as,

En+1 (f, φ) = En (f, φ) − Anhn (10)

where n represents the iteration number. Therefore, the highest scattering center is subtracted
from the electric field data together with its basis function that is An · hn(f, φ, xn, yn). In the
residual electric field, therefore, the amplitude (An+1) of the next scattering center at (xn+1, yn+1)
is surely less than the amplitude (An) current scattering center at (xn, yn).

(iii) The search for extracting the scattering center continues until all high-amplitude scattering centers
are extracted from the electric field data, and the amplitude of the scattering centers reaches the
noise floor of the collected electric field or a user defined value. At the end of this step, the search
is terminated, and the extracted values of (An, xn, yn)’s are recorded.

3. NUMERICAL RESULTS

3.1. MATLAB Simulations

The geometry for the breast tumor scenario is illustrated in Figure 1. The values of the simulation
parameters for this geometry are listed in Table 1. As listed in the table, we have considered three
different scenarios: In scenario #1, there is one tumor; in scenario #2, there exist two distinct tumors,
and in scenario #3, there are three tumors available within the breast as the locations of tumors are
listed in cylindrical coordinates.

Table 1. Values for simulation parameters.

Parameter Value
Start Frequency 0.3 GHz
Stop Frequency 8.5 GHz

Number of Frequencies 165
Skin Origin (r, φ) (0, 0◦)

Skin Radius 8 cm
Gap between Antenna and Skin 2 cm

Measurement Angle Period 1◦

Skin Point Count 96
Tumor Point Count 96

Tumor Radius 1 cm

Tumor Coordinates

Scenario 1 Scenario 2 Scenario 3
(3.72 cm, 144.8◦) (3.72 cm, 144.8◦) (3.72 cm, 144.8◦)

(4.34 cm, −45.7◦) (4.34 cm, −45.7◦)
(3.07 cm, −189.0◦)

The surface of the circular antenna layer is divided into 1452 triangular mesh cells to provide the
initial edge length of 0.50 cm for fine meshing. For scenario #1, one tumor is located at (3.72 cm, 144.8◦)
and the amplitude of the electric field is taken as 3 V/m. In the scenario #2, two tumors are located
at (3.72 cm, 144.8◦) and (4.34 cm, −45.7◦) with amplitude of 3 V/m and 2V/m. Then, the tumors in
the last scenario of #3 are located on (3.72 cm, 144.8◦), (4.34 cm, −45.7◦) and (3.07 cm, 189.0◦) with
amplitude of 3V/m, 2 V/m and 1 V/m, respectively. The tumor amplitudes are selected differently
from each other because of distinctiveness. The values used in the simulation are given in Table 1, and
the given values are chosen optimally according to the results obtained in trial-and-error.
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Because the selected points are exactly the same as mesh points, the algorithm finds the location
of the tumor exactly the same as the location without any error. The triangular meshed surface of the
imaging region is given in Figure 2.

Figure 2. Meshed imaging region.

The initial edge length of the meshes given in Figure 2 is selected as 0.5 cm, and the region in
circular area is meshed with 1452 triangular mesh nodes. In Figure 2, the boundaries on the X and
Y axes represent the boundaries of the antenna layer as [−10 cm, 10 cm]. The mesh points and found
tumor locations after applying the algorithm for scenario #3, which includes 3 tumors, are shown in
Figure 3.

(a) (b) (c)

Figure 3. The meshed plots of mesh nodes, predicted tumor points, antenna layer and the skin layer
(a) scenario #1, (b) scenario #2, (c) scenario #3.
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Figure 3 shows the 1452 mesh nodes that are represented as blue dots. Furthermore, antenna
measurement points are selected as 360, and each represents 1◦. The breast skin is also represented
by a total number of 96 perfect point scatterers. Three tumors in Figure 3 are denoted by three ideal
point scatterers. Each mesh point is assumed as a tumor by MPA, and after applying the algorithm,
the initial tumor locations are identified as points marked with red circles. Table 2 shows the original
and predicted points, original and predicted amplitudes and percentage errors for amplitudes (PEA).

Table 2. Original and predicted tumor positions.

Scenarios Tumors
Original Predicted

PEA (%)
Position

(x, y) [cm]

Amplitude

(V)
Position Amplitude

#1 Tumor #1 (−3.038, 2.142) 3 (−3.038, 2.142) 3.00 0.00

#2
Tumor #1 (−3.038, 2.142) 3 (−3.038, 2.142) 3.02 −0.66

Tumor #2 (3.030, −3.110) 2 (3.030, −3.110) 2.00 0.00

#3

Tumor #1 (−3.038, 2.142) 3 (−3.038, 2.142) 3.12 −4.00

Tumor #2 (3.030, −3.110) 2 (3.030, −3.110) 2.01 −0.50

Tumor #3 (−3.035, −0.480) 1 (−3.035, −0.480) 0.99 −1.00

PEA: Error for Amplitude

According to the results of MPA given in Table 2, the algorithm determines the tumors at their
exact locations perfectly in all three scenarios. However, the amplitudes for all tumors are calculated
to have a maximum error margin about 4.00%. Also, MPA is utilized with various initial mesh edge
lengths to generate the electric field map of scenario #3. The reconstructed images for scenario #3
using the predicted amplitudes are given in Figure 4.

As mentioned above, three tumors are located in scenario #3 and imaged inside the skin layer with
some noise related to theoretical assumptions. As shown in Figure 4, the outer circle represents a layer
of 360 antennas, and the points of the circle inside the antenna layer represent the skin points. The
resolution of the reconstructed images is improved by decreasing the initial mesh edge lengths while the
calculation time is increased. In Table 3, the total calculation time and the used initial edge length in
mesh and related mesh points are tabulated.

As can be seen from Table 3, the count of total mesh points and total calculation time increases in
a nonlinear manner. When the total calculation time and image resolutions are compared, the initial
mesh edge length of 0.20 cm is acceptable, but 0.10 cm of edge length gives the best resolution for the
simulation data.

Table 3. Performance change depending on the initial edge length of the mesh for scenario #3.

Mesh Initial Edge Length
(unit)

Mesh Point Count
(piece)

Total Calculation Time
(sec)

0.50 1452 31
0.45 1788 38
0.40 2267 50
0.35 2955 63
0.30 4027 83
0.25 5809 125
0.20 9062 212
0.15 16114 401
0.10 36268 1178

Computing machine: Intel R© Xeon R© CPU E5-2650 v3 @ 2.30 GHz (2 physical, 40 cores in total),
112 GB RAM
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Reconstructed images of scenario #3 for various initial mesh edge granularities of (a) 0.50 cm,
(b) 0.45 cm, (c) 0.40 cm, (d) 0.35 cm, (e) 0.30 cm, (f) 0.25 cm, (g) 0.20 cm, (h) 0.15 cm, (i) 0.10 cm.

3.2. CST MWS Simulations

In order to supply the MPA with more reliable data and validate the illustrations given in Figure 4,
a realistic simulation study is carried out for the setup given in Figure 5 with the use of a full-wave
electromagnetic simulation software, CST Microwave Studio [37].

The double-ridged horn antenna, shown in Figure 5, performs from 1GHz to 16 GHz with an
impedance bandwidth of less than −10 dB and placed 2 cm away from the object to be imaged. A half
sphere with a radius of 7 cm with a dielectric constant of 4 as the healthy tissue and a sphere with a
dielectric constant of 70 with a radius of 0.5 cm is constructed as the tumor structure in the simulation.
The values of the parameters used in the simulation are given in Table 4.

The tumor structure is located in two different positions according to scenarios #4 and #5,
respectively, and the simulations are done. The S11 parameters obtained as a result of the simulations
are used as backscattered electric field data in imaging. The initial mesh granularity value is selected
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(a) (b)

Figure 5. (a) Side view and (b) perspective view of the CST Microwave Studio simulation setup for
scenario #5.

Table 4. Values for CST MWS simulation parameters.

Parameter Value
Start Frequency 1GHz
Stop Frequency 16 GHz

Number of Frequencies 18
Skin Radius 7 cm

Gap between Antenna and Skin 2 cm
Measurement Angle Period 5◦

Dielectric Value of Healthy Tissue 4
Dielectric Value of Tumor Tissue 70

Tumor Radius 1 cm

Tumor Coordinates Scenario 4 Scenario 5
(2.7 cm, 325◦) (4.9 cm, 280◦)

-8 -6 -4 -2 2 4 6 80

X-Axis (cm)
-8 -6 -4 -2 2 4 6 80

X-Axis (cm)

-12

(a) (b)

Figure 6. Reconstructed images of (a) scenario #4 and (b) scenario #5 for initial mesh edge length
of 0.08 cm.

as 0.08 cm, and the acquired simulation data are imaged with the use of MP algorithm. The obtained
images are given in Figure 6. It can be seen from the figure that the tumor structures are obviously
imaged at around 2.7 cm and 4.9 cm away from the origin. However, there are also artifacts and noises
around the origin. The multi-reflections of the electromagnetic wave penetrating into the object and
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the power loss within the object can be regarded as the cause of these artifacts. To show the resultant
images clearer and remove the artifacts, the amplitudes are scaled logarithmically, and the dynamic
range of the display is selected as −12 dB.

4. CONCLUSION

In this study, scattering map of the imaging region, which consists of healthy breast tissues and tumor
tissues in three different scenarios that have one, two and three tumors, respectively, is obtained.
For this purpose, the breast phantom containing tumor tissue is discretized to derive simulation data
based on the ISAR principle. Afterwards, the imaging region is divided into small triangular segments.
Parametric studies on the dimensions of the mesh grids have also been carried out to improve the
resolution of the reconstructed scattering map. Considering the optimum search time and resolution
according to the triangular meshing approximation, dividing the imaging area into 1452 smaller grids
related to 0.50 cm initial mesh edge length gives acceptable location information. It is observed that
the resolution increases with the increase of the number of grids, but the search time is also increased.
According to parametric studies on mesh grid sizes, 0.10 cm of initial mesh edge length gives the best
resolution on reconstructed image. The further reduction of the value of this parameter does not
provide any improvement due to the saturation of the image resolution. The highest peak values of the
reconstructed image represent the tumor locations. In further studies, it is suggested to parallelize the
algorithm to decrease the search time and increase the resolution.
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