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Torque Ripple Reduction in a SynRM at a Constant Average Torque
by Means of Current Harmonics Injection

Samer Yammine1, Carole Hénaux2, *, Maurice Fadel2, and Frédéric Messine2

Abstract—This paper studies the impact of current harmonics on the synchronous reluctance machine’s
average torque and torque ripple. The electromagnetic model of a general m-phase synchronous
reluctance machine which integrates the inductance and current harmonics is developed. This model
shows that there exist two mechanisms that generate an average torque with a non-zero average value:
the proper contribution of the current harmonics and the interaction between them. This model is then
used in the case of a 2-phase synchronous reluctance machine with a common transversally laminated
anisotropic rotor. This machine design shows negligible inductance harmonics with respect to its
fundamental value. Therefore, it has been found that the interaction between the 3rd and 5th current
harmonics generates a torque equivalent to the torque generated by the fundamental current component.
A locus of the current harmonic components that deliver a constant torque is determined. Furthermore,
we have found that, on this locus, the machine torque ripple decreases significantly. Experimental data
validate the developed theoretical work and show that at the same torque, the torque ripple is reduced
from 20% to 4%.

1. INTRODUCTION

In recent years, the need to build low cost yet efficient machines with high performance has become
more present [6]. Therefore, a renewed interest in reluctance machines has emerged, and in particular
in the Synchronous Reluctance Machine (SynRM) from a design point of view as in [5, 7, 10, 11, 14, 15]
and a control point of view as in [27, 29, 32]. It has been reported that the SynRM delivers competitive
results in comparison with the Induction Machine (IM) in [12]. The SynRM has a stator similar to that
of the IM. However, the absence of hard magnetic or conductor material in the rotor makes it robust,
cheap and easy to manufacture. Nevertheless, the SynRM has to face several obstacles to be a viable
alternative to other AC drives. One of the most significant obstacle that the SynRM faces is its high
torque ripple [2–4, 9, 13, 14, 17, 18, 28].

Several studies in the literature have dealt with the minimization of the torque ripples in the SynRM,
exclusively, from a design point of view. For instance, in [3, 4, 13, 14, 17], the position and end points of
the flux barriers are studied in order to minimize the torque ripple. Conversely, in [2, 18], asymmetrical
flux barriers were introduced where significant torque ripple reduction has been documented. In [9], not
only asymmetrical flux barriers are introduced, but the skewing impact on the SynRM torque ripple
has also been studied. Moreover, in [28], the impact of the slot per pole number and the number of
barriers have been studied.

In [24, 25], studies have shown that the 3rd current harmonic injection is beneficial to the torque
per ampere capability in a 5-phase simple saliency machine. However, in [30], it has been shown that
the injection of the 3rd current harmonic in a 5-phase Axially Laminated Anisotropic (ALA) rotor
deteriorates the machine torque per ampere capability.
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A phase number (m �= 3) is necessary to inject the 3rd harmonic since in a 3-phase machine the
torque resulting from the 3rd current harmonic has a zero average value. The increase of phase number
leads to a greater number of power converter legs. In a traditional 3-phase machine, a 3-leg power
converter can be used in order to control the machine. However, in a bi-phase machine, a use of a
minimum of 4 converter legs (2 H-bridges) is mandatory since the machine has two isolated windings
that cannot be connected with a wye connection. For a 5-phase connection, the minimal number of
legs is 5 with windings connected with a wye connection. In addition, another advantage of a bi-phase
machine is that all odd harmonics injected contribute to the torque production, in contrast with the
5-phase machine where the 5th harmonic does not contribute to a non-zero average torque component.
The main idea of this paper is to create a most generic platform to inject current harmonics and to
study their impact on the SynRM’s average torque and torque ripple. From this effect, we showed that
there is a definite advantage to use a pair number of phases because all odd harmonics current can
contribute to the production of a torque component with a non zero average value. This led us to a
choice of bi-phase, 4 phases and 6 phases. A choice of 2 phases has been made to reduce at minimum
the number of power converter legs. However, as this will be shown, our theoretical study covers a
general m-phase machine. Therefore, the study could be applied to 4 phases, 6 phases or even 3-phase
machines.

The modelling of multi-phase SynRMs from an electrical and an electromagnetic point of view has
been developed. A particular interest is assigned to the electromagnetic torque model of the SynRM
based to the co-energy theorem. This model is used to demonstrate the interaction between the current
temporal harmonics and the inductance spatial harmonics with respect to making of an electromagnetic
torque with a non-zero average value. It has been developed to be applied to a 2-phase transversally
laminated rotor (TLA) SynRM. A locus of current harmonics that keeps the constant average torque
at the constant current RMS value is deduced. We used an optimization algorithm to show that, on
this locus the torque ripples decrease considerably. It is not for the average torque. Laboratory results
confirm the validity of the advocated approach. Our paper is organized as follow.

In Section 2, the torque production for a general m-phase machine with odd current harmonics is
developed. A comparison of the responses of the electromagnetic torque of the SynRM, developed by the
model and the finite element simulations was performed thereby proving the validity of the elaborated
model. In Section 3, the torque production is shown in the case of a 2-phase SynRM. A specific case
study is later presented and discussed in this section. The locus of the current harmonics that does
not deteriorate the torque per ampere capability is shown. Then, an optimization study is performed
in order to define the injected harmonics. A Pareto front demonstrates the ability to reduce torque
ripple without affecting the torque per ampere capability of the machine. In Section 4, the test bench
on which are tested the developed models, are presented. Furthermore, the experimental results show
the advantage of the harmonic injection for reducing the torque ripples.

2. HARMONICS IN M-PHASE MACHINES

The stator voltages can be written under their matrix form:

Vs = RsIs +
dΨs

dt
(1)

where Vs, Rs, Is,Ψs are the stator windings’ voltages, resistances, currents and flux linkages respectively.
These variables can be written in their matrix form for a m-phase machine:

Vs = ( Va Vb . . . Vm )T (2)

Is = ( Ia Ib . . . Im )T (3)

Ψs = ( ψa ψb . . . ψm )T (4)

Rs = rs (5)
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rs is the resistance of each coil, and rs is the identity matrix of dimensions m ∗m. The flux linkages of
the winding, Ψs, can be expressed as a function of the stator currents by using the inductance matrix:

Ψs = Lss · Is (6)

Lss =

⎛
⎜⎜⎜⎝

Laa Laa . . . Lam

Lab Lbb . . .
...

...
...

. . .
...

Lam Lbm . . . Lmm

⎞
⎟⎟⎟⎠ (7)

The electromagnetic torque can be derived from the machine’s coenergy [26],

Tem =
1
2
∂It

sΨs

∂θm
=

1
2
∂It

sLss · Is
∂θm

=
1
2
It
s

∂Lss

∂θm
Is =

1
2
pIt

s

∂Lss

∂θe
Is (8)

where p is the pole pair number, θm the rotor mechanical rotation displacement, and θe the rotor
displacement in electrical radians.

In Fig. 1, the torque response of the machine to a sinusoidal voltage excitation is shown. The
nominal voltage amplitude is applied, and the transient response is plotted to show the model validity
in transients until stationary operation. It is noted that the machine is designed to have minimum
saturation at rated operation point. As seen on the figure, the model can help estimate the torque
ripples of the machine without having to carry out Finite Element (FE) simulations that are time
consuming. The use of a fast model is important to get results in a timely manner with the subsequent
use of an optimization algorithm coupled with the machine electromagnetic model.
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Figure 1. Comparison of torque responses due
to a voltage excitation for a SynRM between the
used model and FE simulations.
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Figure 2. Phase self-inductance of a Transver-
sally Laminated Anisotropic (TLA) SynRM in
function of an electric angular displacement.

The equation of the average torque is given by:

Tavg =
1
2π

∫ 2π

0

1
2
pIt

s

∂Lss

∂θe
Isdθe (9)

The torque ripple is defined as the following:

Tripple =
max(Tem) − min(Tem)

Tavg
=

ΔTem

Tavg
(10)

The inductances in a machine are bi-periodic over an electric period (see Fig. 2 for a phase self
inductance of a TLA rotor).

Equation (11) shows the inductance matrices of a m-phase machine.

Lss = L0 +
∞∑

n=1

[L2nC ] cos 2nθe +
∞∑

n=1

[L2nS ] sin 2nθe (11)
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where

L0 =

⎛
⎜⎜⎜⎝

L0
aa L0

ab . . . L0
am

L0
ab L0

bb . . . L0
bm

...
...

. . .
...

L0
am L0

bm . . . L0
mm

⎞
⎟⎟⎟⎠

L2nC =

⎛
⎜⎜⎜⎝

L2nC
aa L2nC

ab . . . L2nC
am

L2nC
ab L2nC

bb . . . L2nC
bm

...
...

. . .
...

L2nC
am L2nC

bm . . . L2nC
mm

⎞
⎟⎟⎟⎠ (12)

L2nS =

⎛
⎜⎜⎜⎝

L2nS
aa L2nS

ab . . . L2nS
am

L2nS
ab L2nS

bb . . . L2nS
bm

...
...

. . .
...

L2nS
am L2nS

bm . . . L2nS
mm

⎞
⎟⎟⎟⎠

The m stator currents can be written under their general form as in Eq. (13). Even current
harmonics do not generate torque, therefore only odd harmonics are introduced. Moreover, the order
of harmonics is limited to 2N − 1 for N ∈ N∗.

The current amplitude of a given harmonic (H) is defined by IH , and its phase with respect to the
rotor d-axis is represented by φH .

Im =
N∑

k=1

I(2k−1) cos
(

(2k − 1)
(
ωt− 2(m− 1)π

m

)
+ φ(2k−1)

)
(13)

The resultant average torque is obtained by replacing Eqs. (11) and (13) in Eq. (9) and applying
the synchronous condition (ωt = θe = pθm). For this purpose two non-zero average torque generating
mechanisms can be obtained in the condensed form.

Tavg =
mp

2

2N−1∑
μ=1

m∑
j=1
i=1

I2
μk

μ
ijL

2μ sin(2φμ) +
mp

2

2N−1∑
x �=y

x,y=2k−1
k∈N

m∑
j=1
i=1

IxIyl
xy
ij L

x+y
ij sin(Φx + Φy)

+lxy
ij L

|x−y|
ij sin(Φx − Φy) (14)

Two non-zero average torque generating mechanisms can be noted from Equation (14):
(i) The uth current harmonic generates a torque with a non-zero average value when it interacts with

the inductance’s 2uth spatial harmonic. The torque can be written under the form:

Tavg(u) =
1
2
mpI2

u

∑
j=1...m
∞=1...m

ku
ijL

2u
ij sin(2φu) (15)

(ii) The xth current harmonic interacts with the yth harmonic via the two inductance space harmonics
x− y and x+ y and the average torque delivered by this interaction is:

Tavg(xy) =
1
2
mpIxIy

m∑
j=1
i=1

[mxy
ij L

x+y
ij sin(φx + φy) + lxy

ij L
|x−y|
ij sin(φx − φy)] (16)

kij , lij and mij are constants that depend on the machine phase number.

3. CASE STUDY: BI-PHASE MACHINE

The model developed is applied to a bi-phase machine. There are two advantages for using a bi-phase
machine for harmonic injection:
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(i) All odd current harmonics can be injected in contrast with the 5-phase machine where the 5th
harmonic cannot be injected.

(ii) The number of required inverter legs is 4 in comparison with 5 legs for a 5-phase machine.

In this section, the average torque in the presence of current harmonics in a 2-phase machine is
presented. A practical TLA design is used in order to investigate the developed model. The current
fundamental and harmonics for a maximal torque per ampere are shown. Finally, an optimization study
on Tripple and Tavg to determine the variables current harmonics is performed.

3.1. General Case

The semi-circuit representation of a bi-phase machine is shown on Fig. 3(a) and the machine cross
section on Fig. 3(b). Moreover, the self inductance (Laa) can be written in its general form as in
Eq. (17). Phase b is in quadrature with respect to phase a. Therefore, self inductance Lbb is linked to
Laa by Eq. (18). Moreover, Lab is written in its general form as well in Eq. (19). The general equation of
the matrix Lss is shown in Eq. (20). The developed expression of the inductance harmonic component
is limited to the 10th harmonic:

Laa = L0 + L2 cos(2θe) + L4 cos(4θe) + L6 cos(6θe) + L8 cos(8θe) + . . . (17)

Lbb = Laa

(
θr − π

2

)
(18)

Lab = M0 + M2 sin(2θe) + M4 sin(4θe) + M6 sin(6θe) + M8 sin(8θe) + . . . (19)

Lss =
(
Laa Lab

Lab Lbb

)
=

( L0 M0

M0 L0

)
+

(L2 0
0 −L2

)
cos(2θe) +

(
0 M2

M2 0

)
sin(2θe)

+
(L4 0

0 L4

)
cos(4θe)+

(
0 M4

M4 0

)
sin(4θe)+

(L6 0
0 −L6

)
cos(6θe)+

(
0 M6

M6 0

)
sin(6θe)

+
(L8 0

0 L8

)
cos(8θe)+

(
0 M8

M8 0

)
sin(8θe)+

(L10 0
0 −L10

)
cos(10θe)+

(
0 M10

M10 0

)
sin(10θe) (20)

Phase currents are limited to their 5th harmonic in Eq. (21) and the average torque is shown in
Eq. (22).

Ia = I1 cos(ωt+ φ1) + I3 cos(3ωt + φ3) + I5 cos(5ωt + φ5)

Ib = I1 cos
((
ωt− π

2

)
+ φ1

)
+ I3 cos

(
3
(
ωt− π

2

)
+ φ3

)
+ I5 cos

(
5
(
ωt− π

2

)
+ φ5

)
(21)
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Figure 3. Bi-phase SynRM: (a) semi-circuit representation, and (b) cross section of a 4-pole TLA
SynRM with 2 slots/phase/pole and a full-pitch winding.
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Tavg =
p

2
[I2

1 (L2 + M2) sin(2φ1) + 3I2
3 (L6 + M6) sin(2φ3)

+5I2
5 (L10 + M10) sin(2φ5) + 2I1I3(−L2 + M2) sin(φ1 − φ3)

+4I1I5(−L4) sin(φ1 − φ5) + 2I3I5(−L2 −M2) sin(φ3 − φ5)

+4I1I3(L4) sin(φ1 + φ3) + 8I3I5(L8) sin(φ3 + φ5) + 6I1I5(L6 + M6) sin(φ1 + φ5)] (22)

The average torque shows the respective contributions of the current fundamental and harmonics,
as well as the interactions between the various harmonics as in the case of a m-phase machine. The
complexity of this analytical model lies in the high interdependence of the harmonics. In other words,
the variation of one parameter (IH or φH) influences many terms of the equation, and the contribution
of a current harmonic depends on the other harmonics injected in the system. In order to evaluate the
model and the harmonic injection concept, the next section investigates a practical TLA SynRM.

3.2. Harmonic Injection in a TLA SynRM

3.2.1. Theoretical Aspect

The first step to evaluate the harmonic injections concept is to determine the inductance spectrum
of the machine. Many attempts were made in literature to find their expression analytically in
SynRMs. The most common approach is the winding theory [1, 8, 16, 19, 20] used to determine the
stator inductances. In some cases, the slotting effects are taken into account [21, 23]. Furthermore, in
other cases, a reluctance network is identified in order to evaluate the airgap field [22]. The airgap
field can then be used to find the stator inductances. However, it is a complex task to determine the
stator inductances analytically while taking into account the exhaustive non-linearities in the machine.
A complete analytical method determining the inductances considering the saturation, the axes cross
couplings, the slotting effect and the leakage inductances are currently non-existent. Therefore in this
work, FE simulations are used instead. The TLA rotor design used is shown on Fig. 4. The flux barriers
form is based on the flux lines in a solid rotor developed in [31]. The used SynRM design parameters
are shown in Table 1.

The numerical values of the inductances determined by FE simulations are shown in Table 2.
The inductances components above L2 are relatively low in this geometry unlike in a simple saliency

geometry [25]. Therefore, the impact of the corresponding current harmonic is negligible with respect
to the fundamental. However, the 3rd current harmonic interacts with the 5th current harmonic and
the fundamental spatial harmonic of the inductances as shown in Eq. (22).

2I3I5(−L2 −M2) sin(φ3 − φ5) (23)

This shows that for the studied SynRM geometry, the mere injection of the 3rd harmonic does not
significantly contribute to the machines performances. Furthermore, two consecutive harmonics should

Figure 4. Rotor design used for the proposed study; the flux barriers are based on the flux lines pattern
and the uniformity of the flux in a solid rotor [31].
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Table 1. Design parameters of the studied TLA SynRM.

Parameter Symbol Value Unit
Stator External Diameter Dext 123 mm

Rotor Diameter Drotor 79 mm
Air Gap Length e 0.5 mm
Active Length La 100 mm
Shaft Diameter Dshaft 18 mm
Phase Number m 2 −

Pole Pairs p 2 −
Slot Number Nslot 16 −

Flux Barrier Number Nbarriers 4 −
Current Excitation Density Jstat 5 A/mm2

Bridges Width Wbridges 1 mm
Ribs Width Wribs 0.8 mm

Insulation Ratio [14] Kwq 0.5 −

Table 2. Inductance numerical values found by FE simulations for the Studied SynRM.

L0 = 2.63 × 10−2 H M0 = 0H
L2 = 1.15 × 10−2 H M2 = 1.12 × 10−2 H
L4 = 1.41 × 10−4 H M4 = −1.42 × 10−4 H
L6 = 4.15 × 10−4 H M6 = −3.47 × 10−4 H
L8 = −3.34 × 10−4 H M8 = −1.91 × 10−4 H
L10 = 6.18 × 10−5 H M10 = −9.75 × 10−5 H

be injected in order to achieve the benefit of harmonic injection. Consequently, the current harmonics
considered in the following are the 3rd and the 5th harmonics. Six parameters that define the phase
current shape have to be considered: (I1, φ1), (I3, φ3) and (I5, φ5). Finding the optimal values from
the analytical equation of these parameters in Eq. (22) is not a straightforward task. Nevertheless, by
simplifying Eq. (22), an estimate on the optimal parameters values can be obtained.

If only the two main terms of Eq. (22) are considered, Eq. (24) can be written:

Tavg =
p

2
[I2

1 (L2 + M2) sin(2φ1) + 2I3I5(−L2 −M2) sin(φ3 − φ5)] (24)

It can be noted that Eq. (24) is specific to the studied machine. However, in the case of a simple
saliency SynRM or a SynRM with a concentrated winding, the inductance harmonics values change,
and Eq. (24) needs to be re-evaluated.

In an ideal case, the phase angle φ1 should be 45◦, and φ3 − φ5 should be −90◦ to achieve the
maximal torque per ampere. If these values are considered, the simplified model gives the following:

Tavg
p

2
(L2 + M2)

= I2
1 + 2I3I5 (25)

The machine performance should be evaluated at constant RMS current in order to objectively
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evaluate harmonic injection. In consequence, the following constraint should be respected:

I2
rms =

(
I1√
2

)2

+
(
I3√
2

)2

+
(
I5√
2

)2

=
(
I1max√

2

)2

(26)

In terms of current amplitude, the relation can be written as:

I2
1 + I2

3 + I2
5 = I2

1max (27)

Solving Eqs. (25) and (27), the maximal torque is obtained when I3 = I5. Moreover, the locus of
the current fundamental and harmonics required to achieve a maximal torque per ampere is shown on
Fig. 5.

I1

I3 & I5

0

Figure 5. Locus of the maximum torque obtained from the simplified model, for I3 = I5.

3.2.2. Optimization Algorithm

An optimization algorithm is proposed in order to verify that the locus is the optimal solution taking into
account a more detailed model (including a rich inductance spectrum). Since the 3rd and the 5th current
harmonics are considered, the inductance spectrum used in the optimization study is limited to its 10th
component as in Equation (20). The optimization algorithm uses the model to help determine the six
parameters that define harmonics injection (I1, I3, I5, φ1, φ3, φ5). Two criteria are used to determine
the impact of the harmonics injection on the machine performance: the average torque Tavg and the
torque ripples Tripple. From a mathematical point of view, the optimization problem is formulated as
the following:

max
I1,I3,I5,φ1,φ3,φ5

Tavg

C1 : Tripple < max(Tripple) (28)

C2 :
√
I2
1 + I2

3 + I2
5 < 10A

In other terms, for a maximum Tripple constraint, the optimization algorithm will try to find the
maximum Tavg delivered from the machine model at a constant RMS value. By varying the maximum
Tripple constraint, a pareto front could be obtained as will be seen next. The optimization procedure is
presented on Fig. 6. The chosen initial values are for the case at rated operation point without harmonics
injection. Tavg and Tripple are determined using the electromagnetic model shown in Equations (8)–(10).
Afterwards, the optimization algorithm evolves the optimization variables that define the harmonics
amplitudes and phase angles (I1, I3, I5, φ1, φ3 and φ5) in order to maximize Tavg while respecting the
constraints on Tripple and on the RMS current. The optimization algorithm used is the Nelder-Mead
Simplex algorithm (fminsearch in Matlab) and if the algorithm did not converge to an optimal solution,
another iteration is repeated with different starting point An elementary optimization procedure (to
determine one optimal point for a given max(Tripple)) requires around 200 function calls which requires
around 2s of CPU time.
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Initial Values of I1, I3, I5, 
ϕ1, ϕ3, ϕ5

Determining Tavg and 
Tripple Using the EM 

Model

Optimization Algorithm
max Tavg 

C1 : Tripple < Tripplemax

C2 : Irms < Imax

Convergence?

END
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Parameters

Figure 6. Optimization algorithm to determine
the current harmonics parameters.
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Figure 7. Pareto front of the Tripple in function
of Tavg for the harmonic injection optimization
algorithm.

Several runs of the optimization algorithm are performed by varying the maximum Tripple from 0%
till 35% in order to obtain a Pareto front. For a maximal Tripple below 10%, the optimization algorithm
does not deliver a solution that respects the constraint. The minimal obtained Tripple is around 10%.
The maximum limit of 35% is chosen which corresponds to the Tripple without harmonics injection
+10%. Fig. 7 shows the obtained Pareto front of Tavg in function of Tripple. The figure shows that at
a constant Irms, even by injecting harmonics, Tavg does not surpass Tavg achieved without harmonic
injection. Nevertheless, for the same Tavg, Tripple is reduced from 25% to approximately 15% (−40%).
The values of I1, I3 and I5 that give the same Tavg and reduce Tripple are roughly the values found from
the locus shown on Fig. 5. This proves that the inductance spectrum components higher than L2 and
M2 do not significantly intervene in torque production.

3.2.3. Optimization Including Saturation

In order to take into account the saturation, numerical simulations by a FE software have been carried
out. First of all, some simulations make it possible to determine the range of unsaturated operation as
illustrated in Fig. 8 and the validity range of the theoretical model of the machine.

Secondly, other numerical simulations have permitted to obtain the average torque as a function
of phase and rms amplitude current as described in Equation (21) in order to define lookup tables, see
Figs. 9 and 10.

When an average torque has to be provided, the corresponding phase and magnitude of the
fundamental current in the previous generated tables have to be taken. The computation of harmonics
current does not depend on the inductances but only on the current harmonics locus which impose
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Figure 8. Comparison of the average torque as
a function of the phase currents amplitude.

Figure 9. Average torque as a function of the
current amplitude for several values of φ1.

Figure 10. Average torque as a function of φ1 for several values of I1.

I3 = I5 in order to guarantee the maximal torque and both following equations:

I2
1rms + I2

3rms + I2
5rms = max(Irms)2

I2
1 + I2

3 + I2
5 = max(I1)2 (29)

Therefore, it is not necessary to know the real values of the inductances respect to the saturation
of the machine.

4. EXPERIMENTAL VALIDATION

4.1. Test Bench Description

The different components of the test bench are presented on Figs. 11, 12 and 13. The controller is
implemented on a DSPACE module. The DS2004 is used to acquire the data, and the DS5101 is used
to generate the PWM. In order to fix the system speed, a speed-controlled MAGTROL hysteresis brake
(Model HD-710) is used. The MAGTROL has an integrated torque meter of a 2 kHz bandwidth and
sends the instantaneous torque as an analogue output to DSpace DS2004 to visualize the torque and
to calculate Tavg and Tripple. The machine used is a lab prototype, and its performance at test speed
is shown in Table 3. The design parameters are shown in Table 1. The magnetic flux density of the
machine obtained from Maxwell 2D finite elements simulation is shown on Fig. 14.

4.2. Experimental Results

Harmonic injection is performed on the test bench, and a comparison between the case without harmonic
injection and the case with harmonic injection (I1rms = 6.93 A, I3rms = I5rms = 1 A) is shown in Fig. 15.
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Figure 11. Components of the test bench; DSpace is used
to implement the current controller, reading the mechanical
and electrical variables an generating the PWM signals; a
4-leg converter is used as power electronics.

Figure 12. Laminations and the dif-
ferent constituents of the used SynRM
prototype, M330-35A laminations are
used for the prototype.

Figure 13. Machine prototype and the hysteresis
brake.
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Figure 14. Magnetic density distribution of the
studied SynRM obtained for a Maxwell 2D finite
element simulations.

The graph shows a slight decrease of the average torque (from 1.77 Nm without harmonic injection to
1.75 Nm with harmonic injection). This is mainly due to the increase in core losses in the machine
structure when injecting harmonics. Nevertheless, this decrease is negligible (∼ 1%).

On the other hand, Tripple decreases from 20% to 4% with harmonic injection. The optimal φ3−φ5

value is experimentally found at −135◦. The individual values of φ3 and φ5 do not impact the machine
torque or the torque ripple. Note that the optimal results presented in Fig. 7 do not include the saturated
operating of the machine. In these test simulations, the rated operating point is fixed to 1.7 N ·m which
involves the saturation of the machine. Thus, in this case, the magnitude and phase of I1 current is
taken directly from Figs. 9 and 10 and the computations of I3 and I5 with the condition I3 = I5 follow
Equation (29).

On the other hand, Fig. 16 shows the Tavg , Tripple, ΔT (see Equation (10)) and the machine’s
efficiency in per units (pu) with respect to the case without harmonics injection as a function of
I3rms = I5rms for the locus shown on Fig. 5. The reason for taking directly the locus values (from
the simplified model) and not the optimization values (from the pareto front on Fig. 7) is that they
do not need an optimization procedure to be evaluated. The minimal torque ripple obtained is about
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Table 3. Measured performance of the SynRM prototype used in this study.

Parameter Symbol Value Unit
Nominal RMS Phase Current Is 7.07 A

Nominal Current Angle θ 50 ◦

Nominal Direct Inductance Ld 37.6 mH
Nominal Quadrature Inductance Lq 13.8 mH

Saliency Ratio (Ld/Lq) ξ 2.72 −
Ld − Lq − 23.8 mH

Nominal Torque Tavg 1.7 Nm
Mechanical Speed Ω 400 rpm
Mechanical Power Pmec 71 W

Phase RMS Voltage Vrms 15 V
Power Factor PF 0.54 −
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Figure 15. Comparison of the torque between
the case without harmonics injection (I1rms =
7.07 A, I3rms = I5rms = 0 A) and the case with
harmonic injection (I1rms = 6.93 A, I3rms =
I5rms = 1 A).
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Figure 16. Measured Tripple, ΔT and Tavg

of the SynRM in per unit with respect to the
case without harmonics injection in function of
I3 (I3 = I5).

3% which is highly favourable for AC drive applications. The constant torque is not obtained since the
core losses increase in the machine due to harmonics injection. Fig. 16 shows that without fundamental
current (I1rms = 0 and I3rms = I5rms = 5 A), Tavg is about 44% of the value with the fundamental
current only. However, competitive operating points, where the Tavg decreases slightly and the Tripple

is around 3.5% from an initial value of 20%, are documented. Regarding the machine’s efficiency,
the machine shows a slight increase (around 0.7%) prior to I3rms = I5rms = 1.25 A. After this value,
the efficiency rapidly decreases to reach 0.2 pu when the current does not contain any fundamental
(I1rms = 0 and I3rms = I5rms = 5 A) as shown in Fig. 16.

Note that the machine sized in this paper does not operate at high speed. The operating range is
limited to 3500 rpm.

5. CONCLUSION

The impact of the current harmonics on the average torque and the torque ripple is studied in this
paper.

• An electromagnetic model is developed for a general m-phase. The two mechanisms of the torque
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generation in a SynRM are formulated. The first mechanism is the proper contribution of each
current harmonic, and the second is the result of the interaction between the current harmonics.

• We also show that for the studied TLA design of the SynRM the inductance harmoncis are negligible
in comparison to the fundamental component. Therefore, injecting harmonics at a constant RMS
current value does not allow to generate more torque. Whereas, by injecting both the 3rd and the
5th harmonics, a current harmonics locus is found that keeps the torque constant. On this locus,
the torque ripple decreases significantly.

• Some laboratory results confirmed the developed model. For instance, the results also show that
without impacting noticeably the average torque of the SynRM, the torque ripple can be reduced
to less than 4%.
In the future work, it is planned to test the proposed model of a three-phase machine with the

injection of two consecutive harmonics. This method could reduce significantly the torque ripple even
in 3-phase machine.
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