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Analysis of Diffraction Graphene Gratings Using the C-Method and
Design of a Terahertz Polarizer

Farzaneh A. Juneghani, Abolghasem Z. Nezhad*, and Reza Safian

Abstract—We analyze relief graphene gratings by the coordinate transformation method (the C-
method). This method is also used for analysis of multilayer gratings with graphene sheets at the
interfaces. By using this method, we are able to obtain the efficiency of deep graphene gratings
with fast convergence rate while previous methods are limited to very shallow graphene gratings.
Moreover, a terahertz polarizer is designed by relief graphene grating. Polarization extinction ratio
and transmittance of single-layer and double-layer polarizer are simulated by the C-method. Double-
layer polarizer gives extinction ratio from 22 dB to 10 dB over a frequency range of 1 GHz to 4 THz.

1. INTRODUCTION

In recent years, periodic structures of graphene have received considerable attention, such as
the monolayer graphene having relief corrugations [1–3], graphene sheet with modulated optical
conductivity [1–4], periodic array of graphene ribbons [5], and graphene on subwavelength dielectric
gratings [6, 7]. Graphene sheets with relief surface have been analyzed [1–3] and fabricated [8–11] by
different methods. In these structures, in addition to graphene conductivity, corrugation amplitudes
can affect the efficiency of structure so that the increase of the groove depth causes the increase of
graphene absorption [1].

Graphene, a single layer of carbon atoms arranged in a honeycomb lattice [12], has already shown
unique mechanical, electric, thermal and magnetic properties [13]. Complex conductivity of graphene
depends on frequency, electron relaxation time, temperature and chemical potential. The chemical
potential of graphene can be dynamically altered by electric field, magnetic field and voltage gate [14,15].
Because of these characteristics, graphene has interesting applications in different frequencies [16–19].
For example, absorber, which is implemented based on graphene and light absorption, is tuned by
changing the chemical potential or gate voltage [16], and polarizer, which is designed using array of
graphene ribbons, is controlled by the chemical potential [17]. These structures are based on periodic
structures of graphene, and they are in fact diffraction gratings.

Metal and dielectric diffraction gratings with relief surface are analyzed and simulated by developed
analytical and numerical methods. For instance, the Rayleigh method was proposed to calculating the
diffraction efficiency of relief gratings [20]. But this method was limited to the very shallow gratings.
After this method, the integral method was developed for metal and dielectric relief gratings [21]. The
advantage of the integral method is that it can deal with almost all kinds of gratings, but this method
has mathematical complicacy and is difficult to be implemented and comprehend. Also, the coordinate
transformation method (the C-method) was proposed for metal gratings with relief surface [22]. It was
then extended to multilayer dielectric and metal gratings [23]. This method allows us to determine
transmittance, reflectance and absorbance of the structure and it can be used for deep gratings.
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Relief gratings are known to diffract and absorb electromagnetic waves. When these structures are
covered with a graphene sheet, their efficiency can be dynamically tuned by electrostatic gatings. Relief
graphene gatings are investigated by the Rayleigh method [2] and resonance perturbation theory [1].
But, as mentioned earlier, these methods can only be used for very shallow gratings. It must be added
that commercial electromagnetic (EM) solvers often model graphene with a thin dielectric layer that
its permittivity is proportional to the thickness of layer. As a result, these solvers need fine meshing
that causes very slow convergence rate and memory consuming [24]. Therefore, we need a rigorous and
efficient method for solving these problems.

In this paper, diffraction from the graphene sheet on the corrugated dielectric grating is analyzed
using the coordinate transformation method (C-method). Here, the graphene sheet that is located at
the interface between two homogeneous isotropic media is modeled with its surface conductivity. The
problem is also studied for multilayer gratings with the graphene sheets at the interfaces. Obtained
results of this method for graphene gratings are compared with results of the Rayleigh method and
commercial EM solver. The absorbance of the light is reported for different depths of the grating.
Increasing depth of the grating leads to absorbance enhancement, due to more coupling between
electromagnetic radiation and surface plasmon polaritons.

Finally, a TM-pass polarizer is designed and simulated in terahertz region. The structure is formed
by two sinusoidal graphene gratings with a subwavelength period. Results demonstrate that we can
achieve better extinction ratio by increasing depth of the grating, the chemical potential and number of
layer of the graphene gratings. Final extinction ratio for designed double-layer polarizer is from 22 dB
to 10 dB over a frequency range of 1GHz to 4 THz.

2. DESCRIPTION OF THE PROBLEM

A surface relief grating is shown in Fig. 1(a). The corrugated interface is periodic in the x direction and
uniform in the z direction. The period and depth of grating are d and h, respectively, and a continuous
function a(x) describes the grating surface profile. A graphene sheet with the conductivity σ is placed
at the interface between two homogeneous isotropic media with the refractive indexes n1 and n2 that
n1 is real but n2 can be complex. The magnetic permeabilities of both media can be different but it
is assumed the same with vacuum permeability. The grating is illuminated by a plane wave with an
incident angle θ with respect to the Oy axis, and incident wave vector is placed in the Oxy plane.

(a) (b)

Figure 1. A surface relief grating with a graphene sheet is placed at the interface between two media
(a) in the cartesian coordinates, (b) in the curvilinear coordinates.

There are two cases of TM (magnetic field vector is parallel to the Oz axis) and TE (electric field
vector is parallel to the Oz axis) polarizations. Here only TM polarization is considered, although
TE polarization is also similar. Since the structure is uniform in the z direction, the problem is two-
dimensional, and the wave equation is as follows:

(∂2
x + ∂2

y + k2)F = 0, (1)

where k = ω
√

µ0ε is the wave number and F = Hz. As seen in Fig. 1(a), space is divided into two
semi-infinite spaces by grating-profile function a(x), and two domains called D1 and D2 are formed at
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superstrate and substrate, respectively. By assuming a time dependence of exp(−iωt), the total fields
in both domains can be written in Rayleigh expansions [25]

F (x, y) =
m=+∞∑
m=−∞

A(p)
m

±
exp

(
iαmx± iβ(p)

m y
)

, p = 1, 2, (2)

where
αm = n1k0 sin θ + mK, β(p)

m

2
= n2

pk
2
0 − α2

m, (3)

in which K = 2π/d, k0 = 2π/λ, λ is wavelength in vacuum; p is devoted to domains D1 and D2 with

p = 1 and p = 2, respectively; A
(p)
m

±
are unknown coefficients that are found. There are two cases of

modes: modes propagate or decay in the positive direction of y and modes propagate or decay in the
negative direction of y. These modes are shown by superscript of + and −, respectively.

2.1. Description of the Eigenvalue Problem by the C-Method

The coefficients of A
(p)
m

±
are obtained by satisfying the boundary conditions of problem, but this

is difficult for the corrugated surface. The C-method applies boundaries of structure to curvilinear
coordinate surfaces (Fig. 1(b)). Therefore, new variables are introduced by transformation

v = x, u = y − a (x) . (4)
Using the new variables gives the chain rule:

∂x = ∂v − ȧ∂u, ∂y = ∂u, (5)
in which ȧ = da/dx. Substituting (5) into (1) gives(

(1 + ȧȧ) ∂2
u − ȧ∂v∂u − ∂vȧ∂u + ∂2

v + k2
)
F = 0. (6)

The second order propagation equation can be rewritten as a pair of first order equations[
k2 + ∂2

v
0

0
1

] [
F
∂uF

]
= −∂u

[
ȧ∂v + ∂vȧ
−1

1 + ȧȧ
0

] [
F
∂uF

]
. (7)

Because the coefficients of this equation are independent of u, we can write the u dependence as
exp(iρu) for F and ∂uF . Then ȧ is expanded into Fourier series and we make transformations ∂v = iα
and ∂u = iρ; therefore, Eq. (7) is converted to a matrix equation in Fourier space as [26][

β(p)2

0
0
I

] [
F

Ḟ

]
= ρ

[ −ȧα−αȧ
I

I + ȧȧ
0

] [
F

Ḟ

]
, (8)

where I is the identity matrix, 0 the null matrix, ȧ the Toeplitz matrix by Fourier coefficients of
ȧ = da/dx, and α and β(p) are diagonal matrices [26]. By solving the generalized matrix eigenequation

in Eq. (8) in both domains p = 1 and p = 2, the eigenvalues ρ and eigenvectors
[

F

Ḟ

]
can be obtained.

For the numerical solution of eigenvalue problem in Eq. (8), we truncate the infinite matrices and
introduce an integer M and let m runs from −M to M , so that the size of submatrices in Eq. (8) will
be (2M + 1)× (2M + 1). The 4M + 2 eigenvalues can be determined and divided into sets that will be
discussed in next section. Thus the total magnetic fields in both domains p = 1 and p = 2 are written
as

(9)

F (p) = F (p)+ + F (p)−

=
m=+M∑

m=−M

exp (iαmv)
q=+M∑

q=−M

F (p)
mq

+
exp

(
iρ(p)

q u
)

B(p)
q

+

+
m=+M∑

m=−M

exp (iαmv)
q=+M∑

q=−M

F (p)
mq

−
exp

(
iρ(p)

q u
)

B(p)
q

−
, p = 1, 2,

where F
(p)
mq

±
are elements of qth eigenvector of the generalized matrix eigenequation in Eq. (8).
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2.2. Boundary Conditions

The unknown coefficients B
(p)
q

±
can be determined by matching the tangential components of fields on

the surface u = 0. Since in this problem a graphene sheet is placed at the interface between two media,
the boundary conditions will be different from Fig. 1 without graphene sheet. The graphene sheet is
modeled with its surface conductivity, and proper boundary conditions are applied [27],

n× (E1 −E2) = 0, n× (H1 −H2) = σEt, (10)

in which the subscript t is for defining the tangential component of electric field, and n is the unit
normal vector to the interface in Fig. 1. The tangential component of electric field is given by Et = E.t.
The unit tangent vector t is obtained from the gradient on the grating surface with profile function
a(x). Therefore, we have

G = Et =
1√

1 + ȧ2
Ex +

ȧ√
1 + ȧ2

Ey, (11)

where the tangential component of electric field is denoted by G, for convenient mathematical
manipulations in the next sections. From Maxwell’s equations Ex = −(Z0/ik0ε)∂yHz and Ey =
(Z0/ik0ε)∂xHz, where Z0 = (µ0/ε0)

(1/2), and Eq. (5) we can express G as

G =
Z0

ik0ε

[
ȧ√

1 + ȧ2
∂vF −

√
1 + ȧ2∂uF

]
. (12)

By substituting Eq. (9) in Eq. (12) we have

(13)G(p)
mq

±
=

Z0

k0ε(p)

∑
s

[
(ȧ)m−s((

√
I + ȧ.ȧ)

−1
)msαs − (

√
I + ȧ.ȧ)msρ

(p)
q

]
F (p)

sq

±
,

where ȧ · ȧ denotes the matrix multiplication, and
√

I + ȧ · ȧ denotes a matrix Y such that Y · Y =
I + ȧ · ȧ, and ȧ is a matrix with the elements that are Fourier coefficients of ȧ such that

(ȧ)ms = (ȧ)m−s =
1
d

∫ d

0
ȧ (x) exp [−i(m− s)Kx] dx. (14)

By using boundary conditions in Eq. (10) and scattering matrix (S-matrix) which connects input
waves to output waves [28] and is defined as




B
(1)
q

+

B
(2)
q

−


 = S




B
(2)
q

+

B
(1)
q

−


 , (15)

we have

S =




F (1)+ − σG(1)+

G(1)+

−F (2)−

−G(2)−



−1




F (2)+

G(2)+

σG(1)−−F (1)
−

−G(1)−


 =

[
S11

S21

S12

S22

]
, (16)

where F (p)± and G(p)± are submatrices with elements F
(p)
mq

±
and G

(p)
mq

±
, respectively. In this problem,

B
(p)
q

±
are column matrices which consist of 2M + 1 elements that determine constant amplitudes.

Because of Sommerfeld conditions for diffracted fields, we have B
(2)
q

+
= 0 for all q and B

(1)
q

−
= 0

for all q, except q = 0, and we assume B
(1)
0

−
= 1. The eigenvalues have two sets: real and complex.

Real eigenvalues and corresponding eigenvectors are denoted with U which give near field and far field;
complex eigenvalues and corresponding eigenvectors are denoted with V which give only near field.
With this notation, the eigenvectors are rewritten as

F (p)± = F
(p)
U

±
+ F

(p)
V

±
, G(p)± = G

(p)
U

±
+ G

(p)
V

±
. (17)
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As expressed in detail by Chandezon [26], elements of eigenvectors with subscript U are as follows:

F
(p)
mq,U

±
= Lm−q

(
±β(p)

q

)
, q ∈ U, (18)

G
(p)
mq,U =

Z0

k0ε(p)

∑
s

[
(ȧ)m−s((

√
I + ȧ.ȧ)

−1
)msαs ∓ (

√
I + ȧ.ȧ)msβ

(p)
q

]
× Lm−q

(
±β(p)

q

)
, q ∈ U,

(19)
where β

(p)
r are real Rayleigh eigenvalues and are equal to real eigenvalues ρ

(p)
q [26]. Lm−q is defined as

Lm−q

(
±β(p)

q

)
=

1
d

∫ d

0
exp

[
±iβ(p)

q a (x)− i(m− q)Kx
]
dx. (20)

The incident wave is the corresponding eigenvector of the eigenvalue of B
(1)
1

−
and is assumed as[

I ′
I ′′

]
, where

I ′m = Lm

(
−β

(1)
0

)
, (21)

(22)I ′′m =
Z0

k0ε(1)

∑
s

[
(ȧ)m−s((

√
I + ȧ.ȧ)

−1
)msαs + (

√
I + ȧ.ȧ)msβ

(1)
0

]
Lm

(
−β

(1)
0

)
.

Therefore, field in domain p = 1 is expressed as

[
F (1)+

G(1)+

F (1)−

G(1)−

]
 B

(1)
q

+

B
(1)
q

−


 =


 F

(1)
U

+

G
(1)
U

+

F
(1)
V

+

G
(1)
V

+

0

0







B
(1)
q,U

+

B
(1)
q,V

+

0


 +

[
I ′

I ′′

]
, (23)

where B
(1)
q,U

+
and B

(1)
q,V

+
are unknown coefficients corresponding to real and complex eigenvalues (with

size of P and 2M + 1− P ), respectively. for simplicity we have
[

F (1)+

G(1)+

F (1)−

G(1)−

]
=

[
F11

G11

F12

G12

]
,

[
F ′

11

G′
11

]
=


 F

(1)
U

+

G
(1)
U

+

F
(1)
V

+

G
(1)
V

+


 , R =


 B

(1)
q,U

+

B
(1)
q,V

+


 , (24)

where F ′
11 and G′

11 have size of (2M + 1)× (2M + 1). From Eqs. (15) and (16) we have

B(1)
q

+
= S12B

(1)
q

−
, B(2)

q

−
= S22B

(1)
q

−
. (25)

Therefore, R and B
(2)
q

−
are yielded with substituting Eqs. (24) and (25) in Eq. (23)

R =
[
F ′

11−(F11S12+F12)(G11S12+G12)
−1G′

11

]−1 [
(F11S12+F12) (F11S12+G12)

−1I ′′−I ′
]
, (26)

B(2)
q

−
= S22(G11S12 + G12)

−1(G′
11R + I ′′). (27)

Also, in the other domain (p = 2), there are two sets of modes, propagating and decaying. Therefore,

the coefficients B
(2)
q

−
can be divided into B

(2)
q,U

−
and B

(2)
q,V

−
. The eigenvectors in domain p = 2 are

rewritten as

[
F (2)+

G(2)+

F (2)−

G(2)−

]
 B

(2)
q

+

B
(2)
q

−


 =


 0

0

F
(2)
U

−

G
(2)
U

−
F

(2)
V

−

G
(2)
V

−







0

B
(2)
q,U

−

B
(2)
q,V

−


 , (28)
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where B
(2)
q,U

−
and B

(2)
q,V

−
are unknown coefficients corresponding to real and complex eigenvalues (with

size of Q and 2M + 1−Q), respectively. For simplicity we have
[

F (2)+

G(2)+

F (2)−

G(2)−

]
=

[
F21

G21

F22

G22

]
,

[
F ′

22

G′
22

]
=


 F

(2)
U

−

G
(2)
U

−
F

(2)
V

−

G
(2)
V

−


 , T =


 B

(2)
q,U

−

B
(2)
q,V

−


 , (29)

where F ′
22 and G′

22 have size of (2M + 1)× (2M + 1). The coefficients T can be determined using [28]
as

Z =

[
F21

G21

F22

G22

]−1 [
F21

G21

F ′
22

G′
22

]
=

[
I

0

0

Z22

]
, (30)

T = Z22
−1B(2)

q

−
. (31)

Finally, the diffraction efficiencies ηr
q and ηt

q are obtained as the following:

ηr
q =

β
(1)
q

β
(1)
0

∣∣∣B(1)
q,U

+∣∣∣
2

, ηt
q =

ε2β
(2)
q

ε1β
(1)
0

∣∣∣B(2)
q,U

−∣∣∣
2

. (32)

2.3. Multilayer Gratings

A multilayer grating is shown in Fig. 2. There are Q layers with the refractive indexes nj , and thickness
of each layer is ej (j = 0, . . . , Q). Profile function of surfaces is as

yj = −
j∑

i=1

ei + a (x) . (33)

For generality, we have supposed that graphene sheets with the conductivities of σj are placed on
all the surfaces of yj . We present S-matrix for the structure as the follows:

 B
(0)
q

+

B
(Q+1)
q

−


 = S(Q + 1, 0)


 B

(Q+1)
q

+

B
(0)
q

−


 . (34)

T -matrix which couples the coefficient matrices of B
(j)
q

+
, B

(j)
q

−
and B

(j+1)
q

+
, B

(j+1)
q

−
helps to

determine S-matrix in Eq. (34) as
 B

(j+1)
q

+

B
(j+1)
q

−


 = T (j)


 B

(j)
q

+

B
(j)
q

−


 . (35)

Figure 2. A multilayer grating with graphene sheets with the conductivities of σj that are placed on
the surfaces of yj .
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Using the boundary conditions in previous section for graphene sheet, matrix T is obtained as the
follows:

T (j) = I(j)−1M(j), (36)

where

I(j) =




exp
(
iρ

(j)
1 ej

)

0

. . .
0

exp
(
iρ

(j)
4M+2ej

)


, (37)

(38)M(j) =

[
F (j+1)+

G(j+1)+

F (j+1)−

G(j+1)−

]−1 [
F (j)+ − σjG

(j)+

G(j)+

F (j)− − σjG
(j)−

G(j)−

]
,

where I(j) is a diagonal matrix. S-matrix can be obtained for multilayer grating using T -matrix:

S11 (0, j + 1) = [T 11 (j)− S12 (0, j) T21 (j)]−1S11 (0, j),

S12 (0, j + 1) = [T 11 (j)− S12 (0, j) T21 (j)]−1[S12 (0, j) T22 (j)− T 12 (j)],

S21 (0, j + 1) = [S22 (0, j) T21 (j) S11 (0, j + 1) + S21 (0, j)],

S22 (0, j + 1) = [S22 (0, j) T21 (j) S12 (0, j + 1) + S22 (0, j) T22 (j)],

(39)

where S11, . . . , S22 and T11, . . . , T22 are submatrices of S and T matrices, and the size of any submatrix
is (2M + 1) × (2M + 1). It is obvious that S(0, 0) is a identity matrix. Therefore, we can start from
S(0, 0) and obtain S(0, Q + 1) by Eq. (39). After determination of S(0, Q + 1), we can continue from
Eqs. (17) to (32) and change subscripts of (1) and (2) to (0) and (Q + 1), respectively. Eventually, the
diffraction coefficients of Eq. (32) are obtained.

3. NUMERICAL RESULTS

In this section, to verify the validity of analysis of graphene grating using C-method, the example in [2]
is revisited, and its results are compared with results of C-method and a commercial EM solver. The
surface conductivity of graphene is obtained using [29]:

(40)σ = i
e2kBT

πh̄2 (ω + iτ−1)

[
µc

kBT
+ 2 ln

(
exp

(
− µc

kBT

)
+ 1

)]
+ i

e2

4π
ln

[
2|µc| −

(
ω + iτ−1

)

2|µc|+ (ω + iτ−1)

]
,

where µc is the chemical potential, T the temperature, e the electron charge, h̄ the reduced Planck’s
constant, and τ the momentum relaxation time [29]. The structure is shown in Fig. 1. The grating profile
is a (x) = (h/2) sin (2πx/d) with period d = 10µm. The graphene sheet is placed at the interface between
two media with refractive indexes of n1 = 1 and n2 = 3.3. The chemical potential of µc = 0.45 eV and
the electron scattering rate of Γ = 2.6meV or, equivalently, τ = 1/(2Γ) = 0.25 ps are assumed for
graphene. The grating is illuminated by the TM wave at the normal incident angle. This structure
has been analyzed by the Rayleigh method in [2]. Note that in this case since period of gratings is
smaller than wavelength of incident wave, d ¿ λ, we have only zero order diffraction. Transmittance,
reflectance and absorbance for different depths of grating are shown in Fig. 3 using the C-method, EM
solver and Rayleigh method [2]. For implementation of the C-method the truncation order of M = 5
is selected. As seen in Fig. 3, results of the three methods are the same when depth of grating is low
(h = d/12.5). However, with increasing the depth of grating (h = d/5), the difference between the
C-method and Rayleigh method increases, but there is good agreement between the C-method and EM
solver. Because the Rayleigh method is appropriate for shallow gratings, when depth of grating becomes
larger than h = d/5, results of the Rayleigh method start to fail [2]. However, the C-method is not
limited by deep gratings. It gives accurate results for deep gratings until h/d ' 3 [23].

For comparison of the convergence rate and accuracy of the C-method and Rayleigh method for
graphene gratings, the relative error of the absorbance of previous sinusoidal graphene grating with two
different depths at 3THz frequency is computed as a function of the truncation order. Fig. 4 illustrates
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the percent relative error of both methods. The reference values of error are calculated by assuming the
converged results (M = 40). Firstly, the relative error of graphene grating with the depth of h = 0.2d is
determined. As shown in Fig. 4, C-method has an excellent percent relative error for truncation orders
of larger than M = 3. For the Rayleigh method, an excellent percent relative error is obtained for
truncation orders of larger than M = 3. The relative error decreases by increasing the truncation order
of two methods, but the C-method has faster convergence rate. For depth of h = 0.6d, the result of
the Rayleigh method cannot converge with increasing the truncation order while C-method is able to
simulate the deeper grating with good convergence rate and a relative error below 1%, with truncation
orders of larger than M = 5. The total CPU time to calculate the efficiency of graphene grating at 45
data points in Fig. 2, with truncation orders of M = 5, is 7.48 sec.

Effect of the depth of graphene grating (Fig. 1) is investigated. In Fig. 5, the absorbances of
structure by the C-method and EM solver are shown for different depths of the grating. Period of
grating is d = 20 µm, and the refractive indexes are n1 = 1 and n2 = 1.97. The parameters of graphene
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are assumed µc = 0.6 eV and Γ = 2.6meV. As shown in Fig. 5, the absorbance peak is increased
with deeper gratings, because the coupling between electromagnetic radiation and graphene plasmons
is enhanced as the depth of grooves is increased. Also, agreement between results of the C-methods and
EM solver is good.

4. DESIGN OF A TERAHERTZ POLARIZER

In this section, a terahertz polarizer using graphene is designed by the C-method. Its schematic has
been proposed in Fig. 6. The structure is formed by two layers of the relief graphene gratings with
the profile function of a(x) = (h/2) sin(2πx/d). They are placed on silica (SiO2). The period of the
structure is d = 2µm, and depth is h = 2µm. Space between graphene sheets is e1 = 10µm, and the
refractive index of SiO2 is 1.97. The thickness of 500µm is chosen for substrate. The parameters of
graphene are assumed as µc = 1 eV and Γ = 0.11 meV [30, 31]. The polarizer is illuminated by the
incident plane waves with TM and TE polarizations. The incident angle of the plane wave is θ.

The transmittance of the structure is simulated for single-layer and double-layer structures. The
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Figure 6. (a) Polarizer structure is formed by two layers of graphene gratings, with sine profile function,
on the SiO2 substrate. (b) TM and TE transmittance of the polarizer with different layer of graphene
vs. frequency.
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Figure 8. (a) TM and TE transmittance (b) and extinction ratio of the polarizer for different chemical
potential vs. frequency.
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results of TM and TE polarizations are shown in Fig. 6(b). The transmittance of TE polarization
decreases by increasing number of graphene gratings. For TM polarization, we have increasing
transmittance for high frequencies by double-layer structure. In addition to the number of grating
layers, depth of grating also affects the transmittance of two polarizations (Fig. 7). As seen in Fig. 7(a),
the transmittance of TE wave decreases with deeper gratings, but the transmittance of TM wave
increases. The TM transmittance of the double-layer polarizer for the depth of h = d is more than 60%
over a frequency range of 2.5–4 THz. Extinction ratio for different depth at normal incident is shown
in Fig. 7(b) which is defined as 10 log10 (TTM/TTE ). Deeper grating (h = 1.5d) gives better extinction
ratio at the frequency range of 1–4 THz. The depth of h = d is selected, because of manufacturing
considerations [8, 11]. The extinction ratio is more than 10 dB for h = d.

Also, the efficiency of the designed polarizer can be tuned by varying the chemical potential of
graphene via the external voltage. The results of TM and TE transmittances for different chemical
potentials are shown in Fig. 8(a). The TE transmittance decreases by increasing the chemical potential,
and the average TM transmittance increases. The extinction ratio is reported in Fig. 8(b) which
demonstrates that the performance of the polarizer improves.

This polarizer gives a better performance at higher incident angle. The extinction ratio is presented
from θ = 0 to θ = 90◦ in Fig. 9. It is shown that the extinction ratio is improved with increasing the
incident angle at the frequency range from 1–4THz for incident angle up to θ = 90◦.
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5. CONCLUSION

In this paper, we use coordinate transformation method to analyze the diffraction graphene gratings.
The graphene sheet is modeled with its surface conductivity, and the suitable boundary conditions
are applied. For numerical stability, S-matrix is used. Also, the problem is extended to multilayer
gratings with the graphene sheets at the interface between two media. This method is able to analyze
the deep graphene diffraction gratings accurately, and results are in good agreement with EM solver,
but the Rayleigh method is divergent for deep gratings and is limited to very shallow gratings. Results
of C-method are in good agreement with EM solver. The absorbance of graphene grating is increased
with deep grooves for the single-layer graphene grating, with sine profile function. In addition, the
transmittance and extinction ratio for TM and TE polarizations are investigated by different parameters
for a terahertz polarizer. It is observed that the extinction ratio is enhanced by increasing number of
the graphene layer, depth of the grooves and the chemical potential.
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