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Experimentally Validated, Wideband, Compact, OAM Antennas
Based on Circular Vivaldi Antenna Array
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Abstract—The bandwidth of OAM antennas, which have a great potential for multiple-input multiple-
output (MIMO) communication, must be wide enough. Unfortunately, most of researchers only care
about the generation and characteristics of vortex beams carrying orbital angular momentum (OAM) but
ignore the bandwidth of OAM antennas. To develop OAM antenna suitable for MIMO communication,
Vivaldi antenna is used as the element of circular array because of its wide bandwidth. Three compact
wideband circular Vivaldi antenna arrays that can generate vortex beams carrying OAM with numbers
of modes l = 0, −2, +2 are proposed and experimentally validated in this paper. Measured results show
that the proposed antennas can radiate vortex beams with different numbers of modes over a frequency
range of 2.7–2.9 GHz.

1. INTRODUCTION

Electromagnetic wave can carry not only energy, but also angular momentum which is composed of spin
angular momentum (SAM) and OAM [1]. Circular polarized beams, which are electromagnetic beams
carrying SAM, only have two orthogonal modes which are known as left-hand and right-hand circular
polarizations. Vortex beams, which can propagate along the transverse direction, are electromagnetic
beams carrying different orthogonal OAMs with unlimited numbers of modes l = 0, ±1, ±2 . . ..
Therefore, vortex beams with different OAM modes have great potential to improve transmission
capacity and spectrum efficiency in wireless communications, and can be used for multiplexing in free-
space communication [2]. Besides, OAM beams also have a great potential for radar target recognition
and imaging because of the spiral phase structure distribution of them [3].

Recently, several antennas for generating vortex beams carrying OAM in radio frequency have
been proposed: (i) traveling-wave ring-slot antennas [4–6], (ii) circular antenna arrays [7, 8], (iii)
circular leaky-wave antenna [9], (iv) helicoidal parabolic antenna [10], (v) Circular polarized patch
antenna [11]. Although the antennas reported in [4–11] can generate vortex beams with helical phase
fronts successfully, their bandwidth, which is always not mentioned, is usually narrow which makes them
not suitable for wideband wireless communication. The relative impedance bandwidths of the antennas
in [4, 7, 11] are less than 0.2%, 1% and 0.6%, respectively. Thus, Vivaldi antenna is adopted as array
element of circular antenna array to generate OAM over a wide frequency range of 2.7–2.9 GHz (7.1%)
in this paper.

Although the researchers have generated OAM radio waves using circular Vivaldi antenna array
in [8], they just gave the simulated results, did not integrate the antenna array with feed network and
failed to distinguish the number of OAM modes by the phase patterns. In this work, a Vivaldi antenna
array is integrated with a feed network, thus the wide bandwidth of the antenna array is preserved in
the whole set. Besides, to obtain the phase patterns in the near-field zone, two independent polarization
components

−→
Ex and

−→
Ey are measured due to different polarized directions of the element antennas.
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2. MATHEMATICAL MODEL OF THE ANTENNA ARRAY

As shown in [12], a circular antenna array with N equidistant elements can generated vortex beams
carrying OAM with number of modes l when the elements are fed with signal with the same amplitude,
but with 2πl/N phase difference between adjacent elements. For generality, it is assumed that each
antenna element consists of a tripole [12]. However, the antenna array factor will be different if the
antenna elements are dipoles when the dipoles are arranged along a circumference as shown in Figure 1.

Figure 1. Mathematical model of a circular antenna array.

The current distribution of the nth element in Figure 1 is Ĵ(n) = ϕ̂I0e
−jlϕn , where ϕn = 2πn/N

is the azimuth position of the nth element, and I0 is the constant current density. a = |rn| denotes the
radius of the array. Thus, a circular array’s vector potential can then be described as
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Here, the standard infinitesimal dipole approximation |r̂− r̂n| ≈ r− r̂ · r̂n for phases and |r̂− r̂n| ≈ r for
amplitudes is used [13]. If N is sufficiently large, the vector potential can be approximated by integral
over the angle ϕn
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According to the conventional electromagnetic theories, the electric fields can be obtained based
on the vector potential

−→
A (r̂)

−→
E (r̂) = −jω

−→
A (r̂) (3)

Eϕ(r̂) =
j−l+1ωμaI0e

−jkre−jlϕ

2r
J ′

l (ka sin θ) (4)
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Clearly, the electric field for this circular antenna array has the azimuth dependency of e−jlϕ, which
is the general characteristic of the vortex beams. Note the derivative of the first kind Bessel function
J ′

l (ka sin θ). Eϕ will be equal to zero when θ is equal to zero, and l is not equal to ±1. Thus, the electric
field density of the vortex beams is zero along the z axis except the vortex beam carrying OAM with
number of modes ±1.

3. DESIGN OF THE CIRCULAR ANTENNA ARRAY

Figures 2(a) and 2(b) show the top and bottom views of the element Vivaldi antennas. Their substrate
is FR4. Its relative permittivity is 4.4; thickness is 0.8 mm; the thickness of its electrodeposited copper
is 35 µm. On the top layer of the substrate, a pair of symmetrical resonant structures, which can add the
lower resonator frequency, sprout from the ground plane to reduce the size of the transverse dimensions.
The profile of the exponential curve E1 can be described by

E1 : x =
{

C1 exp(ay) + C2, (0 ≤ y ≤ H,x > 0)
−(C1 exp(ay) + C2), (0 ≤ y ≤ H,x < 0) (5)

where a and H are equal to 0.17 and 27, respectively, and C1 and C2 can be defined as:

C1 =
y2 − y1

exp(ax2) − exp(ax1)

C2 =
y2 exp(ax2) − y1 exp(ax1)

exp(ax2) − exp(ax1)

(6)

where (x1, y1) and (x2, y2) are the start and end points of the exponential tapered curve, respectively,
and x1, y1, x2, and y2 are equal to 0.3, 0,15, and 27, respectively.

(a) (b)

Figure 2. Geometry of the element Vivaldi antennas. (a) Top view. (b) Bottom view.

Then, eight miniaturized Vivaldi antenna elements are folded into a hollow regular octagon as
shown in Figure 3. The regular octagon’s radius R is equal to W/ sin(π/8)/2 (54.9 mm), where W is
equal to 42 mm. R is approximately equal to 0.51λc, and λc, which is the operating wavelength at
the central frequency (2.8 GHz) of the antenna array, is approximately equal to 107.6 mm. Like the
typical circular antenna array [14], elements of the proposed antennas are fed with signals with the
same amplitude, but with 2πl/N phase difference between adjacent elements, where N is the number of
the elements of the array, and l is number of modes. Thus, there are phase changes 2πl around a closed
circle perpendicular to the propagation direction. Thus, the proposed antenna arrays can generate OAM
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Figure 3. Circular Vivaldi antenna array.

beams with number of modes 0, −2, +2 by changing the phase difference between adjacent elements at
the gradients of 0◦, −90◦, +90◦, respectively.

The classical topologies of the feed networks, which consist of 3 dB Wilkinson power dividers, 90◦
and 180◦ hybrid couplers, are given in Figure 4. The phase difference between output ports of the
feed networks in Figures 4(a) and 4(b) are 0◦, −90◦, respectively. The classical topology of the feed
networks with 90◦ phase difference between adjacent outputs is basically the same as Figure 4(b). The
only difference is that the output port is in reverse order.

(a)
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(b)

Figure 4. The classical topology of the feed networks. (a) 0◦ phase gradient. (b) −90◦ phase gradient.

4. EXPERIMENTAL DEMONSTRATION

Three pairs of antenna array prototypes, shown in Figure 5, are fabricated and then measured. The
scattering parameters of the antennas are measured by a vector network analyzer (Agilent N9912A),
and its phase pattern in the nearfield is measured in a 25m × 15m × 15 m microwave chamber at
the University of Electronic Science and Technology of China. The reflection coefficient of the three
antenna arrays together with the Vivaldi antenna element are shown in Figure 6, and Figure 7 shows
the measurement step of the transmission coefficient between different antenna arrays. The distance

l=0 l= -2l=2

Figure 5. Antenna array prototypes.
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Figure 6. Measured reflection coefficient.

Figure 7. Measurement setup.

between two antenna arrays to be measured is equal to 2λc approximately. Figure 8 gives the measured
results of the transmission coefficient when the frequency varies from 2.7–2.9 GHz. The results show
that the transmission coefficients between two antenna arrays with the same number of modes are about
10 dB higher than two antenna arrays with different numbers of modes, which means that the antenna
arrays with different numbers of modes are mutually independent.

The near-field phase patterns at the operating frequencies of 2.7, 2.8 and 2.9 GHz are measured by
a vector network analyzer and an open-end rectangular waveguide probe. The measurement setup of the
near-field phase pattern is shown in Figure 9. The distance between antenna aperture and the probe zo

is about 2λc, and the transverse electric field of 0.6× 0.6m2 is measured successfully. Two independent
polarization components

−→
E x and

−→
E y are measured due to different polarized directions of the element

antennas. The phase patterns of the electric field component
−→
E ϕ in the measured transverse near-field

plane, which is calculated from the Cartesian components as
−→
E ϕ = −→e ϕ(−Ex sin ϕ+Ey cos ϕ), are shown

in Table 1. The results show that there are phase changes 2πl around a closed circle perpendicular to
the propagation direction over a frequency range of 2.7–2.9 GHz.
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Figure 8. Measured transmission coefficient.

Table 1. The near-field phase patterns of the antenna arrays with different modes at different
frequencies.

f=2.7 GHz f=2.8 GHz f=2.9 GHz

l=0

l=-2

   

l=2
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(a) (b)

Figure 9. Measurement setup of the near-field radiation pattern. (a) Configuration of the scanning
platform. (b) The antenna plane.

5. CONCLUSION

Three compact wideband circular Vivaldi antenna arrays that can generate vortex beams carrying
OAM over a frequency range of 2.7–2.9 GHz with numbers of modes l = 0, −2, +2 are proposed
and experimentally validated in this paper. To obtain the phase of the electric field component

−→
E ϕ,

two independent polarization components
−→
E x and

−→
E y are measured. Measured results including the

transmission coefficients between two antenna arrays and the near-field phase patterns confirm that the
antenna arrays with different numbers of modes are mutually independent.
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