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Reconfigurable Microstrip Antennas Conformal to Cylindrical
Surface

Prasanna K. Singh* and Jasmine Saini

Abstract—Conformability helps microstrip antenna to mount on any geometry platform and can
also be used for multiple frequency systems without any complexity. The designing of a frequency
reconfigurable antenna conformal to cylindrical surface using the combination of metamaterial (MTM)
and substrate integrated waveguide (SIW) is proposed. The single and dual antenna models resonate at
various frequencies of C-band by means of changing the cylindrical curvature. The results also show a
considerable improvement in bandwidth and gain for dual antennas as compared to the single antenna.
The antenna parameters are simulated on HFSS tool, and validation process is done by experimental
setup.

1. INTRODUCTION

In the era of communication modernisation, microstrip antenna plays a deciding role due to its
multitasking potentials and finds new opportunities in many applications. In continuation, active
research works are reported by many agencies in the area of non-planar surfaces [1–6]. The recent
developments in MTM and SIW in the microstrip antenna have received increased interest and are
utilized as an integrated part of cylindrical surface/device [7–11]. Here, a patch antenna model made
up of MTM with SIW is mounted on varying cylindrical geometry with superstrate. The variation
in frequency is observed due to dielectric bending of substrate and superstrate, which affects the
permittivity and thus acts as a frequency reconfigurable antenna. With the increase in bending, the
frequency moves to higher side of the band and vice-versa. This hybrid antenna is also useful in achieving
the enhanced gain and wide bandwidth by properly utilizing combination of MTM and SIW properties
as compared to a simple antenna [12–15]. The antenna model includes an MTM superstrate placed
at nearly a quarter wavelength from radiator for the resonance condition. Furthermore, this paper
analyses the effect of varying curvature on the antenna performances and compares the parameters
between simulated and measured values. The paper is organized in three major sections, antenna
design, result analysis and finally concluding remarks respectively.

2. ANTENNAS DESIGN AND FORMULATION

2.1. Theoretical Modelling

The design formulation of microstrip antenna model is described in three sections as follows:

(i) The full wave approach is considered for antenna modelling, and the method of moments as a
numerical technique is applied. Their steps of analysis are summarised in Figure 1.
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Express the Cylindrical Helmholtz's Wave equations for E and H fields.

Use separation of variables method and Obtain the Harmonic and Bessel's
equations.

Express the wave solutions in terms of E and H field components.

Obtain the value of all  field components using Boundary Conditions.

Apply Green's Function to solve unknown patch current coefficients.

Determine the impedance and surface currents using basis function.

Figure 1. Steps of analysis for numerical technique.

(a) (b) (c)

Figure 2. (a) Cylindrical-rectangular microstrip antenna with superstrate gap. (b) SIW with
cylindrical metallize vias. (c) MTM using split rectangular ring resonator with metallic wire strip.

Assume a cylindrical ground and antenna surface as a perfect electrical conductor with superstrate
air gap. Each antenna is excited separately by circumferential microstrip inset feeding with perfect
impedance match and takes up to be line source with a unit amplitude density. The antenna model
is assumed infinite and homogeneous in the φ and z-planes. The z components of the electric
and magnetic fields in the ith region are varied from inner cylindrical core to free air as shown in
Figure 2(a) and can be expressed in terms of functions in a cylindrical coordinate system:

Eiz(ρ, φ, z) =
1
2π

∞∑
n=−∞

ejnφ

∞∫
−∞

dkz e−jkzz
[
AinH(2)

n (kiρρ) + Bin Jn(kiρρ)
]

(1)

Hiz(ρ, φ, z) =
1
2π

∞∑
n=−∞

ejnφ

∞∫

−∞
dkz e−jkzz

[
CinH(2)

n (kiρρ) + Din Jn(kiρρ)
]

(2)

where kz is the propagation constant, k2
iρ = ω2μ0εi − k2

z , εi = ε0εri, and Ain, Bin, Cin, Din are

the unknown expansion coefficients of harmonic order n and functions kz. H
(2)
n (x), Jn(x) are,

respectively, the Hankel function of the second kind and Bessel function, of order n and argument
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x. The transverse field components in the ith region can be obtained from Eiz and Hiz. Using the
exact Green’s function approach and applying boundary conditions, the far zone field components
and other parameter can be determined [1, 4, 6].

(ii) The split rectangular ring resonator (SRRR) and strip wire on either side of the substrate for
achieving MTM and placement of metallic vias for SIW technology are to be calculated and designed
using standard design procedures [14, 17, 19]. The given SIW equation ensures the minimum leakage
losses between via holes [18]:

Spacing
2Rad

< 2 and
2Rad

R
< 0.2 (3)

where, Rad and spacing are the radius and spacing of the consecutive metallized via holes,
respectively, and R is the distance between two opposite rows of metallized vias of the SIW as
shown in Figure 2(b). The propagation in SIW can only perform TEm0 modes of traditional
rectangular waveguide, in which the E-field is perpendicular to the direction of propagation. It is
found that the following requirements can be put forward to minimize return and leakage losses,
that is, the diameter of hole should satisfy some geometric constraints [19]:

2Rad <
λg

5
and Spacing ≤ 4Rad (4)

(iii) The MTM unit cell employs SRRR and strip wire as shown in Figure 2(c). Thin strip wire structures
produce effective negative dielectric permittivity below the plasma frequency, and the SRRR can
result in an effective negative permeability over a particular frequency range. The optimum position
of strip wire should be just behind the gap in SRRR, on the opposite side of the substrate. This
position gives a robust Left Handed transmission, because of the fields generated due to interaction
between SRRR and strip wire. Also, there is a little overlap between their magnetic fields, so
the behavior of each component is not significantly affected by the presence of the other. On the
other hand, if the thickness of substrate is reduced, it will enhance the strength of total resonance,
increasing the value of negative permittivity as well as negative permeability [20, 21]. By controlling
these two structures the effective permittivity and permeability can be changed separately, giving
the capability to control the position of double negative regime.
The particulars of the antenna model are presented in Table 1.

Table 1. Specifications of antenna model (in mm).

Patch

Antenna

Patch

Length

Patch

Width

Substrate

Length

Substrate

Width

Feeding

Length

Feeding

Depth

Inset

Gap

28.52 33.86 52.52 47.86 24.8 6 7.5

MTM

Unit Cell

Ls Ws LR WR Gs GR Lr

38 1 32.58 41.92 2 1.5 30.08

SIW
Via Rad Via Spacing Via Row, R Via Height, Ht

0.6 2.5 31.2 0.127

2.2. Model Description

With the help of calculated data as tabulated in Table 1, the cylindrically mounted hybrid single and
dual patch antennas using MTM with SIW are drawn in HFSS as shown in Figure 3. The present
design analysis is usable for RT Duroid 5880 as MTM structure with small thickness of 5 mils. This
MTM makes the antenna work on double negative medium of permittivity and permeability. With
the proper use of SIW and MTM, this hybrid patch antenna satisfies the technical requirement on
the flexible varying cylindrical surface. The split ring and strip wire form MTM for substrate and
superstrate with same thickness [14, 15]. The MTM superstrate located at quarter wavelength forms
partial reflective left handed material which not only acts as a protective shield but also controls the
key parameters [4, 5, 16, 17].
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(a) (b)

Figure 3. Geometry of rectangular hybrid antenna mounted on the cylindrical surface. (a) Single
antenna model. (b) Dual antenna model.

The microstrip inset feed is used for exciting the antenna model and adjusted at 50 ohm impedance
matching. The combination of these arrangements makes the antenna configurations work as a cavity
resonator. Initially, the dimension specifications of single and dual antenna models are calculated and
validated on the planar surface [4, 5]. Both antenna models are transformed step by step from planar
surface to cylindrical surface, and the corresponding parametric variations at different diameters are
noted down. For dual patch antenna, the mutual coupling is an important concern which depends
on the inter element spacing and angle of mounting curvature. In this case, the H-plane antenna
is considered with fixed inter element spacing at half wavelength for maximum radiation. The SIW
technology effectively controls the surface waves and hence minimizes the mutual coupling effect for
dense antenna array design.

Table 2. Comparative parametric study of single hybrid antenna on varying diameter.

Cylindrical
Diameter

(mm)

Simulated Results Measured Results
Resonant

Freq. (GHz)
Gain
(dB)

%
Bandwidth

Resonant
Freq. (GHz)

Gain
(dB)

%
Bandwidth

100 5.3 7.7 6.8 4.9 6.9 5.1
500 4.7 8.5 7.1 4.4 7.4 6.3
1000 4.5 9.2 8.4 4.2 8.3 7.8

Table 3. Comparative parametric study of dual hybrid antenna on varying diameter.

Cylindrical
Diameter

(mm)

Simulated Results Measured Results
Resonant

Freq. (GHz)
Gain
(dB)

%
Bandwidth

Resonant
Freq. (GHz)

Gain
(dB)

%
Bandwidth

100 5.9 9.5 12.8 5.2 8.6 11.5
500 5.4 10.3 13.4 4.9 9.8 12.7
1000 5 12.1 15.6 4.4 10.9 14.3
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3. RESULT ANALYSIS

The simulated and experimental results of single and dual antenna models are obtained and tabulated
in Tables 2 and 3. The variations in resonant frequency are due to change in dielectric property at
various diameters and maintain the overall performances with the adoption of hybrid combination. The
operating frequency deviates smoothly over the C-band with diameter limit from 100 mm to 1000 mm
for both antenna models. Beyond this lower bending diameter, the dielectric material cracks, and the
structure shows an abnormal behaviour. Also, the bending movement should be very gradually and
carefully in order to avoid any damage. Even though the elements are placed very close to each other, the
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Figure 4. (a) MTM structure behaviour in terms of epsilon-negative and mu-negative. (b) Performance
of simple antenna model in terms of percentage bandwidth.
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Figure 5. Experiment set up for the dual antenna model on the cylindrical surface, (a) without
superstrate, (b) with superstrate.
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results of dual antenna model is better due to the shielding effects of SIW and MTM. The behaviour
of the MTM structure is also drawn in Figure 4(a) in terms of negative permittivity and negative
permeability as a function of frequency. Also, in Figure 4(b), the 9.3% and 5.2% bandwidth performances
of simple antenna models (without integration of MTM and SIW) are depicted for single and dual
antennas, respectively. The laboratory set up for measuring the fabricated antenna performance is
shown in Figure 5. Figures 6 and 7 show the plot of bandwidth and gain for the antenna models at a
significant diameter of 1000 mm. The simulated result shows 9.2 dB and 12.1 dB gains with bandwidths
of 8.4% and 15.6% of single and dual antenna models, respectively. The obtained results of hybrid
antenna models are better and improved as compared to the simple antenna model’s performance. The
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Figure 6. Bandwidth comparison plot between simulated and measured values of hybrid antenna
mounted on the cylindrical diameter at 1000 mm surface. (a) Single antenna. (b) Dual antenna.
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Figure 7. Gain comparison plot between simulated and measured values of hybrid antenna mounted
on the cylindrical surface at 1000 mm diameter. (a) Single antenna. (b) Dual antenna.
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experimental results are in good agreement with simulated values, and hence, the given antenna models
are recommended as reconfigurable antennas. The microstrip reconfigurable antennas have great calibre
to work on varying non-planar platform with multiple wireless standards.

4. CONCLUSIONS AND FUTURE WORK

It is observed that the proposed hybrid microstrip antenna model not only executes as frequency
reconfigurable but also provides the better gain and wide bandwidth. Also, the suggested reconfigurable
antenna model works on a simple mechanism with improved performance which is a distinctive in its
category. The presented antenna model will be more practical in several non-planar commercial and
military applications. The novel MTM and SIW integration further strengthens its competency and
inspires the new scope.
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