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A Hermite-Interpolation Discretization and a Uniform Path
Deformation for the Spatial Spectral Domain Integral Equation

Method in Multilayered Media for TE Polarization

Roeland J. Dilz* and Martijn C. van Beurden

Abstract—Two alternative approaches to the spatial spectral integral equation method are proposed.
The first enhancement comprises a Hermite interpolation as the set of basis functions instead of
the Gabor frame. The continuity, differentiability, equidistant spacing, and small support of these
basis functions allows for an efficient and accurate numerical implementation. The second approach
encompasses a method to transform between spatial domain and the deformed path in the complex-plane
spectral domain. This method allows for more general path shapes, removing the need to decompose the
complex-plane spectral domain path into distinct straight sections. Both enhancements are implemented
for the case of TE polarization, and the results are validated against the finite element method and
rigorous coupled-wave analysis.

1. INTRODUCTION

A spatial spectral domain integral equation method was introduced in [1] to compute the scattering
from finite dielectric objects in layered dielectric media for transverse electric (TE) polarization. This
time-harmonic method computes the interaction between the electric field and the dielectric object in
the spatial domain and employs the spectral domain to compute the Green-function multiplication. By
employing a rapid way of Fourier transformation between the spatial and spectral domain, an algorithm
that scales as O(N log N), with N the number of unknowns is yielded. Generalizations of this method
to transverse magnetic (TM) [2] polarization and full-wave 3D [3, 4] scattering in layered media have
also been developed.

The translation symmetry that is present in the direction(s) transverse to the stacking direction of
the layered background medium is a key to the efficacy of the spatial spectral method. In the spatial
spectral method, this symmetry is exploited by transforming the transverse direction(s) to the spectral
domain, where the Green tensor integral becomes a pointwise multiplication.

The conjugate gradient fast Fourier transform (CGFFT) [5, 6], method is related to the spatial
spectral method, since it also computes the field material interaction in the spatial domain and employs
FFTs to speed up the Green function integral. With CGFFT the it is possible to speed up the Green
tensor integral up by exploiting a discrete translation symmetry in the basis functions. This discrete
translation is inherited from the continuous translation symmetry in the background medium combined
with a set equidistant basis functions. Using this set of basis functions the Green function integral is
turned into a discrete convolution that is evaluated efficiently using FFTs and zero-padding.

Opposed to CGFFT, the spatial spectral method employs a discretization directly in the spectral
domain. Therefore, the translation symmetry in the background medium can be employed fully as a
continuous translation symmetry instead of a discrete translation symmetry as it is used in CGFFT.
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Therefore, the spatial spectral method can employ a Fourier transform without an equivalent of zero-
padding. Throughout [1–3] the Gabor frame was employed to discretize the integral equation, which
leads to an efficient means of Fourier transformation. The Gabor frame was chosen because it allows
for an exact and almost trivial O(N) Fourier transformation operation. However, the operation of
multiplication requires a large number of small zero-padded FFTs, although it scales as O(N log N) [7].
Since the multiplication operation is relatively slow, a slightly different discretization was proposed
in [4]. This approach employs FFTs for the Fourier transformation and fast O(N) multiplications. An
important downside of the Gabor frame is that the basis functions are not very well localized, which
makes it computationally expensive to evaluate function values at a single point in the spatial or the
spectral domain, since a large number of basisfunctions contribute to each point in the spatial or spectral
domain. This is disadvantageous for initialization, error-control, and some of the post-processing steps.

For an efficient discretization, four demands are stated in this paper that a discretization scheme
should satisfy in order to be successful for the spatial spectral integral equation method. Based on
these, we introduce the Hermite interpolation as an alternative discretization scheme. One important
advantage of the basis functions connected to Hermite interpolation is that they are equidistantly
spaced, allowing for a Fourier transformation based on FFTs. The Fourier transform is exact on a
set of equidistantly spaced points only and it is interpolated by a Hermite interpolation. Therefore,
two distinct Hermite interpolations are needed, one for the spatial and one for the spectral domain.
The operation of Fourier transformation is then an approximation in L2 sense. Additionally, the basis
functions are very well localized, which allows for both fast multiplication operations and fast pointwise
evaluation. Also the multiplication operation is an approximation in L2 sense. When the order of the
Hermite interpolation moderately low, in the range {2, . . . , 5}, it is an accurate and computationally
efficient discretization.

The Green function contains poles and branch cuts on the real axis of the spectral domain [8,
Chapter 8, 9, Chapter 5, 10, Chapter 4, 11, Chapter 2], which are hard to discretize. Therefore,
another challenging part of the implementation of the spatial spectral integral equation method is
the representation of the contrast current density, the electric field and the Green function on a path
defined into the complex plane of the spectral domain. Such paths are also used to evaluate Sommerfeld
integrals [12] to compute the real-space Green function in a layered medium and a large variety of
different paths have been chosen already, such as the steepest descent path (SDP) [8, 13], a path that
is completely different from a line over the real axis. Alternative paths that remain closer to the real
spectral axis can also be employed [14, 15]. Since not only the Green function is represented on the
spectral path, but also the contrast current density and the electric field, not all complex path are
suitable. In [1], a path is proposed that is close enough to the real spectral axis to accurately represent
the contrast current density and the electric field, while evading the problematic parts in the Green
tensor. The main downside of this path is that the spectral domain is divided in three distinct regions
per dimension, with different discretization methods and an elaborate scheme to transform to and
from the path and a careful handling of the functions that need to be discretized. Here, we consider a
different transformation method between the spatial domain and the complex-path representation in the
spectral domain. These transformation methods allow for a single discretization on the spectral path,
which simplifies the discretization of the Green function, requires less memory and is more flexible.

The paper starts with a brief recollection of the TE-polarized domain integral formulation. The
first main subject of this paper is the Hermite interpolation as a discretization. This is introduced in
Section 3, including schemes to compute the Fourier transform and some numerical examples. The
second main subject of this paper concerns an alternative approach to transforming from spatial
domain to the complex-plane spectral-domain path and back again. In Section 4, a representation
for transformation between the spatial domain and paths through the complex plane of the spectral
domain are introduced. Subsequently, this representation is used to introduce two new transformations
that are applicable to a more general type of complex paths. The proposed algorithm is subsequently
demonstrated on three numerical examples, where we compare the obtained results against results
obtained with the finite element method (FEM) [16, 17] or rigorous coupled-wave analysis (RCWA) [18–
20].
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2. FORMULATION

We present an algorithm for the two-dimensional scattering problem in a layered medium as illustrated
in Figure 1. The multilayered medium consists of N − 1 layers, where layer n extends from zn to zn+1,
with thickness dn = zn+1 − zn and relative permittivity εrb,n. The upper and lower half-spaces have
relative permittivities 1 and εrb,N , respectively. In layer i a dielectric object of finite size is located.
This object is completely contained in the simulation domain D = [−W,W ] × [zmin, zmax].

Figure 1. The two-dimensional EM-scattering problem with TE polarization for a case with two layers
(N = 3).

The scattering of electromagnetic waves in a stratified dielectric medium by dielectric objects can be
described via the electric-field integral equation (EFIE). For simplicity we briefly repeat the formulation
for TE polarization in two dimensions as described in [1, 2]. This EFIE is governed by the following set
of equations

Es(x, z) =
∫
D

dx′dz′G(x, z|x′, z′)J(x′, z′) (1)

J(x, z) = χ(x, z)
(
Ei(x, z) + Es(x, z)

)
. (2)

Here D denotes the simulation domain, i.e., the domain on which the scattered electric field is to be
computed. The scattered electric field Es(x, z) signifies the unknown to be computed. The incident
electric field is denoted Ei(x, z), e.g., a plane wave at an arbitrary angle. The contrast current density
J(x, z) is induced on the scattering object by Ei and Es and is the source for the scattered field. The
Green function G(x, z|x′, z′) denotes the electric field at (x, z) generated by a point-like current source
located at (x′, z′). The reflections from the multilayered medium are included in the Green function.
The contrast function χ(x, z) describes the scattering dielectric object as

χ(x, z) =
εr(x, z)
εrb(z)

− 1, (3)

where εr(x, z) denotes the relative permittivity at position (x, z), and εrb(z) denotes the relative
permittivity of layered background medium, which is translation invariant in the x direction. Note
that the contrast function is nonzero only on the scattering object.

3. HERMITE INTERPOLATION AS BASIS IN THE TRANSVERSE DIRECTION

3.1. General Considerations about the Discretization

In the transverse direction there is a translation symmetry in the layered background medium. This
implies that the Green function is a function of (x − x′), instead of being a function of both x and x′
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individually. This can be exploited by transforming the x coordinate in Eq. (1) to the spectral domain,
with spectral variable kx

Es(kx, z) =
∫ zmax

zmin

dz′G(kx, z|z′)J(kx, z′). (4)

An inverse Fourier transformation of Es(kx, z) to Es(x, z) and a Fourier transformation from J(x, z) to
J(kx, z) are applied to evaluate the field material interaction in Eq. (2). For the Fourier transform of
function ϕ(x) we use the definition

ϕ(kx) = Fx[ϕ(x)](kx) =
∫ ∞

−∞
dxϕ(x)e−jkxx. (5)

Throughout the rest of this article we will omit writing down explicitly the difference between a function
in the spatial domain and its Fourier transform. All functions in the spatial domain will have x as one
of the arguments, and their Fourier transform will have kx as one of the arguments.

The discretization in the transverse direction is vital for the efficiency of the algorithms developed
in [1, 3, 4, 7], since both the accuracy and the computational complexity strongly depend on it. Several
properties can be identified that a discretization should exhibit to allow for an accurate and efficient
numerical method.

(i) The number of required basis functions should be small.
(ii) An accurate means of Fourier transformation should be available.
(iii) A rapid means of Fourier transformation should be available.
(iv) Fast addition and multiplication operators should be available for the discretized equation.

The analytical Gabor-frame discretization satisfies point 1 for large scatterers, although the broad
window functions make it less efficient for small scatterers. Since the Gabor frame is a simultaneous
discretization of the spatial and spectral domains, the second and third points are very well satisfied.
The most important downside is that it is hampered by a slow multiplication operator in point 4.

The list-based representation of [4] improves the multiplication time at the cost of a slightly
slower Fourier transformation. This considerably reduces the computational complexity, with negligible
approximations made.

Although there is a significant difference in computation time, both the aforementioned
discretizations are closely related in terms of discretization via a Gabor frame. Entirely different
discretizations are also possible. A discrete translation invariance in the basis functions is advantageous,
since that often allows the use of FFTs in the numerical implementation. Throughout the rest of this
section we will consider a Hermite interpolation with equidistant basis functions and argue that it also
satisfies the four points mentioned above.

3.2. Hermite Interpolation

The Hermite interpolation [21, Section 2.11] interpolates a function where the function values and (a
number of its) derivatives are known. In this section we assume that the function is sampled on an
equidistant Δx lattice and that at each of the lattice points the function value and R − 1 derivatives
are known, such that a function is represented by coefficients fnr given by

fnr = f (r)(nΔx), (6)

with n ∈ {−Nx, . . . , Nx} and derivatives r ∈ {0, . . . , R − 1}. We will call R the degree of the Hermite
interpolation. To produce the interpolation between two sample points, e.g., x = 0 and x = Δx, scaled
polynomials hrj(x) are used on this interval, which are defined as

hrj(x) =
2R−2∑
�=0

ηrj,�x
�, (7)

with indices r ∈ {0, . . . , R−1} and j ∈ {0, 1}. The coefficients ηrj,� are chosen such that h
(q)
rj (i) = δrqδij ,

with q, r ∈ {0, . . . , R − 1} and i, j ∈ {0, 1}. In Figure 2, several examples are shown for these hrj(x)
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functions. From these hrj(x) polynomials, the basis functions for the interpolation bnr(x) can be
obtained as

bnr(x) =

⎧⎪⎨
⎪⎩

0 if x < (n − 1)Δx

Δr
xhr1(x/Δx − n − 1) if (n − 1)Δx ≤ x < (n)Δx

Δr
xhr0(x/Δx − n) if nΔx ≤ x < (n + 1)Δx

0 if x > (n + 1)Δx,

(8)

Here n ∈ {−Nx, . . . , Nx} and r ∈ {0, . . . , R − 1}. In Figure 3 some example basis functions are shown.
Now the interpolation with the coefficients from Eq. (6) is given by

f(x) ≈
Nx∑

n=−Nx

R−1∑
r=0

fnrbnr(x). (9)

The inner sum is nonzero only for n = floor(x/Δx) and n = ceiling(x/Δx), yielding a total of 2R
nonzero terms in the double summation.
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Figure 2. (a) The hrj(x) function for order R = 1. (b) Scaled h0j(x) function for order R = 3.
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Figure 3. Hermite-interpolation basis functions for Δx = 1 and R = 2.

The addition of two functions a(x) = b(x) + c(x) is trivially represented by anr = bnr + cnr.
The multiplication of functions, a(x) = b(x)c(x), is represented by coefficients, computed from the
generalized Leibnitz rule

anr =
r∑

�=0

r!
(r − �)!�!

bn,(r−�)cn�. (10)

The computation of all coefficients anr requires O(R2Nx) operations. Therefore, we conclude that the
fourth point on the list in Section 3.1 is satisfied by the Hermite interpolation as long as R is restricted
to a small integer, i.e., R ∈ {2, . . . 5}.

3.3. Fourier Transformation

In the spectral domain, we use Hermite interpolation as well. The Fourier transform of the approximated
function in Eq. (9) is calculated analytically. The uniform sampling in the spatial domain is exploited
in this Fourier transformation by employing FFTs. These FFTs dictate that (derivatives of) the
analytic Fourier transformation are evaluated at an equidistant lattice in the spectral domain with
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Figure 4. An analytic algorithm exist to compute function values and corresponding R− 1 derivatives
of a function on an equidistant lattice. These values are then used in a second Hermite interpolation,
from which approximation errors results.

lattice constant Δk = 2π/(2Nx + 1). From the analytically transformed values on this lattice in the
spectral domain, a new Hermite interpolation can be devised in the spectral domain. Therefore, the
analytic Fourier transform is only evaluated at an equidistant lattice in the spectral domain, and in
between a Hermite-interpolated is used. Therefore, some approximation error is made. This is illustrated
in Figure 4.

In the spectral domain, the Hermite interpolation is computed at Nx lattice points. The equidistant
sampling in the representation of Eq. (6) and Eq. (9) allows to compute the Fourier transform as

f(kx) ≈
∫ ∞

−∞
dx

Nx∑
n=−Nx

R−1∑
r=0

fnrbnr(x)e−jkxx, (11)

By using Hermite interpolation in the spectral domain as well, with sampling distance Δk = 2π/((2Nx +
1)Δx), the coefficients in the spectral domain, fst via Eq. (6), can be computed efficiently as

fst = f (t)(sΔk) =
∫ ∞

−∞

Nx∑
n=−Nx

R−1∑
r=0

fnrbnr(x)(−jx)te−jsΔkx

=
Nx∑

n=−Nx

R−1∑
r=0

[(−jnΔx)tfnr]e−2πj sn/Nx

∫ ∞

−∞
(jx)te−jsΔkxb0r(x). (12)

Here we recognize a discrete Fourier transformation in the sum over n, which can be calculated rapidly
with the FFT algorithm. The integrals can be calculated during initialization, which yields a discrete
Fourier transformation from n to s for each r and t value. Therefore, the computational efficiency
of the Fourier transform scales as O(R2Nx log Nx). Since the number of derivatives should be kept
rather small, R ∈ {2, . . . , 5} and Nx large, this algorithm scales well to large numbers of unknowns. We
conclude that also the third point on the list in Section 3.1 is satisfied by the Hermite interpolation.

3.4. Tests of the Hermite Interpolation

Showing that the Hermite interpolation satisfies the third and fourth points on the list in Section 3.1
leaves the first two points. We now provide numerical evidence that the first two points are also satisfied.

We test the Hermite interpolation on a continuous function consisting of the sum of three modulated
Gaussians, which is shown in Figure 5(a). In Figure 5(b) we show the function approximated by a
Hermite interpolation of very low order R = 1. In Figure 5(c) the L2[−3, 3] error is shown on a double-
logarithmic scale for functions that are Hermite interpolated. Note that on the x-axis the sample spacing,
Δx/R is shown. The lines show the trend for dense sampling (small Δx). Polynomial convergence is
observed with a convergence of order 2R as indicated by the lines. For a relative error of 10−3, the R = 1
sampling requires more than 10 times more samples than the sampling with R = 5. For comparison,
the relative error for a Gabor frame is shown in Figure 5(d). It can be concluded that both Hermite
interpolation and Gabor frame perform well, although the Hermite interpolation is not as efficient as
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(a) (b)

(c)

(d)

Figure 5. (a) Function used for testing, given by exp(−π(x + 2)2) + exp(−π(x − 2)2) + exp(−π(x +
1)2 + jx). (b) Function approximated with Δx = 0.3 and R = 1. (c) Relative L2 error of approximation
with Hermite interpolation for various R and Δx values. (d) Relative L2 error of approximation with
a Gabor frame. Here Δx = αX/(2N + 1), with N the range of the n-sum in Eq. (16) of [7], which is
equivalent to a sample spacing of Δx/R in (c). An oversampling of α = β =

√
2/3 for the Gabor frame

was used.
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the Gabor frame. Although the high-R sampling is not as efficient as the Gabor-frame discretization
shown in Figure 5(d), both methods perform well. It should be noted that the large window widths,
where the Gabor frame has a clear advantage, are only efficient for large simulation domains. Since
the Gabor frame decays slowly to zero at the ends of the simulation domain, several extra windows are
required to allow for this decay. Clearly, the Hermite interpolation is a competitive discretization and
point one on the list in Section 3.1 is satisfied.

It remains to be determined how accurate the Fourier transformation associated with Hermite
interpolation, Eq. (12), performs. As explained in Section 3.3 and Figure 4, the forward Fourier
transformation and inverse Fourier transformation contain an approximation where a Hermite
interpolation basis is used in the spectral and spatial domain, respectively. To demonstrate the impact
of this approximation, a simulation domain with Nx = 200 and Δx = 1 is chosen. This corresponds to
Δk = 2π/401 in the spectral domain. We check how a modulated Gaussian is transformed from the
spatial to the spectral domain and back with Eq. (12) and its inverse, i.e., a full round in Figure 4. The
Gaussian is chosen as

gX,K(x) = exp
(−(x − X)2/401 + jKx

)
, (13)

and we will use the symbol g̃X,K(x) to denote the back-and-forth transformed Gaussian. This function
g̃X,K(x) approximates gK,X(x) best for small X and small K, since then gX,K exhibits the slowest
oscillation in the spectral and spatial domain, respectively. A sample of g̃X,K and its approximation
error are shown in Figure 6. As a measure of the total error in the approximation, we use the relative
error based on the L2[−X,X]-norm. In Figure 7, we show how the approximation error depends on
the position in the XK-plane. When a relative error of 10−3 is required, the useful domain for the
Hermite upper index R = 1 is negligible. For larger R, the domain expands quickly, to almost the
complete simulation domain for R = 4. Therefore, we conclude that this Fourier transformation is
accurate for R > 1. Hence, Point 2 in Section 3.1 is also satisfied and therefore all points on the list
in Section 3.1 are satisfied, when a proper value for R is chosen. Note that a small R corresponds to
low accuracy and that a large R corresponds to slow Fourier transformations, so a trade-off between
both is necessary. For our purpose, R = 4 is a proper choice. Strictly speaking, we have only shown
numerical evidence for modulated Gaussian functions, which are just the type of functions used for the
discretization in [1–4, 7]. Hence, any function that is important within this formulation can also be
transformed on a Hermite-interpolation basis.

(a) (b)

Figure 6. (a) A plot of g̃70,0.4(x) for R = 2. (b) The absolute error in g̃70,0.4(x), compared with the
original function g70,0.4(x).

4. A CONTINUOUSLY DIFFERENTIABLE PATH IN THE SPECTRAL DOMAIN

4.1. Introduction

Since the multilayer Green function contains poles, branch cuts, and fast oscillations on the real kx-axis,
a small displacement into the complex plane is used to represent all quantities depending on kx, as was
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Figure 7. The log10 of the relative error in the approximation of the Fourier transform of the modulated
Gaussian in Eq. (13) as a function of the location of its peak in the spatial and spectral domain. (a)
R = 1, (b) R = 2, (c) R = 3, (d) R = 4. Notice the different scales in the legends.

described in [1]. On this complex spectral path the poles, branch cuts, and fast oscillations of the Green
function are circumvented. In [1] a continuous path with a piecewise constant derivative is proposed.
This path has the disadvantage that the spectral domain has to be decomposed into three pieces per
transverse dimension, which is especially tedious for a three-dimensional scattering problem [3]. By
choosing a path that is continuously differentiable, such a decomposition of the spectral domain is not
necessary.

A significant part of the computation time involves transformations between the spatial domain
and the complex path in the spectral domain. For the piecewise path in [1] an optimized method was
developed that allows fast and efficient transformations between the spatial domain and the complex
spectral path. Here, we present optimized methods for more general path shapes, allowing for a
continuously differentiable path.

We begin by showing a more general way to represent a class of fast transformations between the
spatial domain and the complex spectral path. This class of fast transformations assumes the availability
of a rapid means of Fourier transformation, multiplication, and summation as indicated in Section 3.1.
Subsequently we will shown how the transformations to and from the complex spectral path that was
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used in [1, 3, 4, 7] can be represented in this form. Afterwards, several alternative approaches to such a
transformation are proposed and discussed. Based on these alternative transformations, a continuous
path in the spectral domain is proposed and tested.

4.2. Transformations to and from a Complex Spectral Path

We are interested in small path deformations k → τ(k), with real-valued k, that can be described by
τ(k) = k + jc(k). We assume c(k) to be real valued and small, i.e., |c(k)| < A with A on the order of
Δk, the resolution of the discretization in the spectral domain. The transformations that interest us
are the transformation of a function f(x) from the spatial domain to the complex spectral path, i.e.,

f(τ(k)) =
∫ ∞

−∞
dxf(x)e−jxkec(k)x, (14)

and the transformation from the spectral path back to the spatial domain

f(x) =
∫ ∞

−∞
dk(1 + jc′(k))f(τ(k))ejxke−c(k)x, (15)

which is found by means of a substitution k → τ(k) in the Fourier integral of f(k). The difference
between the integrals in Eqs. (14) and (15) is minor, i.e., the multiplication by the factor (1 + jc′(k))
does not pose a problem and then we are left with two integrals of the same form. Both integrals
resemble a Fourier integral, except for the factor exp(±c(k)x). Since we assume that a rapid Fourier
transformation is available (cf. Section 3.1), we will approximate Eqs. (14) and (15) as a sum of Fourier
transformations. When we approximate

ec(k)x ≈
N∑

n=1

an(x)bn(k)

e−c(k)x ≈
N∑

n=1

ai
n(x)bi

n(k),

(16)

where the functions an(x), ai
n(x), bn(k), and bi

n(k) remain to be defined, and the superscript i indicates
the functions for the inverse transformation. Such approximations are available and valid, since c(k) is
bounded by A, which is on the order of the spectral resolution Δk = π/Wx and in the spatial domain
functions are not evaluated outside of the simulation domain, i.e., we have |x| < Wx. It means that
exp(±c(k)x) is bounded. With the path deformation as in [1], this approximation of the integral in
Eq. (14) is usually chosen such that 0.05 < exp(±c(k)x) < 20 for x in the simulation domain. The
transformations of a function f to and from the spectral path in Eq. (14) and Eq. (15) can then be
rewritten as

f(τ(k)) =
N∑

n=0

bn(k)
∫ ∞

−∞
dxan(x)f(x)e−jxk (17)

f(x) =
N∑

n=0

ai
n(x)

∫ ∞

−∞
dk(1 + jc′(k))bi

n(k)f(k)ejxk. (18)

These are sums of ordinary Fourier integrals. So when the functions f(x) or f(k) are represented by
a Hermite interpolation, they can be computed efficiently, with the aid of the Fourier transformation
in Eq. (12) and its inverse. The Hermite interpolation of a(x), ai(x), b(k) and bi(k) can be computed
during initialization. Hence, these transformations consist of (N + 1) FFTs, and therefore, a small N
is highly important. The challenge is to find an efficient approximation in the form of Eq. (16) for a
small number of terms.
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4.3. The Piecewise Path

In [1] a complex spectral path was introduced given by

c(k) ∈
{ −jA if k < −A

jk if −A ≤ k < A
jA if k > A.

(19)

This path consists of three distinct parts with distinct discretizations, fL, fM , and fR as shown in
Figure 8. The Gabor frame is used as a discretization on fL and fR and a Taylor series on fM . Therefore,
the complex-plane representation [1] differs from the one in Section 4.2, where a single discretization is
used throughout the whole path. However, the representations for fL and fR can be represented in the
same form as Eqs. (17) and (18). We now associate the L subscript with the spectral representation on
the left horizontal part of the integration path in Figure 8 and the first line in Eq. (19). We associate
the R subscript with the right horizontal part in Figure 2(a) in Figure 8 and the third line in Eq. (19).
This notation is applied in Eqs. (17) and (18) to yield expressions Eq. (19) given in [1] and Eq. (22)
given in [1] when

aL(x) = ai
R(x) = eAx

aR(x) = ai
L(x) = e−Ax

bL(k) = bR(k) = 1

bi
L(k) = bi

R(−k) =
{

1 if (k < A)
0 if (k ≥ A).

(20)

For the middle part (M) of the path, fast methods of Fourier transforming are not applied. The
transformation to the spectral domain is approximated from the fit of a Taylor series to data points
and the transformation back to the spatial domain is carried out by computing the integrals in Eq. (15)
directly. This method is not very optimized, but since the M-part is small, not much computation time
is used. A more optimized method for this part was presented in [22].

Figure 8. The complex-plane path deformation in the spectral domain as introduced in [1].

4.4. Approximation by Taylor Series

It is possible to approximate exp(±c(k)x) via a Taylor series as

ec(k)x ≈
Nt∑

n=0

cn(k)
xn

n!

e−c(k)x ≈
Nt∑

n=0

cn(k)
(−x)n

n!
.

(21)

Compared to Eq. (16), we can identify an(x) = xn/n!, ai
n(x) = (−x)n/n! and bn(k) = bi

n(k) = cn(k).
An advantage of this method is that it allows for more general path shapes, whereas the piecewise path
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in Section 4.3 uses the fact that c(k) is constant over most of the domain. It is advantageous to use a
smooth path deformation, since that will yield a smooth f(τ(k)) and therefore splitting up the spectral
domain in different parts is no longer needed. Throughout the rest of this article we will therefore use
the continuously parametrized path

τ(k) = k + jc(k) = k + jAerf(s
√

π/2k/A), (22)

where the parameter A again has the meaning of the amplitude of the deformation, and s defines the
slope of c(k) around 0. In Figure 9 c(k) is plotted for Eq. (22).

-1.0 -0.5 0.5 1.0
k

-0.06

-0.04

-0.02

0.02

0.04

0.06

c(k)

Figure 9. The imaginary part c(k) of τ(k) in Eq. (22) for s = 0.5 and A = 0.06.

Next, we evaluate the accuracy of the Taylor-based version of the transformation to the spatial
domain, i.e., Eq. (18), for the analytic Fourier transform of a Gaussian pulse that equals f(k) =
Fx[exp(0.1(x−10)2)](k). The numerical data is based on Hermite-interpolation-based Fourier transforms
with Nx = 38, Δx = 4/3, R = 4, Δk = A = 0.612. In Figure 10(a), the result of the transformation to
the spatial domain is shown. A very low order Taylor-series approximation with Nt = 2 was applied,
which results in a visible error. In Figure 10(b), the absolute error is shown for transforming this same
Gaussian pulse with higher-order Taylor approximations. Clearly, the error is larger for large x. This
was to be expected, since the truncated Taylor series in Eq. (21) loses accuracy for large x. A key point
to notice is that the approximation error at a certain location, let us call it location x, does not only

t

t

t

t

t

(a) (b)

Figure 10. (a) The analytic Fourier transform of a Gaussian pulse f(k) = Fk[exp(0.1(x − 10)2)](x) is
sampled and then numerically transformed to the spatial domain using transformation Eq. (18) with
approximation Eq. (21) for Nt = 2. (b) Approximation error for the same Gaussian pulse, transformed
with order-Nt Taylor series approximations.
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depend on the original function evaluated at x, but also on the original function at every other location
x′. Therefore, the approximation error in the Fourier transformations should be considered globally, not
locally in a point by point manner. For this reason we show the absolute approximation error instead
of the error relative to the original function in Figure 10(b) and onward.

Instead of using the Taylor series in Eq. (21) as a power series to approximate exp(−c(k)x), we
have also used a fitted power series that is more accurate for large arguments, at the cost of the
accuracy for small arguments. In Figure 11(a) we see the approximation of exp(Ax), which corresponds
to exp(−c(k)x) for large values of k. Clearly, the fitted approximation has a wider range of validity.
This is tested by transforming the spectral representation of

∑3
n=−3 exp(0.1(x − 10n)2) to the spatial

domain. The result is shown in Figure 11(b). In Figure 11(c), it is observed that the fitted approximation
performs better for large x. With larger numbers of terms, the accuracy of the fit and the Taylor series
improves.
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Figure 11. (a) An approximation of exp(Ax) valid for x ∈ [−40, 40] compared to a Taylor series with
the same number of terms. (b) A set of Gaussian pulses

∑3
n=−3 exp(0.1(x−10n)2), whose representation

on the spectral path is used as an input for the transformation from the path in Eq. (22) to the spatial
domain. (c) The error made in the transformation to the spatial domain using Eq. (18) for a fitted
polynomial and a Taylor series.

4.5. Approximation by Analytical Expansion

A second approach to transform to and from the complex spectral integration path employs an analytical
continuation of the Fourier transform to a region close to the equidistant values on which the Hermite
interpolation is defined. This is especially useful for calculating the transformation from the spatial
to the spectral domain in Eq. (17). For the transformation of the scattered electric field back to the
spatial domain, this method is less reliable since the spectral scattered electric field, Eq. (4), contains
the Green function, which is not analytic close to real kx-axis for lossless background media. Therefore,
we concentrate on the transformation from the spatial to the spectral domain.

Assume that we would like to calculate f(k∗) and its derivatives at k∗ ∈ C, while values or
derivatives of f are known only at some nearby points {f (d1)(k1), f (d2)(k2), . . . , f (dNs )(kNs)}. For
example, the values that are computed with the aid of the rapid Hermite-interpolation-based Fourier
transformation in Eq. (12), yield values and derivatives up to order R− 1 at an equidistant grid. From
that we can select values close to k∗, from which we approximate f(k∗). We expand f(k) in a Taylor
series tf around k∗, i.e.,

tf (k) =
Nf∑
n=0

wn
(k − k∗)n

n!
. (23)

When Ns = Nf , the weights in the Taylor expansion can be found from solving the associated
Vandermonde system

for all n ∈ 1, . . . , Ns : t
(dn)
f (kn) = f (dn)(kn),
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for wn. This technique is closely related to the method in Section 5.3 in [1] and Section 4.2 in [3].
When this Vandermonde system is solved via a marix-inverse, the coefficients wn are then simply a list
of derivatives. For Ns > Nf a pseudo-inverse is employed. Since this Vandermonde system is small,
problems with a poorly conditioned system are easily avoided by taking Ns > Nf .

In the case of Hermite interpolation, this analytical continuation is especially useful, since functions
are represented by an equidistant list of the function values and R − 1 derivatives. The Hermite
interpolation already uses the analyticity of the functions, since the basis functions are a local power-
series expansion. This implies that an analytical expansion holds up to a distance on the order of the
resolution Δk. Therefore, the result of a single Fourier transformation, which yields values on the real
k axis, can be analytically expanded to any complex deformation, provided that the imaginary part of
the path deformation is of the same order as Δk.

A numerical example is considered in Figure 12 for the modulated Gaussian pulse

g(x) = 0.1769e−0.1(x+15)2+0.4jx, (24)

where the prefactor is chosen to normalize the peak to unit amplitude in Figure 12. We have chosen
k∗ = jΔk, and the Hermite interpolation of Figure 10 is used. The Fourier transformation of Eq. (12) is
applied to find a numerical approximation of g(k) and the result is analytically expanded into the
complex plane to g(k + jΔk). Figure 12(a) shows g(k + jΔk) and an approximation where only
g(0)(0), . . . , g(3)(0) were used to find the approximation for Nf = 4. In Figure 12(b), the error is
shown for this approximation with Nf = Ns = 4. Also two higher-order approximations are added,
where g(0)(k′), . . . , g(3)(k′) were added to the expansion with k′ ∈ {−Δk, 0,Δk} for Nf = 8 < Ns = 12
and k′ ∈ {−2Δk,−Δk, 0,Δk, 2Δk} for a total of Nf = 12 < Ns = 20 terms in the Taylor expansion.
In Figure 12(c), it can be observed that this approximation is also successful for derivatives. The link
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Figure 12. (a) The Fourier transformed modulated Gaussian pulse in Eq. (24) evaluated at complex
coordinates, and its 4th order Taylor approximation. (b) The error for higher order approximations of
Eq. (24). (c) The error in the derivative for higher order approximations of Eq. (24).
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between such an analytical expansion and the function an(x) and bn(x) in Eq. (17) is that we can choose

an(x) = (jx)dnej(kn−k∗)x

bn(x) = 1.
(25)

5. NUMERICAL EXAMPLES

Here, we apply the methods described in Sections 3 and 4 to two selected electromagnetic scattering
problems, where a plane wave is of wavelength λ is incident on a scattering object. The first testcase,
Figure 13(a), consists of a single dielectric rectangle embedded in a layered medium. This testcase
resembles the first testcase in [1], with only one scattering object. The second testcase consists of 32
uniformly spaced equal dielectric blocks placed on top of a lossy dielectric halfspace. This is a larger
version of the third testcase considered in [1].

(a) (b)

Figure 13. The two testcases that are used for validation: (a) First case: a single dielectric rectangle,
embedded in a dielectric layer. (b) Second case: a grating consisting of 32 dielectric rectangles.

A Hermite interpolation was used as a discretization of order R = 4. The transformation to the
spectral domain was carried out by applying the method in Section 4.5, where we choose Nf = 5R in
Eq. (23), with derivatives 0 to R − 1 at points k + {−2Δk,−Δk, 0,Δk, 2Δk}. For the transformation
to the spatial domain the method in Section 4.4 was used with a Taylor series of Nt terms as indicated
in Table 1. The value for A that determines the shape of the path in Eq. (22) was chosen A = 3/2Δk.
The rest of the simulation parameters is indicated in Table 1.

Table 1. Simulation parameters for the plots in Figures 13–19.

Variable block grating chirped grating
xmax 1200 nm 5 µm 10 µm
Δx 3.333 nm 10 nm 10 nm
λ 425 nm 628.32 nm 628.32 nm

Δz 0.104 nm 2.5 nm 2.5 nm
Nz 961 41 15
Nt 12 16 16

# Unknowns 2779212 114964 12060
Relative Error 8.4 · 10−7 1.12 · 10−3 no reference
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Figure 14. (a) Simulation results for the case in Figure 13(a). (b) The absolute difference between
results obtained with the present algorithm and a validation using JCMWave.

For the first testcase a very fine sampling was employed to achieve a high accuracy. In Figure 14(a),
the electric field is shown along the horizontal line exactly through the middle of the scattering object.
The validation result is computed using the commercial software JCMWave [17]. The absolute difference
between results obtained with the algorithm in this paper and JCMWave are shown in Figure 14(b).
Clearly there are two peaks in the absolute error, corresponding to the edges of the block. We employed
a smoothened contrast function χ̃(x) calculated via

χ̃(kx, z) =
1
4
χ(kx, z)erfc(1.67kx − 0.42NxΔk)erfc(−1.67kx + 0.42NxΔk) (26)

from the exact contrast function (3). This smoothening leads to localized Gibbs-phenomenon-like
oscillations of the contrast function. These oscillations are the cause of the error originating from
the edges of the scattering object.

Around the center of the object, on the interval x ∈ [−70, 70] nm, where the Gibbs-phenomenon
does not dominate the error, we have computed the L2 relative error to be 8.4 · 10−7. Using this
method to measure the accuracy of the presented method, we show how the simulation error converges
in Figure 15 for the most important simulation parameters, xmax, R, Δx and Δz. For each figure we
kept all simulation parameters equal to the ones displayed in Table 1, except for the one in which the
convergence is studied. It should be noted that the convergence for large xmax stalls in Figure 15(a)
since the accuracy there is limited by the other simulation parameters, most notable Δz. This parameter
is important since it determines Δk. In Figure 15(b) the convergence with respect to the order R is
shown. The increased error resulting from a low order R can be explained by the increased error in the
Fourier transform as shown in Figure 7. Increasing xmax can mittigate the effects of lowering the order
R, since it increases the complete simulation domain and therefore it also increases the the size of the
simulation domain where the Fourier transform can be computed accurately. From Figure 15(c) we can
conclude that the error decreases when Δx is lower and the discretization becomes finer. Similarly, in
Figure 15(d) we see that the error also decreases when Δz is lower and the discretization becomes finer.

The scaling of the computation time of the algorithm with the described discretization in the x-
direction is plotted in Figure 16. In Figure 16(a) the timing is shown against xmax, which is directly
proportional to the number of sample point in the x-direction and a linear scaling is observed, where
an O(xmax log xmax) would be expected because of the use of FFTs. However, at these simulation
settings, the time required for other operations still dominates over the time required for the FFTs.
In Figure 16(b) the timing is shown against the order R of the Hermite interpolation and a quadratic
scaling is observed, as was to be expected from Eqs. (12) and (10). Note that the timings were taken
at Δz = 2.5 nm instead of the value in Table 1, which yields a relative accuracy of 0.94 · 10−3 for R = 4
and xmax ≥ 60 nm. It should be noted that timings were taken with a non-optimitized implemation
built with the Mathematica software package.
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(a) (b)

(c) (d)

Figure 15. The convergence of the L2 relative error of the scattered field for x in the interval
[−70, 70] nm. All simulation parameters were chosen as in Table 1, with the exception to the parameter
against which the convergence is shown. In (a) the convergence is shown against the size of the simulation
domain, xmax, in (b) against the Hermite interpolation order R and different values of xmax, in (c)
against the sample rate of the Hermite interpolation Δx, and in (d) against the sample rate in the
vertical direction Δz.
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Figure 16. The computation time as a function of two parameters that govern the accuracy in the
x-direction, i.e., xmax in (a) and R in (b). Note that these computations were carried out with a lower
Δz = 2.5 nm than in Table 1. The relative accuracy at the highest computation time was 0.94 · 10−3

for both (a) and (b).
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For the second testcase we have used the simulation parameters as displayed in Table 1. The
scattered electric field Es is plotted in Figure 17(a) at the horizontal line at the top of the dielectric
substrate. We have validated our results against an implementation of RCWA with perfectly matched
layers absorbing boundaries [20] with a total of 320 harmonics included. An L2 relative error level of
1.12 · 10−3 was observed over the domain containing the blocks. This accuracy was reached with the
simulation parameters as listed in Table 1. Notice that the number of unknowns was chosen much
smaller than for testcase 1, although the simulation domain was much larger, hence the somewhat
larger discrepancy between our results and the RCWA validation data. In Figure 17(b), the absolute
difference between the data obtained with the present algorithm, compared to the RCWA results for
various values of xmax. The effect of a small xmax is clearly visible as a large simulation error at large
x. This large error is due to the error originating from the transformations between the spatial and
spectral domain, since the accuracy deteriorates quickly towards the edges of the simulation domain at
xmax as depicted in Figure 7. However, good simulation results are obtained for a simulation domain of
2xmax = 10 µm, which shows that zero padding to twice the simulation size (2 × 6.4 = 12.8 µm) is not
required, as opposed to, e.g., CGFFT.
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Figure 17. (a) Simulation results for the case in Figure 13(b). (b) The absolute difference between
results obtained with the present algorithm and a validation using RCWA.

Figure 18. A gratingcoupler (right) couples an incoming Gaussian wave towards a chirped grating
(left) emits a focussed beam.

The final testcase is designed to show that the algorithm can be used for more complicated structures
as well than the previous testcases. The layered medium consists of a single layer of high (εr = 13)
contrast, that supports a single guided wave. On the right wave a focused Gaussian beams is input on a
grating coupler, inspired by [23]. This inserts a guided wave into the dielectric layer that travels to the
left. On the left a chirped grating is located that emits a beam focused around four wavelengths above
the structure, inspired by [24, 25]. The dimensions of both the gratingcoupler and the focussing chirped
grating, as described in Table 2, have not been thoroughly optimized for the best response, since this
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Table 2. Dimensions the third testcase in Figure 18.

Parameter size
ai 56 nm for i ∈ {1, . . . , 10}
bi 250 nm for i ∈ {1, . . . , 10}
ci {84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128,

132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172} nm
di {342, 330, 314, 297, 279, 258, 238, 215, 195, 174, 156, 139, 124, 110,

99, 87, 79, 70, 62, 54, 48, 42} nm
e 4.40 µm

is outside the scope of this article. The incoming Gaussian beam of unit amplitude is described by

Ei(x, z) = A

∫ k0

−k0

dkxe
−w

(
kx−k0 sin(θ)

k0

)2
+jkxx0ejkxx+jkzz, (27)

where we choose A to normalize the incident field to unit amplitude at its maximum on z = 0. The rest
of the constants were chosen w = 40, θ = 30◦, x0 = 400 nm.

In Figure 19(a) we show the of the real part of the electric field. On the right we see the incoming
wave and its reflection from the surface of the layer. A guided wave is coupled into the layer, propagating
energy to the left. Part of this energy is focused up- and downwards by the chirped grating towards
a foci at about 2.5 µm from the layer. Another part of the energy in the guided wave continues on
traveling to the left in the gratingcoupler. In Figure 19(b) we show the logarithm of the field strength.
A strong standing-wave behaviour is observed between the coupler and the chirped grating.

(a) (b)

Figure 19. (a) The real part of the electric field. (b) A logarithmic plot of the scattered electric field
Es.

6. CONCLUSION

We introduced a Hermite interpolation as basis functions for the spatial spectral method for a domain
integral equation for 2D TE scattering in a dielectric layered medium. The continuous nature of the
basis functions allows for accurate Fourier transforms when the order is higher than one. The equidistant
nature of the Hermite interpolation basis functions allows for rapid Fourier transformations when the
order is not very high, typically, smaller than four. And finally, the narrow support of the basis functions
allows for a quick evaluation of functions.
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A continuous spectral-path deformation was introduced into the spectral domain. Transformations
to and from the complex spectral path were developed to allow for an efficient use of such a continuous
spectral path. The main advantage of this continuous deformation is a significantly simpler formulation
in the spectral domain, where the spectral domain is treated as a whole instead of being decomposed
in distinct regions. A smaller number of simulation parameters is required with this continuous
deformation, which allows for a simpler usage of the spatial spectral method.

An algorithm composed of a combination of the Hermite interpolation and a continuous spectral
domain complex path was numerically tested against RCWA and FEM. A local relative difference
smaller than 10−6 was observed against FEM in one case and 1.12 · 10−3 against RCWA in the other.
The convergence of the result against the key simulation parameters was shown for one example. A
final example is shown where the algorithm is applied to a scattering problem of tens of wavelengths in
size.
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