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Comparative Study of the Meissner and Skin Effects
in Superconductors

Jacob Szeftel1, *, Nicolas Sandeau2, and Antoine Khater3

Abstract—The Meissner effect is studied by using an approach based on Newton and Maxwell’s
equations. The objective is to assess the relevance of London’s equation and shed light on the connection
between the Meissner and skin effects. The properties of a superconducting cylinder, cooled in a
magnetic field, are accounted for within the same framework. The radial Hall effect is predicted. The
energy, associated with the Meissner effect, is calculated and compared with the binding energy of the
superconducting phase with respect to the normal one.

1. INTRODUCTION

The Meissner effect [1] highlights the rapid decay [2–4] of an applied magnetic field in bulk
superconducting matter, provided that the field is lower than some critical field. Our current
understanding is still based mainly on London’s assumption [5]

B + μ0λ
2
L curl j = 0, λL =

√
m

μ0ρe2
, (1)

where μ0, j, λL stand for the magnetic permeability of vacuum, the persistent current, induced by the
magnetic induction B, and London’s length, whereas e,m, ρ refer to the charge, effective mass and
concentration of superconducting electrons, respectively. Eq. (1), combined with the Ampère-Maxwell
equation, entails [5] that the penetration depth of the magnetic field is equal to λL. The validity of
Eq. (1) was questioned earlier by skin depth measurements [6] (see also [7] p. 37, 2nd paragraph, lines
7, 8), which has resulted in interesting but inconclusive debates:

• some authors [3, 8–10] have attempted to view the Meissner effect as a classical phenomenon,
whereas another school claimed that the Meissner effect stemmed from some unknown quantum
effect, possibly related to the BCS theory [11] and Cooper pairs [12];

• when a superconducting material is cooled in a magnetic field H, starting from its normal state,
the latter is expelled [1, 6] from the bulk material, while crossing the critical temperature Tc(H)
at which superconductivity sets in. This manifestation of the Meissner effect has generated an
inconclusive debate over the distinction between a real material superconductor and a fictitious
perfect conductor [2, 5, 7, 13].

Furthermore, because the Meissner-Ochsenfeld experiment [1] yielded merely qualitative results, it
was widely believed, till London’s work [5], that H did not penetrate at all into the superconducting
sample. Thus, since the Meissner-Ochsenfeld experiment failed to provide an accurate [3] assignment for
the field penetration length, all of the experiments [6, 14, 15] have consisted of measuring the penetration
depth of an electromagnetic wave into a superconductor, i.e., the skin depth [16, 17], at frequencies
in the range [10MHz, 100GHz]. The penetration of the electromagnetic field into a conductor is
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impeded by the real part of the frequency dependent dielectric constant, associated with conduction
electrons, being negative below the plasma frequency. The skin effect has been analyzed [18] previously
in superconductors and found to have essentially the same properties, as those observed in a normal
conductor.

The purpose of this work is then to show theoretically that the properties of the Meissner effect are
conditioned by the limited time-duration t0, needed in the experiment, for the applied magnetic field H
to grow with time t from its starting value H(t = 0) = 0 up to its permanent one H(t0). The analysis
relies entirely on Newton and Maxwell’s equations. In particular, it will appear below that the spatial
decay of the static field H(t > t0) inside the bulk superconductor, characterizing the Meissner effect,
can be described as a sum involving δ(nω0), n = 1, 2, 3..., where δ(ω) is the frequency dependent skin
depth and ω0 =

2π
t0
.

The outline is as follows. Sections 2 and 3 deal with the skin effect in superconductors and with
the Meissner effect, respectively, while establishing the connection between both effects. The validity of
Eq. (1) is assessed in Section 4. The case of the field cooled superconductor is addressed in Section 5.
The radial Hall effect is analyzed in Section 6. The energy, associated with the Meissner effect, is
calculated in Section 7. The conclusions are given in Section 8.

Consider, as in Fig. 1, a superconducting material of cylindrical shape, characterized by its
symmetry axis z and radius r0 in a cylindrical frame with coordinates (r, θ, z). The superconducting
sample is further inserted into a coil, producing H(t). Both lengths of the superconducting sample
and of the coil are taken � r0, in order to get rid of any end effect, which will turn out to be a
crucial requirement for the Hall effect experiment. The superconducting material contains electrons
of charge e, effective mass m, and concentration ρ. The current I(t), flowing through the coil, gives
rise, thanks to the Faraday-Maxwell law, to an electric field Eθ(t, r), normal to the unit vectors along
the r and z coordinates, such that Eθ(t, r) �= 0 for t ∈]0, t0[ only, which defines a transient regime
(0 < t < t0 ⇔ Eθ �= 0) and a permanent one (t > t0 ⇔ Eθ = 0).

2. TRANSIENT REGIME

Eθ induces a current jθ(t, r) along the field direction, as given by Newton’s law

djθ
dt

=
ρe2

m
Eθ − jθ

τ
, (2)

where ρe2

m Eθ and − jθ
τ are respectively proportional to the driving force accelerating the conduction

electrons and a friction term. The friction force ∝ jθ
τ in Eq. (2) ensues from the finite conductivity,

observed in superconductors, carrying an ac current, as emphasized by Schrieffer [4] (see [4] p. 4,
2nd paragraph, lines 9, 10): at finite temperature, there is a finite ac resistivity for all frequencies
> 0. For example, for the superconducting phase of BaFe2(As1−xPx)2, the conductivity, measured
in the microwave range, has been found (see [14] p. 1555, 3rd column, 2nd paragraph, line 11) to be
≈ 300σn, where σn stands for the normal conductivity, measured just above the critical temperature Tc.
Additional evidence is provided by commercial microwave cavity resonators, made up of superconducting
materials, displaying a very high, albeit finite conductivity. As a last note, the finite conductivity,
measured at ω �= 0 in superconductors, is consistent with the observation of persistent currents at
vanishing electric field, even though a cogent explanation is still lacking [2–4].

The magnetic induction Bz(r, t), parallel to the z axis [18], is related to Eθ through the Faraday-
Maxwell equation as

−∂Bz

∂t
=

Eθ

r
+

∂Eθ

∂r
, (3)

while the magnetic field Hz(t, r), parallel to the z axis, is given [18] by the Ampère-Maxwell equation
as

−∂Hz

∂r
= 2jθ + ε0

∂Eθ

∂t
. (4)

ε0 refers to the electric permittivity of vacuum.
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Eθ(t, r), jθ(t, r), Bz(t, r),Hz(t, r) can be recast as Fourier series for t ∈]0, t0[
f(t, r) =

∑
n∈Z f(n, r)e

inω0t,

f(n, r) =

∫ t0

0
e−inω0tf(t, r)dt/t0,

(5)

where ω0t0 = 2π, and f(t, r), f(n, r) hold for Bz(t, r), Hz(t, r), Eθ(t, r), jθ(t, r) and Bz(n, r), Hz(n, r),
Eθ(n, r), jθ(n, r), respectively. Replacing Eθ, jθ, Bz,Hz in Eqs. (2), (3), (4) by their expression in
Eq. (5), while taking into account

Bz(n, r) = μ (nω0)Hz(n, r),

where μ(nω0) = μ0(1 +χs(nω0)), and χs(ω) is the magnetic susceptibility of superconducting electrons
at frequency ω, yielding for n �= 0

Eθ (n, r) =
1 + inω0τ

σ
jθ (n, r)

inω0Bz (n, r) = −
(
Eθ (n, r)

r
+

∂Eθ (n, r)

∂r

)

∂Bz (n, r)

∂r
= −μ (nω0) (2jθ (n, r) + inω0ε0Eθ (n, r))

(6)

where the conductivity [2] σ = ρe2τ
m . Then eliminating Eθ(n, r), jθ(n, r) from Eq. (6) gives

∂2Bz (n, r)

∂r2
=

Bz (n, r)

δ2(nω0)
− ∂Bz (n, r)

r∂r
. (7)

δ(ω) = λL√
(1+χs(ω))

(
2iωτ
1+iωτ

−ω2

ω2
p

) , ωp =
√

ρe2

ε0m
refer to skin depth and plasma frequency [2, 16, 17],

respectively. The solution of Eq. (7) with dBz
dr (r = 0) = 0 is a Bessel function, such that Bz(r �

|δ(nω0)|) ≈ er/δ(nω0).

3. PERMANENT REGIME

Because Eθ(t > t0, r) = 0 in the permanent regime, the friction force ∝ − jθ
τ is no longer at work for

t > t0, so that the transient current jθ(t < t0) turns into the persistent one, jθ(t > t0, r) = jθ(t0, r),∀r.
Eq. (5) then yields

jθ(t > t0, r) = 2
∑

n∈Z, n �=0

jθ (n, r) . (8)

The Ampère-Maxwell equation reads now

−∂Hz

∂r
(t > t0, r) = jθ(t0, r). (9)

Comparing Eqs. (4), (9) reveals that Hz(t0− , r) �= Hz(t0+ , r). The penetration depth λM of the static
field Hz(t0+ , r) is defined as

1

λM
=

∂LogHz(t0+ , r0)

∂r
.

Because of r0 � |δ(nω0)| under typical experimental conditions, there is jθ(n, r → r0) ≈ jθ(n, r0)e
r−r0
δ(nω0) .

Using Eq. (8) to integrate Eq. (9), we obtain

1

λM
≈

∑
n jθ(n, r0)∑

n δ(nω0)jθ(n, r0)
, (10)
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where the sum is performed for n �= 0 and |n|ω0 < ωp. Eq. (10) embodies the connection between the

skin and Meissner effects. Due to |δ(nω0)| = λL/
√

2|n|ω0τ � λL for |n|ω0τ 
 1, it is ensued from
Eq. (10) that |λM | � λL. Furthermore, by contrast with Eq. (1), it is obvious from the ω0 dependence
in Eq. (7) that there can be no one to one correspondence between Hz(t > t0, r) and jθ(t > t0, r), which

is an irreversible consequence of the friction term − jθ
τ in Eq. (2). This is anyhow of little practical

interest because λM cannot be measured, as already noted in Section 1.

4. VALIDITY OF LONDON’S EQUATION

Equation (1) was assumed [5], starting from the following version of Newton’s equation

djθ
dt

=
ρe2

m
Eθ, (11)

which is identical to Eq. (2) in the case τ → ∞. Integrating both sides of Eq. (11) from t = 0 up to
t = t0 yields for for r ∈ [0, r0]

jθ(t0, r) =
ρe2

m

∫ t0

0
Eθ(t, r)dt = −ρe2

m
Aθ(t0, r), (12)

by assuming jθ(t = 0, r) = Aθ(t = 0, r) = 0 and taking advantage of Eθ = −∂Aθ
∂t , where the magnetic

vector potential [16, 17] Aθ(t, r) is parallel to Eθ. Using furthermore Bz = curlAθ, it is inferred from
Eq. (12) for r ∈ [0, r0] in the permanent regime t > t0

Bz + μ0λ
2
Lcurljθ = 0,

which is identical to Eq. (1). The validity of London’s equation has thence been shown provided τ → ∞.

5. FIELD COOLED SAMPLE

As the susceptibility χs not being continuous at Tc (Tc refers to the critical temperature) will turn out
to be solely responsible for the Meissner effect to occur in a superconductor, cooled inside a magnetic
field, we set out to reckon it. Since no paramagnetic contribution is observed in the superconducting
state [2–4], the latter is deemed to be in a macroscopic singlet spin state, so that the only contribution
to χs can be calculated using Maxwell’s equations. We begin with writing down the t-averaged density
of kinetic energy

EK(r) =
m

2ρ

(
jθ(r)

e

)2

,

associated with the ac current jθ(r)e
iωt, flowing along the Eθ direction (this latter induces in turn

a magnetic field Hz(r)e
iωt, parallel to the z axis). The Ampère-Maxwell equation simplifies into

∂Hz
∂r = −2jθ for practical ω 
 ωp. As this discussion is limited to the case r → r0, both Hz(r), jθ(r) are

∝ er/δ(ω), so that EK(r) is recast into

EK(r) =
μ0

8

(
λL

|δ(ω)|Hz(r)

)2

. (13)

Moreover, there is the identity ∂EK
∂M = −Hz, where M = μ0χs(ω)Hz is the magnetization of

superconducting electrons. Actually this identity reads in general ∂F
∂M = −Hz, where F represents the

Helmholz free energy [19]. However, the property that a superconducting state carries no entropy [2–4]

entails that F = EK . Equating this expression of ∂EK
∂M with that inferred from Eq. (13) yields finally

χs(ω) = −
(

λL

2|δ(ω)|
)2

.
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As expected, χs is found diamagnetic (χs < 0) and |χs(ω)| 
 1 for ω 
 1/τ . The calculation of χs(0)
proceeds along the same lines, except for the Ampère-Maxwell equation reading ∂Hz

∂r = −jθ and λM

showing up instead of δ(ω), whence

χs(0) = −
(
λL

λM

)2

.

Note that our definition of χs = M(r)
μ0Hz(r)

, where Hz(r),M(r) refer to local field and magnetization

at r, differs from the usual [2, 3, 5] one χs = M
μ0Hz(r0)

with Hz(r0),M being external field and total

magnetization.
While the sample is in its normal state at T > Tc, the applied magnetic field Hz penetrates fully

into bulk matter and induces a magnetic induction

Bn = μ0 (1 + χn)Hz,

where χn designates the magnetic susceptibility of conduction electrons. It comprises [2] the sum of a
paramagnetic (Pauli) component and a diamagnetic (Landau) one and χn > 0 in general. Moreover,
the magnetic induction reads for T < Tc(Hz)

Bs = μ0 (1 + χs(0))Hz,

with χs(0) < 0. Because of χs(0) �= χn, the magnetic induction undergoes a finite step while crossing
Tc(Hz)

δB

δt
=

Bs −Bn

δt
= μ0

χs(0) − χn

δt
Hz, (14)

where δt refers to the time needed in the experimental procedure for T to cross Tc(Hz). Due to
the Faraday-Maxwell equation (see Eq. (3)), the finite δB/δt induces an electric field Eθ such that
curlEθ = − δB

δt , giving rise to the persistent, Hz screening current.
It is noteworthy that though Hz remains unaltered during the cooling process, the magnetic

induction B is indeed modified at Tc, as shown by Eq. (14). Then this B variation arouses Eθ via Eq. (3),
giving rise to the screening current jθ, and ultimately to Hz expulsion, as explained in Sections 2, 3. At
last, an alternative explanation of the Meissner effect, based on Weber’s force [10], is worth mentioning.

6. THE RADIAL HALL EFFECT

For t < t0, the magnetic induction Bz exerts on the conduction electrons a radial Lorentz force Bzjθ
ρ ,

pushing the electrons inward, so that a charge distribution builds up, which in turn gives rise, via
Poisson’s law, to a radial electric field Er(r), characterizing the Hall effect. Meanwhile, Er drives a
transient radial current jr(t) (jr(t < t0) �= 0, jr(t > t0) = 0), responsible for the charge distribution.

Moreover for t > t0, equilibrium is secured by the radial centripetal force −m
r

(
jθ(t0,r)

ρe

)2
, exerted

on each electron of jθ(t0, r), being made up of the sum of the Lorentz force and an electrostatic one
eEr, with Er given by

Er = − jθ
ρe

(
Bz +

m

ρe2r
jθ

)
. (15)

Owing to the Ampère-Maxwell equation jθ = −∂Hz
∂r and Bz = μ0Hz, Er can be recast as

Er =
μ0

ρe

∂Hz

∂r

(
Hz − λ2

L

r

∂Hz

∂r

)
.

Because of ∂Hz
∂r ≈ Hz

λM
, r0 � λL and |λM | � λL, the approximation Er ≈ μ0

2ρe
∂H2

z
∂r can be used for

significant r � λL. For the Hall effect to be observed, a sample in shape of a hollow cylinder of inner
and outer radii r1, r0, respectively, is needed (see Fig. 1). Furthermore, the length of the sample should
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Figure 1. Cross-section of the superconducting sample (dotted) and the coil (hatched); Eθ, jθ are both
normal to the unit vectors along the r and z coordinates, whereas Bz,Hz and Er, jr are parallel to the
unit vector along the z and r coordinates, respectively; the radius of the wire making up the coil has
been magnified for the reader’s convenience; the matter between the dashed lines should be carved out
to carry out the radial Hall effect experiment.

be larger than that of the coil, and the measurement should be carried out in the middle of the sample
to get rid of any end effect. Finally the Hall voltage reads, for r0 − r1 � |λM |

UH = −
∫ r0

r1

Er(r)dr ≈ − μ0

2ρe
H2

z

(
t+0 , r0

)
.

As in normal metals [2], measuring UH gives access to ρ. However, whereas Hz, jθ are set independently
from each other in the Hall effect observed in a normal conductor, which implies UH ∝ Hzjθ, they
are both related by the Ampère-Maxwell equation in the experiment discussed above, which entails
UH ∝ H2

z . Note also that UH is independent of r1 provided r0 − r1 � |λM |. As λM cannot be
measured, the Hall effect is likely to provide the only way to assess the validity of this work.

7. CALCULATION OF THE ENERGY

The whole energy, associated with the Meissner effect, comprises two contributions, i.e., the kinetic
energy, carried by the persistent current and the electrostatic one, stemming from the Hall effect.
Taking advantage of the the Ampère-Maxwell equation, the density of kinetic energy is inferred to read

EK(r) =
m

2ρ

j2θ (t0, r)

e2
=

μ0

2

(
λL

|λM |Hz(t
−
0 , r)

)2

, (16)

where jθ(t0, r) refers to the persistent current and λL
|λM | 
 1.

The expression of the radial current jr is needed to reckon the electrostatic energy. To that end we
look for a solution of the Ampère-Maxwell equation with no magnetic field. Thus it reads:

jr +
∂Dr

∂t
= 2jr + ε0

∂Er

∂t
= 0,

where the electric displacement [18] Dr is parallel to the unit vector, along the r coordinate, and
the time derivative of the space charge, stemming from the Hall effect, has been taken to vanish, so
that ∂Pr

∂t = jr ⇒ ∂Dr
∂t = jr + ε0

∂Er
∂t , with Pr being the radial polarisation [18]. This assumption is

vindicated by the sought electrostatic energy, depending only on the permanent electric field Er(t0, r),
and accordingly being independent from the preceding transient behaviour Er(t < t0, r). Multiplying
then the above equation by Er yields

Erjr +
ε0
4

∂E2
r

∂t
= 0.
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Using Eq. (15), we obtain

jr

(
jθ
ρe

Bz

)
dt = −Erjrdt =

ε0
4

∂E2
r

∂t
dt.

The left hand term is identified as the elementary work performed by the Lorentz force, so that the
searched expression of the the density of electrostatic energy is obtained, thanks to the first law of
thermodynamics, as

Ee(r) = ε0
4

∫ t0

0

∂E2
r

∂t
dt =

ε0
4
E2

r (t0, r) = μ0
H4

z (t0, r)

(2cρe|λM |)2 ,

where c stands for the light velocity in vacuum. By replacing Hz by its upper bound Hc, it can be
checked that Ee 
 EK in all cases.

In the mainstream treatment [3–5], the energy, pertaining to the Meissner effect, has rather been
conjectured to read EM = μ0

2 H2
z (r) � EK(Hz) in Eq. (16), due to λL 
 |λM |. Moreover, this expression

of EM turns out to be questionable from another standpoint, because its value for Hz = Hc(T ) is
furthermore believed [2–5] to be equal to ρEb(T ), where 2Eb(T ) designates the binding energy, needed
to turn a pair of BCS electrons into two normal ones, at temperature T . However, the BCS theory [11]

provides the estimate Eb
EF

≈ (kBTc
EF

)2, where EF , kB stand for the Fermi energy in the normal state and

Boltzmann’s constant, respectively. A numerical application with Eb = EM (Hc(0))/ρ in the case of Al
yields Tc ≈ 10−5 K, i.e., much less than the measured value Tc = 1.19K.

Likewise, multiplication of both terms of Eq. (2) by jθ and time-integration yield the following
inequality

m

ρe2

∫ t0

0
jθ
djθ
dt

dt = EK(Hc(T )) 

∫ t0

0
jθ(t)Eθ(t)dt,

with jθ(t)Eθ(t) being the external power fed into the sample at t. Actually it ensues from Ohm’s law,
recast as

σ

τ
Eθ =

ρe2

m
Eθ =

jθ
τ
,

because the inertial force, ∝ |djθdt | in Eq. (2), is negligible [18] with respect to the electric one ∝ ρe2

m |Eθ|,
provided |djθdt τ

jθ
| 
 1, which always holds for the Meissner-Ochsenfeld experiment.

8. CONCLUSION

The applied, time-dependent magnetic field excites transient eddy currents according to Newton and
Maxwell’s equations, which turn to persistent ones, after the magnetic field stops varying, and the
induced electric field thereby vanishes. Those eddy currents thwart the magnetic field penetration.
Were the same experiment to be carried out in a normal metal, eddy currents would have built up the
same way. However, once the electric field vanishes, they would have been destroyed quickly by Joule
dissipation, and the magnetic field would have subsequently penetrated into bulk matter. As a matter of
fact, the Meissner effect shows up as a classical phenomenon and a mere outcome of persistent currents,
the very signature of superconductivity. The common physical significance of the Meissner and skin
effects has been unveiled too. The radial Hall effect has been predicted. The energy, associated with
the Meissner effect, has been calculated and compared with the binding energy of the superconducting
phase.
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