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A Virtual Space-Frequency Matrix Method for Joint
DOA-Frequency Estimation
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Abstract—The joint direction-of-arrival (DOA) and frequency estimation problem has received
significant attention recently in some applications, including pulsed Doppler radar, multipath parameter
estimation, etc. This paper presents a novel virtual space-frequency matrix method to estimate the
DOA and frequency jointly. Via the temporal smoothing technique, a virtual space-frequency matrix
is defined, which includes the information of the incident DOAs and frequencies. Making using of the
proposed method, both the frequencies and DOAs can be estimated by eigenvalues and the corresponding
eigenvectors of the new defined virtual space-frequency matrix, respectively. Therefore, the pairing of
the estimated DOAs and frequencies is automatically determined. Compared with related works, the
proposed method can provide superior performance, such as higher estimation accuracy, without the
procedure of parameter search or parameter matching. Simulation results are presented to demonstrate
the efficacy of the proposed approach.

1. INTRODUCTION

In wireless communications, the joint direction-of-arrival (DOA) and frequency estimation problem of
multiple sources has received considerable attention in the field of array signal processing. Many high-
resolution algorithms, such as MUSIC-like peak search-based algorithms [1, 2] and the algorithms [3–
5] based on the shift-invariance structure of the array response matrix, have been developed. A
two-dimensional (2-D) multiple signal classification (MUSIC)-based algorithm is presented in [1].
This method performs the joint DOA-frequency estimation via high dimensional eigen-decompositions
of covariance matrices and 2-D search on the DOA-frequency plane, which results in enormous
computations. To alleviate the computational overhead, an FSF-MUSIC method is presented [2], which
describes a tree-structured frequency-space-frequency (FSF) MUSIC-based algorithm for the joint DOA
and frequency estimation problem. In the presented method, the estimated DOAs and frequencies are
automatically paired without extra processing. However, this method employs three 1-D MUSIC-type
algorithms, i.e., two F-MUSICs and one S-MUSIC, which is computationally not very attractive since
it requires multiple 1-D searches. In order to reduce effectively the computational complexity, several
algorithms based on the shift-invariance structure have received much attention. For example, the MR-
ESPRIT algorithm is proposed by extending the ESPRIT direction finding algorithm to antenna arrays
with multiple baselines [3]. By taking advantage of the temporal smoothing, spatial smoothing, and
forward-backward averaging techniques, a C-JAFE algorithm is addressed [4], which can achieve more
accurate results than the previous ESPRIT-based techniques. Despite its high-resolution capability, the
C-JAFE still involves the joint diagonalization processing apart from the singular value decomposition
(SVD) or eigenvalue decomposition (EVD). It is well known that the joint diagonalization processing
is a complex nonlinear optimization procedure. In addition, the C-JAFE algorithm needs an extra
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pairing procedure to match the separately estimated DOAs and frequencies. The parameter matching
makes the joint DOA-frequency estimation more difficult to solve. In order to solve these problems,
an effective Unitary-JAFE algorithm is presented [5], where the incoming DOAs and frequencies can
be estimated by making use of the real and imaginary parts of the eigenvalues of the space-time factor
matrix so that the pairing of the estimated frequency and DOA is automatically determined. Based on
FSF-MUSIC, an FSF-ESPRIT algorithm is proposed [6], which is a hybrid of one-dimensional (1-D)
ESPRIT and spatial/temporal filtering processes. In other words, two temporal and one spatial 1-D
ESPRIT algorithms are employed alternatively to estimate the frequencies and the DOAs, respectively.
The estimated frequencies and DOAs are automatically paired without extra computational overhead.
A space-time matrix method is proposed [7]. The frequencies and incident angles can be estimated by
the eigenvalues and the corresponding eigenvectors of the defined space-time matrix, respectively. Thus,
the presented method can automatically determine the paring of the estimated angles and frequencies.
However, it needs an extra noise power estimation procedure. By exploiting the multiple delay output,
ESPRIT-based joint angle and frequency estimation algorithms are proposed to improve the estimation
accuracy [8–10]. By combining the outputs of a uniform linear array (ULA) and delay network, a space-
time-Euler-ESPRIT method is presented, which can provide automatically paired frequencies and their
DOAs [11].

As stated before, most of the existing joint DOA and frequency estimation methods call for
two-dimensional (2-D) search, or multiple 1-D searches, or multiple delay taps, and/or complex pair
matching processing, etc. These facts make the joint DOA and frequency estimation problem more
difficult to solve. In this paper, an effective virtual space-frequency matrix method is proposed. The
3-factor temporal smoothing technique is utilized to add a structure of the received data model for the
implementation of the proposed method based on multiple antennas without delay taps. The proposed
approach makes use of the covariance matrices with different virtual delay data to obtain the space-
frequency matrix which can avoid the noise power estimation. The rest of the paper is organized as
follows. The data model is described in Section 2. Section 3 introduces the presented method. Section 4
shows some simulation results. Finally, the conclusion is given in Section 5.

2. DATA MODEL

Consider a ULA of M elements equispaced by d. Employing the first element of the ULA as the phase
reference, the array manifold can be written as

aM (f, θ) =
[
1, ejµ, . . . , ej(M−1)µ

]T
(1)

where µ = (2πf/c)d sin(θ) with f and θ denoting the frequency and the DOA, respectively. c stands
for the velocity of light. d is equal to the interelement spacing.

Suppose that there are q narrowband signals si(t) (i = 1, . . . , q) simultaneously imping on the ULA
with the ith source having a carrier frequency of fi and a DOA θi. The signal received at the kth
antenna is [4, 5]

xk(t) =

q∑
i=1

ak(fi, θi)e
j2πfitsi(t) + wk(t) (2)

where ak(fi, θi) is the antenna response of the kth antenna to the signal from the direction θi, and wk(t)
represents the output of the additive noise of the kth sensor.

The observed signals at the ULA can be expressed as

x(t) = As(t) +w(t) (3)

The matrices and the vectors in Eq. (1) have the following forms

x(t) = [x1(t), . . . , xM (t)]T

A = [aM (f1, θ1), . . . ,aM (fq, θq)]

s(t) = [s1(t), . . . , sq(t)]
T

w(t) = [w1(t), . . . , wM (t)]T
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where xk(t) and wk(t) (k = 1, . . . ,M) denote the output signal and the additive noise of the kth sensor,
respectively. aM (fk, θk) (k = 1, . . . , q) denotes the steering vector for the kth source, which is defined
by Eq. (1). The superscript (·)T represents the transpose operation. Assume that wk(t) is a complex
Gaussian random process with zero-mean and variance σ2

n, and the noise wk(t) is uncorrelated with
si(t).

Under the above assumptions, it can be easily seen that E{w(t)wH(t)} = σ2
nIM , where E{·}

represents the statistical average operation, and the superscript (·)H denotes the Hermitian operation.
IM is the M ×M identity matrix.

Assume that P is the sample rate, which is much higher than the data rate of each source. The
data samples at the receiver are

x
( n

P

)
=

q∑
i=1

a (fi, θi) e
j(2π/P )finsi

( n

P

)
+w

( n

P

)
(4)

In matrix form, this can be written as

x
( n

P

)
= AΦns

( n

P

)
+w

( n

P

)
(5)

where Φ = diag{(ϕ1, . . . , ϕq)} with ϕi = ej(2π/P )fi for i = 1, . . . , q, which includes the frequency
information of the incident signal sources, e.g., we refer to matrix Φ as frequency factor matrix and its
diagonal element as frequency factor.

Assume that we have collected N samples of the array output x(t) at a rate P into the M × N
data matrix, i.e.,

X
( n

P

)
= A

[
s(0),Φs

(
1

P

)
, . . . ,ΦN−1s

(
N − 1

P

)]
+W (6)

where W is a matrix collecting N samples of the M × 1 array noise vector.

3. ALGORITHM FORMULATION

To effectively estimate the DOAs and frequencies, a virtual space-time matrix method is proposed by the
temporal smoothed technique. We begin the development by the 3-factor temporal smoothed technique
for the original data matrix X( nP ). This results in the following data matrix

X3 =



A

[
s(0),Φs

(
1

P

)
, . . . ,ΦN−3s

(
N − 3

P

)]
AΦ

[
s

(
1

P

)
,Φs

(
2

P

)
, . . . ,ΦN−2s

(
N − 2

P

)]
AΦ2

[
s

(
2

P

)
,Φs

(
3

P

)
, . . . ,ΦN−1s

(
N − 1

P

)]


+W3 (7)

where W3 represents the noise term constructed from W in a similar way as X3 obtained from X.
Assume that the signals are narrow band, i.e., s(t) ≈ s(t+1/P ) ≈ s(t+2/P ). In this case, X3 has

the following factorization
X3 = A3Fs +W3 (8)

where Fs =
[
s(0),Φs( 1

P ), . . . ,Φ
N−3s(N−3

P )
]
. A3 is given by

A3 =

 A
AΦ
AΦ2

 (9)

where A = [aM (f1, θ1), . . . ,aM (fq, θq)]. Φ = diag{(ϕ1, . . . , ϕq)} with ϕi = ej(2π/P )fi for i = 1, . . . , q.
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Define three selection matrices Jk (k = 1, 2, 3) as follows
J1 = [IM ,0M×2M ]

J2 = [0M×M , IM ,0M×M ]

J3 = [0M×2M , IM ]

(10)

where 0m×n stands for the the m× n zero matrix.
Making use of the defined selection matrices in Eq. (10), we can obtain the following equations:

Y1 = J1X3 = AFs + J1W3

Y2 = J2X3 = AΦFs + J2W3

Y3 = J3X3 = AΦ2Fs + J3W3

(11)

then, it can be easily seen that {
R21 = E

{
Y2Y

H
1

}
= AΦRsA

H

R31 = E
{
Y3Y

H
1

}
= AΦ2RsA

H
(12)

where the matrix Rs = E{FsF
H
s } = diag{(σ2

1, . . . , σ
2
q )}, in which σ2

k (k = 1, . . . , q) is the average signal
power of the kth signal.

Making use of R21 and R31, a virtual space-time matrix R is defined as follows

R = R31R
†
21 (13)

where the superscript (·)† denotes matrix pseudo inverse.
It is clear that the space-time matrix R includes the information of the DOAs and frequencies for

all incoming signals. Therefore, we have the following Theorem 1.
Theorem 1. Assume that there are q narrow-band sources, with the complex baseband

representations sk(t) (1 ≤ k ≤ q) such that the kth source has a carrier frequency of fk and arrives a
ULA from direction θk. If there are no same elements on the diagonal of matrix Φ, and Rs is the a full
rank matrix, then, the q nonzero eigenvalues of R are equal to the q elements on the diagonal of matrix
Φ, and the corresponding eigenvectors are equal to the corresponding column vectors of AΦ, namely,
RAΦ = AΦ2.

Proof : Under the above assumptions, it is easy to know that A is a full rank matrix. Furthermore,
we can draw a conclusion that rank(R21) = rank(R31) = rank(A) = rank(Rs) = q. Thus, we have the
following equation

R†
21 = ARs

(
RsA

HARs

)−1 (
ΦHAHAΦ

)−1
ΦHAH (14)

where (·)−1 denotes matrix inverse.
From Eqs. (12)–(14), the following equation can be obtained

RAΦ = R31R
†
21AΦ =

(
AΦ2RsA

H
)(

ARs

(
RsA

HARs

)−1 (
ΦHAHAΦ

)−1
ΦHAH

)
AΦ

=
(
AΦ2

) (
RsA

HARs

) (
RsA

HARs

)−1 (
ΦHAHAΦ

)−1 (
ΦHAHAΦ

)
= AΦ2. (15)

This concludes the proof. �
Remarks:

(1) From Theorem 1, it is easily seen that the array steering matrix A and diagonal matrix Φ can
be obtained by computing the eigendecomposition of the space-time matrix R. Then the carrier
frequency fk and incoming DOA θk can be estimated by making use of the kth eigen-pair (λk, ηk)
of the matrix R, that is, the paring of the estimated two-dimensional parameters is automatically
determined.

(2) If several sources are close in the angle of incidence θ or the range f , while there are no same
elements on the diagonal of matrix Φ, then Theorem 1 is still true. In other words, it can resolve the
incoming rays with very close DOAs or very close frequencies under the aforementioned conditional
restriction.
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The procedure of the proposed method is concluded as follows.

(1) Collect the data matrix X and construct the 3-factor temporal smoothed matrix X3, according
to (7).

(2) Calculate R21 and R31 according to (12).

(3) Compute the eigen-pairs (λk, ηk) of the space-time matrix R given by (13), where λk is the kth
eigenvalue of R and ηk is the corresponding eigenvector, for k = 1, . . . , q.

(4) According to the eigen-pairs (λk, ηk), estimate frequency fk and DOA θk as follows{
f̂k = angle(λk)× P/(2π)

θ̂k = sin−1
(
angle(ηk2/λk)× c/(2πdf̂k)

) (16)

where ηk2 is the second element of ηk.

4. SIMULATION RESULTS

In this section, several simulation results are provided to illustrate the performance of the proposed
method. Consider a ULA with M = 7 antenna elements and equispaced by d = 30m. Assume that
there are four far-field equal power signals s1(t), s2(t), s3(t), s4(t) impinging on the antenna array.
Their DOAs are θ1 = −60◦, θ2 = −30◦, θ3 = 30◦, θ4 = 0◦, respectively. Their corresponding center
frequencies are f1 = 5MHz, f2 = 1MHz, f3 = 2MHz, f4 = 1.2MHz, respectively. The source signals
are narrowband (25 kHz) amplitude-modulated signals. The sampling rate is set to 15MHz.
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Figure 1. The scatter of the estimates based on STM.
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Figure 2. The scatter of the estimates based on VSTM.
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We use root-mean-square-error (RMSE), which is defined as follows

RMSEf =

√√√√E

{
q∑

k=1

(
fk − f̂k

)2
}

RMSEθ =

√√√√E

{
q∑

k=1

(
θk − θ̂k

)2
} (17)

where f̂k and θ̂k are the estimates of fk and θk, for k = 1, 2, . . . , q.
For comparison, three algorithms are carried out, including the proposed method, C-JAFE [4],

the space-time matrix method [7]. For convenience, the proposed method and the space-time matrix
method are named as VSTM and STM, respectively.

Figures 1 and 2 illustrate the scattergrams for joint DOA and frequency estimated by STM and
VSTM, respectively, based on 200 independent trials under the hypothesis that signal-to-noise ratio
(SNR) is equal to 5 dB. From these figures, it is clear that the proposed method provides a more precise
DOA and frequency estimate than the STM.

Figures 3 and 4 give RMSEθ and RMSEf curves (which are computed by (17)) of the aforementioned
algorithms, respectively, based on 200 independent trials under the hypothesis that SNRs range from
−15 dB to 20 dB, and the number of snapshots is assigned to N = 128. From these figures, it is clear
that the proposed VSTM outperforms C-JAFE and STM for DOA and frequency estimation. This is
because the proposed virtual space-frequency matrix is estimated by using only the covariance matrices
without extra noise power estimation or joint diagonalization.
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5. CONCLUSIONS

In this paper, we present a virtual space-frequency matrix method for the joint DOA and frequency
estimation problem. The temporal smoothing technique is utilized to add the structure of the received
data model such that a virtual space-frequency matrix can be formed without delay taps. Additionally,
the proposed approach makes use of the eigenvalues and the corresponding eigenvectors to estimate
the frequencies and the DOAs, so that the pairing of the estimated DOAs and frequencies can be
automatically determined. Simulation results show that the proposed method has a better performance
than C-JAFE and STM.
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