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Abstract—Recent years have witnessed an increasing interest in topological states of condensed matter
systems, whose concepts have been also extended to wave phenomena. Especially at optical frequencies,
several studies have reported applications of structured light exploiting topological transitions and
exceptional points or lines, over which a field property of choice is undefined. Interesting properties of
light beams with phase singularities (such as the creation, annihilation or motion of these topological
points) have been observed in composite vortices consisting of superimposed light beams with different
topological charges. Here, we discuss how these concepts may have a relevant impact on antenna
technology at microwave frequencies. We obtain the superposition of vortex fields with different
topological charges by simultaneously exciting different modes of a patch antenna. This can be useful
to give a physical interpretation for the behavior of some structures, already proposed at microwave
frequencies, which use superposition of different radiating modes to manipulate the radiation pattern
of patch antennas. Moreover, this approach may open new strategies to design at will the directivity
properties of a patch antenna with inherently robust responses, and it may find applications in the
design of smart antenna systems, requiring pattern reconfigurability.

1. INTRODUCTION

Structured light is a research topic of broad and current interest in optics, referring to the generation and
application of customized electromagnetic fields with tailored polarization, amplitude and/or phase [1].
Although several classes of structured fields have been theoretically predicted and experimentally
realized, this term is often used in relation to the more specific topic of optical vortices (OV)
or Orbital Angular Momentum (OAM). As originally pointed out by Nye and Berry, vortices are
singularities where phase is undefined, thus the intensity is inevitably zero [2]. In general, such phase
singularities are associated with a discrete topological charge, rendering them robust with respect
to small perturbations [3]. At optical frequencies, vortex beams have found numerous applications,
among which 3D manipulation of microscopic particles [4], advanced imaging systems [5], classical
or quantum communications [6]. Moreover, linear and nonlinear properties of structured light have
been deeply investigated [7–10]. Recently, the generation of structured fields has been extended to
microwave frequencies [11], but practical applications in this frequency range are still at their early
stages. In particular, what at first seemed to be the most promising, i.e., the possibility of exploiting
the orthogonality between different OAM modes to increase the channel capacity of a communication
system, turned out to be only a specific, sub-optimal case of a MIMO system, a rich field of research
which appears well more advanced than the OAM specific scenario [12].
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Nevertheless, in recent years, several radiating systems have been proposed to generate microwave
fields with OAM, exploiting antenna arrays with proper element excitation phasing [13, 14], mechanically
modified parabolic or spiral reflectors [15, 16], metasurfaces [17], ring antennas [18], spiral phase
plate [19], spiral antennas [20], or patch antennas working with circularly polarized (CP) higher-order
modes [21], just to cite a few. In particular, we have shown that the higher-order TMnm modes of
a circularly polarized patch antenna radiate an electromagnetic field with OAM distribution of order
±(n−1), where the plus/minus sign indicates a right- or left-handed polarization, respectively. We have
also shown that a more complex structured field, characterized by a polarization state that resembles
the structure of a Mobius strip, can be generated at microwaves using a similar approach [22]. This
peculiar topological structure was first observed at optical frequencies [23] and, as in our investigation,
results from the proper superposition of different fields with topological singularities. To the best of our
knowledge, the direct investigation at microwave frequencies of the superposition of two electromagnetic
fields, at least one of which exhibiting phase singularities, is limited to the aforementioned scenario
generating a Mobius polarization state. On the contrary, at optical frequencies, several works have
extensively discussed the properties of composite vortices consisting of beams with different topological
charges. One of the main reasons is that phase singularities are structurally stable features of fields,
which may be found even if the vortex beam is highly perturbed. Therefore, several groups have studied
the conditions for obtaining translation, creation or annihilation of phase singularities when different
OV are superimposed (see, for instance [24–26]).

In this paper, inspired by the aforementioned works, we explore the generation of composite vortices
at microwave frequencies and investigate the possibilities offered by the superposition of topological
singularities in antenna systems. In particular, the structure of the manuscript is as follows: in Section 2,
we show that, by properly superimposing two different radiating modes of a patch antenna, one of which
exhibiting a phase singularity, we can change the location of this singularity and, thus, directly shape
or rotate the radiation pattern of the radiating element. More specifically, by varying the excitation
amplitude of the two modes, one can change the shape of the radiation pattern, while by varying the
relative phase shift one can rotate the radiation pattern at will. Then, in Section 3, we numerically
validate our results, and finally, in Section 4, we draw the conclusions.

2. ANALYTICAL STUDY OF COMPOSITE VORTICES GENERATED BY A
CIRCULAR PATCH ANTENNA

In a recent paper by our group [21], it has been demonstrated that the higher-order modes of a circular
patch antenna, if circularly polarized, are characterized by phase vortices and amplitude nulls, which can
be exploited to radiate an electromagnetic field with OAM. Inspired by an experimental work performed
at optical frequencies [23], we have combined one of these higher-order modes with the fundamental one
to obtain particular spatial distributions of both amplitude and phase. In particular, by an appropriate
choice of the modes and their polarizations, a Mobius polarization state for the radiated field has been
obtained [22]. However, this is only one of the numerous structured fields that can be generated by
using composite vortices generated by standard radiating systems.

In fact, as already demonstrated in optics, the superposition of vortex beams can generate a wide
variety of topological structures of phase and intensity, such as loops, links and knots in 3D space [27],
or interesting polarization topologies [28, 29]. Moreover, phase singularities of vortex beams have a
topological nature and, thus, are robust to a large range of external perturbations. Therefore, by
adding a constant background to a vortex beam, the phase singularities do not completely disappear
but only translate to another point of zero intensity [3]. For the same reason, if we add two vortex
beams, the number and location of the vortices in the total field directly depend on the charge of the
constituting beams and their relative phase and amplitude. In particular, as demonstrated in [24], the
collinear superposition of two vortices with different order (n1 and n2, with n2 > n1) results in a vortex
of order n1 in the origin and |n2 − n1| vortices of charge n2/|n2| placed at a distance r from the origin
and rotated by an angle Φ, where:

Φ =
δ + nπ

n2 − n1
(1)
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and

r =
w√
2

(√
|n2|!
|n1|!

tanα

)1/(|n2|−|n1|)

(2)

being w the beam radius and n an odd integer, while α and δ specify the relative amplitude and phase
of the two beams, respectively.

In order to obtain similar phenomena at microwave frequencies, we consider here the case of a
circular patch antenna simultaneously supporting its fundamental mode (TM11) and the first higher-
order mode (TM21), both working under right-handed circular polarization (RHCP) at the same
operating frequency. For the sake of clarity, we start considering the field radiated by a generic TMnm

mode for linear polarization, which has been derived by using the cavity model in cylindrical coordinates
and is given by [30]:

Eθn = jn
Vnk0an

2

e−jk0r

r
cosnφ [Jn+1(γ)− Jn−1(γ)]

Eφn = jn
Vnk0an

2

e−jk0r

r
cos θ sinnφ [Jn+1(γ) + Jn−1(γ)]

(3)

where, r, θ, and φ are the polar coordinates; Vn = hE0Jn(kan) is the edge voltage at φ = 0; h
is the thickness of the dielectric substrate; E0 is the value of the electric field at the edge of the
patch; γn = k0an sin θ, an is the radius of the patch; Ji is the Bessel function of the first kind and
order i, k and k0 are the propagation constants in the dielectric and free space, respectively. Since
a requirement for obtaining a phase singularity in patch antennas is the use of circular polarized
modes [21], we have to generalize these expressions to a CP TMnm mode. For this purpose, we can
consider that circular polarization can be obtained using two coaxial feeds with proper angular spacing
with respect to each other, such that two orthogonal linearly polarized modes with a proper phase shift
are excited. Therefore, considering the circular polarization as a superposition of the individual electric
fields produced by two linearly polarized orthogonal modes, the total radiated field by a CP TMnm

mode can be expressed as [31]:

Et
θn = E1

θn(ϕ, θ) + jE2
θn(ϕ+ τ, θ)

Et
φn = E1

φn(ϕ, θ) + jE2
φn(ϕ+ τ, θ)

(4)

where superscripts 1 and 2 correspond to the fields generated by the two orthogonal modes, respectively;
τ is the angular spacing of the feeds depending on the mode order [31]; the phase shift between the two
modes has been chosen equal to π/2 in order to obtain a RHCP field.

These expressions can now be used to derive the overall radiated field, which can be considered as
the weighted sum of the fields radiated by the RHCP TM11 and the RHCP TM21 modes:

Et
θ = sin (α)

[
E1

θ1(ϕ, θ) + jE2
θ1(ϕ+ τ, θ)

]
+ cos (α)

[
E1

θ2(ϕ, θ) + jE2
θ2(ϕ+ τ, θ)

]
ejδ

Et
φ = sin (α)

[
E1

φ1(ϕ, θ) + jE2
φ1(ϕ+ τ, θ)

]
+ cos (α)

[
E1

φ2(ϕ, θ) + jE2
φ2(ϕ+ τ, θ)

]
ejδ

(5)

where, again, α and δ specify the relative amplitude and phase of the two components, respectively.
Given that only TM21 mode is characterized by a phase singularity, the expressions in Eq. (5)

consists of a constant background (the RHCP TM11 mode) superimposed to a vortex beam (the RHCP
TM21 mode). Therefore, depending on α and δ, the position of the phase singularity and, thus, of
the amplitude null, is expected to vary with respect to the original one, i.e., to the propagation axis.
Moreover, in [21] we have shown that in Cartesian coordinates relations in Eq. (4) can be simplified to:

Exn = Ane
−j(n−1)ϕ −Bne

−j(n+1)ϕ

jEyn = Ane
−j(n−1)ϕ +Bne

−j(n+1)ϕ
(6)

with amplitudes:

An = −jn
Vnk0an

2

e−jk0r

r
cos θJn−1 (γn)

Bn = −jn
Vnk0an

2

e−jk0r

r
cos θJn+1 (γn)

(7)
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Therefore, the total field of Eqs. (5) reduce to:

Ex = sinα
(
A1 −B1e

−j2ϕ
)
+ ejδ cosα

(
A2e

−jϕ −B2e
−j3ϕ

)
jEy = sinα

(
A1 + jB1e

−j2ϕ
)
+ ejδ cosα

(
A2e

−jϕ + jB2e
−j3ϕ

) (8)

Using Eq. (7) in Eq. (8) we obtain:(
k0
2

e−jk0r

r

)−1

Ex =− jV1a1 sinα
(
J0 (γ1)− J2 (γ1) e

−j2ϕ
)
cos θ

+ ejδV2a2 cosα
(
J1 (γ2) e

−jϕ − J3 (γ2) e
−j3ϕ

)
cos θ

j

(
k0
2

e−jk0r

r

)−1

Ey =− jV1a1 sinα
(
J0 (γ1) + J2 (γ1) e

−j2ϕ
)
cos θ

+ ejδV2a2 cosα
(
J1 (γ2) e

−jϕ + J3 (γ2) e
−j3ϕ

)
cos θ

(9)

Limiting our attention to small deviations from the propagation axis z, we consider γn = k0an sin θ ≪ 1,
thus in each bracket one of the Bessel functions can be neglected in compared to the other one, i.e.,
J0(γ1) ≫ J2(γ1) and J1(γ2) ≫ J3(γ2), which in turns results in the simplified relations:(

k0
2

e−jk0r

r

)−1

Ex = −jV1a1 sinαJ0 (γ1) cos θ + ejδV2a2 cosαJ1 (γ2) e
−jϕ cos θ

j

(
k0
2

e−jk0r

r

)−1

Ey = −jV1a1 sinαJ0 (γ1) cos θ + ejδV2a2 cosαJ1 (γ2) e
−jϕ cos θ

(10)

Therefore, under this approximation, the field components can simultaneously vanish at:

−jV1a1 sinαJ0 (γ1) + ejδV2a2 cosαe
−jϕJ1 (γ2) = 0 (11)

Considering again γn ≪ 1, one can write J0(γ1) ≈ 1 and J1(γ2) ≈ γ2
2 , therefore:

−j sinα+
V2

V1
ej(δ−ϕ) cosα

k0a
2
2

2a1
sin θ = 0 (12)

which results in a simple expression for the phase singularity point:

ϕ = δ − π

2

sin θ =
2a1
k0a22

V1

V2
tanα

(13)

According to these relations, on a given z-plane in the far field, the distance of the vortex from the
origin depends on α while its azimuth depends only on δ. In particular, for δ = 0, the singularity is on
the negative y-axis and by increasing α it moves away from the center. For a fixed value of α, instead,
by increasing δ the vortex rotates around a fixed circle.

In order to validate these results, we have analyzed the amplitude and phase patterns of the overall
radiated field on a plane orthogonal to the propagation direction at a distance λ0 (being λ0 the operating
wavelength in free space) from the patch, for different values of α and δ. The results are summarized
in the next subsections.

2.1. Effects of Varying α

In Fig. 1, we show the phase patterns of the x- and y-components of the radiated field assuming δ = 0
and for different values of α. This parameter, being the argument of the two basic trigonometric
functions in (5), specifies the relative amplitude of the two modes. Therefore, the two limiting cases
will be α = 0, corresponding to the presence of the TM21 mode only, and α = π/2, corresponding to
presence of the TM11 mode only. In particular, in the first case, there is a phase singularity in the center
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beam. On the contrary, in the second case, the radiated field has no phase singularity. For 0 < α < π/2,
the field with no phase singularity cannot suppress the topological charge of the higher-order mode, but
the corresponding phase singularity moves away from the center beam, due to the superposition with
a constant background. These results confirm that, by acting on α, i.e. on the excitation amplitudes
of the two modes, it is possible to move the phase vortex present on the Cartesian components of the
radiated field. Moreover, as a phase singularity point is intrinsically connected to an amplitude null, by
varying α also the dark core of the radiated field can be moved away from the center of the radiating
structure. This is confirmed by Fig. 2, which shows the amplitude patterns of the radiated field for
different values of α. Overall, these results confirm the inherent robustness of the proposed mechanism
to control and reconfigure the radiation of these antenna elements, inherently associated with their
topological properties.

Figure 1. Analytically calculated phase (Φx and Φy) distributions (in degree) at a distance λ0 from
the patch of the electric field radiated by the superposition of RHCP TM11 and RHCP TM21 modes
for different values of α (here δ = 0).

Figure 2. Analytically calculated total electric energy density (|E|2) and amplitude (|Ex|2 and |Ey|2)
distributions of the electric field radiated by the superposition of RHCP TM11 and RHCP TM21 modes
for different values of α.
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2.2. Effects of Varying δ

As demonstrated in [24], by varying the phase difference between two vortex fields, one can rotate the
resulting vortices around the center beam. In order to demonstrate this effect at microwave frequencies,
we focus our attention, without loss of generality, on the case α = π/4 (the RHCP TM11 mode and the
RHCP TM21 mode are excited with equal amplitude). We analyze the phase patterns of the x- and
y-component of the radiated field for different values of δ, reported in Fig. 3. From this figure, we can
see that the topological singularity of the RHCP TM21 mode is always present, but it rotates around
the center beam, being the rotation angle proportional to the phase angle δ, as predicted by (13). The
same phenomenon occurs for the amplitude null, as shown in Fig. 4, which rigidly rotates with the phase
singularity. Again, the presence of the topological charge is very robust in the radiation patterns, and
its position can be controlled with large flexibility by tailoring the relative phases of the excited modes.

Figure 3. Analytically calculated phase (Φx and Φy) distributions (in degree) of the electric field
radiated by the superposition of RHCP TM11 and RHCP TM21 modes for different values of δ (here
α = π

4 ).

Figure 4. Analytically calculated total electric energy density (|E|2) and amplitude (|Ex|2 and |Ey|2)
distributions of the electric field radiated by the superposition of RHCP TM11 and RHCP TM21 modes
for different values of δ.
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2.3. Effects on the Radiation Patterns

The previous analysis extends the concept of composite vortices to microwave antennas, and it provides
a simple method to superimpose electromagnetic fields with different topological charge, based on the
use of standard radiating systems. This may be useful to create test benches at much lower frequencies
than those typically used in this research field, or for investigating if the application of optical composite
vortices can be extended to a lower frequency range, for instance for wireless communications. Moreover,
the superposition of topological singularities of vortex beams has also a direct application in antenna
technology. In this context, we stress here that for antenna engineers a key variable to describe the
antenna response is the radiation pattern, which defines the variation of the radiated power by an
antenna as a function of the direction away from the antenna itself. Since the radiation pattern is
directly related to the electromagnetic field radiated by the antenna, we expect that the effects on the
radiated field observed in the previous subsection will be also reflected on the shape and orientation
of the radiation pattern. To demonstrate this statement, starting from (5), we have evaluated the 3D
directivity of the patch antenna for different values of α and δ. At first, we have analyzed the effect of
α on the shape of the radiation pattern and reported in Fig. 5 the main results. As expected, for α = 0,
the antenna radiates with the typical conical pattern of a patch antenna working on the higher-order
TM21 mode [31]. On the contrary, for α = π/2, the radiation pattern has a maximum in the broadside
direction, as expected for a patch antenna working on the fundamental TM11 mode. By increasing
α from 0 to π/4, the shape of the radiation pattern gradually narrows and the maximum directivity
increases; while going beyond π/4 the maximum pointing angle of the radiation pattern increases until
it reaches the broadside direction. Then, in order to evaluate the effect of varying δ, we have focused
again, without loss of generality, on the case with α = π/4 and reported in Fig. 6 the corresponding
radiation patterns for different values of δ. From this figure, it is evident that, by adding a phase shift
between the two exciting modes, the radiation pattern rotates around the vertical axis of the same
amount.

Figure 5. Analytically calculated directivity patterns (expressed in dB) of the patch antenna supporting
the superposition of RHCP TM11 and RHCP TM21 modes for different values of α.

Figure 6. Analytically calculated directivity patterns (expressed in dB) of the patch antenna supporting
the superposition of RHCP TM11 and RHCP TM21 modes for different values of δ.
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3. FULL-WAVE NUMERICAL VALIDATION

In this section, we validate the accuracy of the analytical results reported in the previous Section
by performing a set of numerical simulations. Moreover, we describe the design procedure to
obtain a realistic radiating element able to radiate, at the same frequency and simultaneously, two
electromagnetic fields with different topological charges. As discussed in [22], the TMnm modes
supported by a radiating circular metallic patch have different operating frequencies. Consequently, the
composite vortices cannot be directly generated by using a single patch antenna. A possible solution,
already used in [22] to generate a Mobius polarization state, is to design a single structure consisting of
two radiating elements concentrically placed. In this way, the different dimensions of the two radiating
elements can be properly designed to support two different resonant modes, i.e., the TM11 and the
TM21 mode in our analysis, at the same operating frequency. In order to generate the two radiating
modes with circular polarization, the radiating elements should present a proper geometrical asymmetry
so that, for each of them, two degenerate modes are excited with a 90◦ phase shift between them. A
possible structure that takes into account all these design constraints is shown in Fig. 7. It consists of an
inner metallic patch and an external metallic ring, both placed on a grounded dielectric substrate (Roger
DuroidTM RT5870, εr = 2.33, tan δ = 0.0012 and thickness 0.787mm). Both elements are excited with
their own coaxial feed (indicted with p1 and p2 in Fig. 7), whose position has been determined to excite,
with equal amplitude, the corresponding degenerate modes. Moreover, the external element is connected
to the metallic ground through a metallic strip, in order to achieve good impedance matching. The
square slits placed on the boundary of the two radiating elements have instead the required geometrical
asymmetry for circular polarization operation. Please note that, contrary to [22], in the structure here
proposed the two coaxial feeds are placed on the same side respect to the yz-plane, in order to obtain
two circular polarized modes with the same handedness.

Figure 7. Geometrical sketch of the proposed radiating structure. Dimensions: g = 2.1mm,
re = 38.5mm, ri = 18.5mm, rs = 49.9mm, we = 2.33mm, wi = 1.85mm.

In order to evaluate the response of the proposed structure, a set of full-wave numerical simulations
has been performed with the commercial package CST Studio Suite. For the sake of brevity, we report
here the analysis for the exciting configuration: α = π/4 and δ = 0; while for the other excitation
we show only the corresponding radiation pattern. The performance of the overall structure has been
evaluated when the two radiating elements are simultaneously excited with the same signal amplitude
and phase using an ideal 3 dB power divider. In this case, as shown in Figs. 8 and 9, the antenna
has a good impedance matching and it radiates a circularly polarized field with good polarization
purity around the operating frequency of 3GHz. We have performed a 3D-electromagentic/circuit co-
simulation to evaluate the amplitude and phase patterns of the total radiated fields, reported in Fig. 10.
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Figure 8. Simulated reflection coefficient
magnitude of the radiating structure shown in
Fig. 7 when the two elements are simultaneously
excited.

Figure 9. Simulated axial ratio in the main beam
direction of the radiating structure shown in Fig. 7
when the two elements are simultaneously excited.

Figure 10. Numerically simulated total electric energy density (|E|2), amplitude (|Ex|2, |Ey|2) and
phase (Φx, Φy) distributions of the electric field radiated by the proposed structure when excited with
both a RHCP TM11 and a RHCP TM21 modes for α = π/4 and δ = 0.

These patterns have the same shape as the corresponding ones reported in the previous Section, and
confirm the possibility to exploit the phase singularity of vortex fields to enable new features in antenna
systems.

Finally, in order to validate the possibility to shape and rotate the radiation pattern of the whole
structure at will, we show in Figs. 11 and 12 the 3D radiation patterns for different values of α and δ,
respectively. These patterns, which are in good agreement with the ones analytically calculated in the
previous section, confirm that by varying α we can tailor the shape of the radiation pattern, while by
varying δ we can change the main beam direction of the antenna. It is interesting that these knobs,
easily controlled through the feeding network, can tailor the shape and directionality of radiation without
affecting its topology, directly associated with the topological robustness of the proposed antenna.
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Figure 11. Numerically calculated gain patterns (expressed in dB) of the patch antenna supporting
the superposition of RHCP TM11 and RHCP TM21 modes for different values of α.

  

Figure 12. Numerically calculated gain patterns (expressed in dB) of the patch antenna supporting
the superposition of a RHCP TM11 and a RHCP TM21 modes for different values of δ.

We remark here that since the ’80, some studies have investigated the generation and superposition
of different modes of radiating systems to manipulate the radiation pattern (see, for instance, [32–35]).
However, our work allows establishing a direct link between the radiation performance of these systems
and the topological properties of composite vortices. Moreover, this physical interpretation could be
useful to further exploring applications of topology in radiation systems.

4. CONCLUSION

In summary, in this paper we have demonstrated that, by properly tailoring different modes of a patch
antenna, we can tailor the complex field structures of composite vortices at microwave frequencies. In
particular, by superimposing the first higher-order mode with the fundamental one of a circular patch
antenna, we can translate and rotate at will the induced phase singularity of the first higher-order mode
by simply changing the amplitude and/or phase of the excitation of the vortex-free fundamental mode.
Moreover, as topological singularities have a direct impact on the radiation pattern of a radiating
element, we have also shown that topological properties of composite vortices can be exploited to
robustly shape and rotate the radiation pattern of a patch antenna. We have validated our approach
performing a proper set of full-wave numerical simulations. Our results provide a reconfigurable and
highly efficient way to generate vortices at microwave frequencies.
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