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Object Locating of Electromagnetic Inclusions in Anisotropic
Permeable Background Using MUSIC Algorithm

Faezeh Shirmehenji, Abolghasem Zeidaabadi-Nezhad*, and Zaker Hossein Firouzeh

Abstract—In this paper, a new formulation is proposed to solve an inverse scattering problem for
locating isolated inclusions within a homogeneous noise-free and noisy biaxial anisotropic permeable
background using MUltiple SIgnal Classification (MUSIC) algorithm. Locations of the dielectric,
permeable, lossless and lossy electromagnetic or both dielectric and permeable inclusions with arbitrary
ellipsoidal shapes can be restored. The numerical study of different inclusions is illustrated, and accuracy
of the method is investigated. The proposed formulation is also investigated for extended inclusions
backgrounds.

1. INTRODUCTION

Inverse scattering of electromagnetic waves is used in many applications such as the imaging of weather
patterns, military radars, and nondestructive testing (NDT) such as the detection of a crack in a
bridge [1–3]. Inverse scattering problems are investigated and solved by qualitative and quantitative
methods. The qualitative methods yield shape and locations of the scatterers. The quantitative methods
besides of shape and location give electromagnetic properties of scatterers, such as permittivity and
permeability [3].

The MUltiple SIgnal Classification (MUSIC) algorithm which is a qualitative method is used only
for point inclusions; however, multipath scattering between the inclusions is not taken into account
by this algorithm. The transmitter and receiver antennas are in the far field of the inclusions.
This algorithm also uses scattering waves to form multi-static response matrix. If the number of
transmitter antennas is more than the number of inclusions, the required condition of MUSIC algorithm
is provided [4]. This non-iterative algorithm needs less computation time than all of the quantitative
methods. So, it can be used as an initial guess for the quantitative methods [5]. Another advantage of
this algorithm is that it uses closed-form function for analysis.

In [6, 7] the MUSIC algorithm is employed to detect small two-dimensional cylinders. This approach
cannot reconstruct the exact contour of large cylindrical scatterers, but it provides some information
of them, such as the number of cylinders and their approximate location. In [8] and [9], this approach
is used for imaging of the perfect conductor cracks; however, shape of the inclusions cannot be
reconstructed. The MUSIC algorithm is also used to detect an inhomogeneous thin dielectric structure
in a two-dimensional homogeneous space in [10] and electromagnetic structure in [11]. Time-Reversal
MUSIC (TRM), investigated in [12–14] and [15], is used for multiple scattering among the scatterers,
but it is not as simple as MUSIC. TRM imaging of extended targets has been investigated in [15].

In [16, 17] the locations of two and three dimensional ellipsoidal inclusions in free space are found,
and the locations of three dimensional cubical inclusions are determined in an anisotropic background
in [18] and ellipsoidal inclusions in [19].
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The macroscopic properties of an anisotropic electromagnetic material can be modeled by a tensor
which describes dependency of the material permittivity and permeability on the wave direction.
Anisotropic electromagnetic material can be modeled as a set of electric and magnetic dipoles with
an arbitrary ellipsoidal shape in vacuum. The tensor of an anisotropic material is denoted by two 3× 3
Hermitian matrices. These matrices can be transformed to diagonal matrices using rotation of the
coordinates system as

[μ] =

[
μ1 0 0
0 μ2 0
0 0 μ3

]
; [ε] =

[
ε1 0 0
0 ε2 0
0 0 ε3

]
(1)

These matrices are used for biaxial materials, with triclinic structures such as mineral examples including
microcline (KAlSi3O8), plagioclase with [μ] = μ0I3 where I3 is the 3 × 3 identity matrix. For uniaxial
materials, such as the revolutionary ellipsoidal dipoles ε1 = ε2, [μ] = μ0I3, like Quartz. For spherical
dipoles ε1 = ε2 = ε3, [μ] = μ0I3 and ε becomes a scalar, like Silicon and Gallium Arsenide [20].
Anisotropic magnetic materials are materials such as ferromagnetic materials including iron oxide (Feo3),
composites, ceramic (BaO6Fe2O3), platinum cobalt (Pt, Co), cobalt samarium (Co, Sm) [21, 22]. For
example [23]

[μ] = μ0

[ 1.6664 − 0.0577i 0.0532 + 0.4425i 0
−0.0532 − 0.4425i 1.6664 − 0.0577i 0

0 0 1

]
(2)

In this work, we use the MUSIC algorithm to find the locations of small electromagnetic inclusions
with both μ and ε as complex scalars with an arbitrary ellipsoidal shape, within a noise-free or noisy
homogeneous biaxial anisotropic permeable background medium, with scalar ε and second order tensor
[μ]. The inclusions take the form of Iα = ∪m

j=1zj + αBj , where Bj ⊂ R
3 and zj ⊂ R

3 are the
boundary and location of the jth inclusion, respectively, and α is the common order of magnitude of
the inclusions dimensions as a small fraction of the wavelength. Let for dielectric inclusions μα = μ0,
εα �= ε0, for permeable inclusions μα �= μ0, εα = ε0, for electromagnetic inclusions μα �= μ0, εα �= ε0,
for combination of dielectric and permeable inclusions μα �= μ0, εα = ε0 or μα = μ0, εα �= ε0, and for
background [μb] �= μ0I3, εb = ε0.

2. FORMULATION OF DIRECT PROBLEM

We firstly solve the direct problem. The inclusions are illuminated by several antennas, and then the
scattered fields are evaluated as scattering matrix, Aα. The transmitting and receiving antennas are
located in the constant z plane, z = za, with different (xi, yi), i = 1, 2, . . . ,

√
n. The inclusions are

illuminated by transmitting antennas, and the scattered field is measured by all receiving antennas. In
fact, we have mono/multi-static conditions. To find the locations of electromagnetic inclusions in an
anisotropic permeable background as shown in Fig. 1 for the background, we have [24]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Bb = μ0

(
H(n)

0 (r)I3 + Mb

)
= μ0

(
H(n)

0 (r)I3 + χmb
H(n)

0 (r)
)

χmb
= μrb

− I3

Mb =
(
μrb

− I3
)
H(n)

0 (r) = ρ · H(n)
0 (r)

ρ =
(
μrb

− I3
) (3)

where χmb
, μrb

, and Mb are magnetic susceptibility, relative permeability tensor, and magnetization

vector of the anisotropic magnetic background, respectively, and H(n)
0 (r) is the incident magnetic field

at the position r due to the nth magnetic dipole element, directed in β̂n as

M(n)
0 (r) = −iωμ0δ(r − rn)β̂nIs (4)

where constant Is is the magnetic moment. The incident electric field from the dual problem of the
preceding problem is given in [17] as

E(n)
0 (r) = iωμ0

[
I3 +

∇∇
k2

]
g
(
r, r′

) · J(n)
0 (r) (5)
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Figure 1. Configuration of the problem.

where J(n)
0 (r) is the current element, and

g
(
r, r′

)
=

eik|r−r′|

4π|r − r′| (6)

is a scalar function. To obtain H(n)
0 (r), since partial differential equation of H(n)

0 (r) is the same as
E(n)

0 (r), using duality theorem [17] it is enough that E by H, H by E, μ by −ε, ε by −μ, and J by −M
are replaced in Eq. (5)

H(n)
0 (r) = iωε0

[
I3 +

∇∇
k2

]
g
(
r, r′

) · M(n)
0 (r) = k2Is

[
I3 +

∇∇
k2

]
g(r, rn) · β̂n (7)

We define the dyadic Green’s function G as

G
(
r, r′

)
=
[
I3 +

∇∇
k2

]
g
(
r, r′

)
(8)

Using Eqs. (7) and (8), H(n)
0 (r) the scattered field at r due to M(n)

0 (r) at position of rn is obtained as

H(n)
0 (r) = iωε0G

(
r, r′

) ·M(n)
0 (r) = k2IsG(r, rn) · β̂n (9)

By considering that ∇× H(n)
0 (r) = −iωε0E

(n)
0 (r) we have

E(n)
0 (r) = iωμ0Is∇× G(r, rn) · β̂n (10)

According to Eqs. (3) and (9), Mb(r) becomes

Mb(r) = k2Is ρ ·G(r, rn) · β̂n (11)

Let Hb(r) be the scattered field at position of r due to Mb(r′), therefore

Hb(r) = iωε0G
(
r, r′

) ·Mb

(
r′
)

= iωε0k
2IsG

(
r, r′

) · ρ · G (
r′, rn

) · β̂n (12)

Eb(r) = −∇×G
(
r, r′

) · Mb

(
r′
)

= −k2Is∇× G
(
r, r′

) · ρ ·G (
r′, rn

) · β̂n (13)

Now H(n)
b (r) is the scattered field at position of r due to M(n)

0 (rn) and Mb(r′) using Eqs. (9) and (12),
hence

H(n)
b (r) = H(n)

0 (r) + Hb(r) = k2IsG(r, rn) · β̂n + iωε0k
2IsG

(
r, r′

) · ρ ·G (
r′, rn

) · β̂n (14)

E(n)
b (r) = E(n)

0 (r) + Eb(r) = iωμ0Is∇× G(r, rn) · β̂n − k2Is∇× G
(
r, r′

) · ρ · G (
r′, rn

) · β̂n (15)
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Let H(n)
b+α be the total scattered fields at position of r due to M(n)

0 (rn), Mb(r′), and inclusions which
satisfy ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∇× E(n)
b+α = iωB(n)

b+α

B(n)
b+α = μ0

(
H(n)

b+α + Mb + M(n)
0

)
∇× H(n)

b+α = J − iωεαE(n)
b+α; (J = 0)

∇× μ−1
α ∇× H(n)

b+α − ω2εαH
(n)
b+α = ω2εα

(
Mb + M(n)

0

)
(16)

For lossy inclusions we have εα = ε′α + jε′′α and μα = μ′
α + jμ′′

α, where ε′′α and μ′′
α are equal to zero for

lossless inclusions. Multiplying Eq. (16) by G(r′, r) · a, where a is an arbitrary vector and integrating
over volume V with boundary ∂V which contains all background and inclusions, we obtain∫

V
dr′

[
∇′ × 1

μα
∇′ × H(n)

b+α

(
r′
)− ω2εαH(n)

b+α

(
r′
)] ·G (

r′, r
) · a

=
∫

V
dr′ ω2εα

(
Mb

(
r′
)

+ M(n)
0

(
r′
)) ·G (

r′, r
) · a (17)

Then to obtain locations of electromagnetic inclusions, Equation (17) must be solved for scattered
fields of them. For electromagnetic inclusions we have μα �= μ0 and εα �= ε0, so from Equation (17),
Equation (17) becomes as [17]∫

V
dr′

[
∇′ × 1

μα
∇′ ×H(n)

b+α

(
r′
)− ω2εαH(n)

b+α

(
r′
)] · G (

r′, r
) · a

=
∮

∂V
dσn · 1

μ0

[
∇′ × H(n)

b+α

(
r′
)× G

(
r′, r

)
+ H(n)

b+α

(
r′
)×∇′ × G

(
r′, r

)] · a +
1
μ0

H(n)
b+α(r) · a

+
m∑

j=1

∫
zj+αBj

dr′
[(

1
μj

I3−μ
−1
b

)
∇′×H(n)

b+α

(
r′
)·∇′×G

(
r′, r

)−ω2(εj−ε0)·H(n)
b+α

(
r′
)·G (

r′, r
)] · a

=
∫

V
dr′ω2εα

(
Mb

(
r′
)
+M(n)

0

(
r′
)) · G (

r′, r
) · a =

ωεα

iε0

(
Hb(r)+H(n)

0 (r)
)
· a =

ωεα

iε0
H(n)

b (r) · a (18)

where εα and μα are values of εj and μj at zj , and ∇′, Bj , and zj are the gradient operator with respect
to variable r′, the boundary of jth inclusion, and location of the jth inclusion, respectively. α is a small
fraction of the wavelength at operating frequency. The first term of Eq. (18) is zero when V tends to
be an infinite sphere because of the radiation condition. Therefore, we have

H(n)
b+α(r) − ωεαμ0

iε0
H(n)

b (r) =
m∑

j=1

∫
zj+αBj

dr′μ0

[
−
(

1
μj

I3 − μ
−1
b

)
∇′ × H(n)

b+α

(
r′
)

·∇′ × G
(
r′, r

)
+ ω2(εj − ε0) ·H(n)

b+α

(
r′
) ·G (

r′, r
)]

(19)

Considering that ∇′×H(n)
b+α(r′) = −iωε(r′)E(n)

b+α(r′) where ε(r′) = ε0 if r′ �= zj and ε(r′) = εj if r′ = zj ,
we have

H(n)
b+α(r) − ωεαμ0

iε0
H(n)

b (r) =
m∑

j=1

∫
zj+αBj

dr′
[
−iωε

(
r′
)
μ0

(
1
μj

I3 − μ
−1
b

)
· ∇′

×G
(
r, r′

) ·E(n)
b+α

(
r′
)

+ μ0ω
2(εj − ε0) · G

(
r, r′

) ·H(n)
b+α

(
r′
)]

(20)

We use expressions of far fields because the transmitters, receivers and background containing inclusions
are in the far-field region.
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3. FAR-FIELD EXPRESSIONS FOR DIRECT PROBLEM

For G(r, r′) and ∇′ × G(r, r′), we define far-field pattern by Λ(r) and Δ(r) matrices as [17]⎧⎪⎨⎪⎩
G (r, r′) =

eikr

4πr
e−ikr̂·r′Δ(r)

∇′ × G (r, r′) = −ik
eikr

4πr
e−ikr̂·r′Λ(r)

(21)

where
Δ(r) = Λ(r)ΛT (r) (22)

where T is the transpose, and

Λ(r) =

[ 0 −r̂z r̂y

r̂z 0 −r̂x

−r̂y r̂x 0

]
(23)

because of ΛT (r) = −Λ(r), so ΔT (r) = Δ(r). We have⎧⎪⎨⎪⎩
G(rn, r) =

[
G(r, rn)

]T
= G(r, rn)

∇× G(r, rn) =
[
∇′ × G(rn, r)

]T
= −∇′ × G(rn, r)

(24)

By some of mathematical manipulations we have{−r̂× (r̂× a) = Δ(r) · a
r̂× a = Λ(r) · a (25)

For G(r, rn) and ∇′ × G(r, rn) in the far-field region we have⎧⎪⎨⎪⎩
G(r, rn) · a = −eikr

4πr
e−ikr̂·rn r̂× (r̂× a)

∇′ × G(r, rn) · a = −ik
eikr

4πr
e−ikr̂·rn r̂× a

(26)

Using Eqs. (9) and (25) in the far-field region of current element M(n)
0 (r) produces H(n)

0 (r) as

H(n)
0 (r) = −k2Is r̂n ×

(
r̂n × β̂n

)
e−ikr̂n·r = k2Is e−ikr̂n·rΔ(rn) · β̂n (27)

Therefore, Mb(r′) from Eq. (11) becomes

Mb

(
r′
)

= k2Is e−ikr̂n·r′ρ · Δ(rn) · β̂n (28)

Then from Eqs. (14) and (15) for H(n)
b (r′) and E(n)

b (r′) we have

H(n)
b

(
r′
)

= k2Ise−ikr̂n·r′Δ(rn) ·
(
I3 + iωε0e

−ikr̂′·r′ ρ · Δ (
r′
)) · β̂n (29)

E(n)
b

(
r′
)

= k2Ise−ikr̂n·r′
(
ωμ0Λ(rn) + ike−ikr̂′·r′ρ · Δ(rn) · Λ (

r′
)) · β̂n (30)

4. POLARIZATION TENSORS

If volume Bj (volume of the jth inclusion) is an ellipsoid with equation of

x2
1

a2
+

x2
2

b2
+

x2
3

c2
= 1, 0 < c ≤ b ≤ a (31)

then its polarization tensor Mi(K;Bj) has the following form [25]

Mi (K;Bj) = (K − 1)|Bj |

⎡⎢⎣
1

(1−A)+KA 0 0
0 1

(1−B)+KB 0
0 0 1

(1−C)+KC

⎤⎥⎦ (32)
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where K is εj

ε0
for dielectric and μj

μ0
for permeable inclusions, and A, B and C are defined as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A =
bc

a2

∫ +∞

1

1

t2

√
t2 − 1 +

(
b

a

)2
√

t2 − 1 +
( c

a

)2

dt

B =
bc

a2

∫ +∞

1

1(
t2 − 1 +

(
b

a

)2
)3

2
√

t2 − 1 +
( c

a

)2

dt

C =
bc

a2

∫ +∞

1

1√
t2 − 1 +

(
b

a

)2 (
t2 − 1 +

( c

a

)2
) 3

2

dt

(33)

In the following asymptotic formulation in accordance with [17], we use expressions far-field and
polarization tensor.

5. ASYMPTOTIC FORMULA OF DIRECT PROBLEM FOR ELECTROMAGNETIC
INCLUSIONS

For any r away from rn and zj , j = 1, . . . ,m, Equation (20) using results of [17] gives

H(n)
b+α(r) − ωεαμ0

iε0
H(n)

b (r) = α3
m∑

j=1

[
−iωεjμ0

(
1
μj

I3 − μ
−1
b

)
· ∇′ ×G(r, zj) ·Mi

(
μj

μ0
;Bj

)
· E(n)

b (zj)

+μ0ω
2(εj − ε0) · G(r, zj) · Mi

(
εj

ε0
;Bj

)
·H(n)

b (zj)
]

(34)

Using Eqs. (21), (29) and (30) for ∇′×G(r, zj), G(r, zj), H
(n)
b (zj) and E(n)

b (zj) to substitute in Eq. (34),
we have

H(n)
b+α(r) − ωεαμ0

iε0
H(n)

b (r) = α3k2Is
eikr

4πr

m∑
j=1

e−ikr̂n·zje−ikr̂·zj

[
−iωεjkμ0

(
1
μj

I3 − μ
−1
b

)
· Λ(r)

·Mi

(
μj

μ0
;Bj

)
·{ωμ0Λ(rn)+ike−ikẑj ·zjρ · Δ(rn) · Λ(zj)}+ω2μ0(εj − ε0)

·Δ(r) · Mi

(
εj

ε0
;Bj

)
· {I3 + iωε0e

−ikẑj ·zj ρ · Δ(zj)} · Δ(rn)
]
· β̂n (35)

where Aα(r̂, r̂n) is the scattered field amplitude from the inclusions. The function Aα(r̂, r̂n) can be
expanded as [17]

H(n)
b+α(r) =

ωεαμ0

iε0
H(n)

b (r) + Aα (r̂, r̂n)
eikr

4πr
+ O

(
1
r2

)
(36)

For arbitrary directions of transmitter and receiver antennas β̂n, ξ̂ at positions of r̂n and r, respectively,
for Aα(r̂, r̂n), we have

ξ̂p · Aα (r̂, r̂n) = α3k2Is
m∑

j=1

e−ikr̂n·zje−ikr̂·zj ξ̂p ·
[
−iωεjk

(
I3 − μ0μ

−1
b

)
· Λ(r)

·Mi

(
μj

μ0
;Bj

)
· {ωμ0Λ(rn) + ike−ik|zj |ρ · Δ(rn) · Λ(zj)} + ω2μ0(εα − ε0) · Δ(r)

·Mi

(
εj

ε0
;Bj

)
· {I3 + iωε0e

−ik|zj |ρ · Δ(zj)} · Δ(rn)
]
· β̂n (37)
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From Eq. (37), we calculate scattered fields for direct problem and then obtain locations of inclusions
by solving inverse problem using MUSIC algorithm as following.

6. THE MUSIC ALGORITHM

In inverse problem, we find locations of inclusions from scattered fields of amplitude matrices Aα of
them using MUSIC algorithm. Let the Singular Value Decomposition (SVD) of the matrix Aα, for the
same number of transmitting and receiving antennas, be denoted by Aα = UΣW∗ where Σ is an n× n
diagonal matrix with non-negative real numbers entries. The diagonal entries σi, i = 1, . . . , n of Σ are
known as the singular values of Aα. The orthogonal projections null space of Aα is given by [17]

Pnoise = I − (USU∗
S) (38)

where S = 1, . . . , 5m for dielectric inclusions, S = 1, . . . , 2m for permeable inclusions, S = 1, . . . , 5m
for electromagnetic inclusions. m is the number of inclusions, and US is the Sth column of U. A test
point z coincides with one of the positions of inclusions, zj if and only if Pnoise(g · a) = 0 or

W(z) =
1

||Pnoise(g · a)|| = ∞ (39)

where for same directions of transmitter and receiver antennas (β̂n = β̂ and ξ̂p = ξ̂), g is

g =
(
e−ikR̂1·zΛ(R1) · ξ̂, . . . , e−ikR̂p·zΛ(Rp) · ξ̂

)
, p = 1, . . . , n (40)

where Λ(Rp) is defined in Eq. (23), and R̂p is a unit vector in direction of Rp, the location of P th
receiver antennas. n is the number of transmitter antennas and a an arbitrary vector.

7. NUMERICAL RESULTS

In this section, we first solve the direct problem by evaluation of the scattering matrix Aα from Eq. (37),
then US is obtained from SVD of Aα. Locations of the inclusions are found using computation of W(z)
according to the MUSIC algorithm, so that wherever W(z) becomes a very large number, that is the
location of one inclusion. The numerical results of electromagnetic inclusions located in a permeable
anisotropic background using MUSIC algorithm are presented. This algorithm is used for transmitting
and receiving antennas placed in rn = Rp in the z = za plane as shown in Figure 1. The frequency is
1GHz, za = 10λ0 +0.05, and the ith transmitting and receiving antenna is at x = −5λ0 + 10√

n−1
(i−1)λ0

and y = −5λ0 + 10√
n−1

(j − 1)λ0 for i, j = 1, . . . ,
√

n. Also, permeability tensor of the background, μrb
,

is chosen as

[μrb
] =

[ 0.829 −0.544i 0
0.544i 0.829 0

0 0 1

]
(41)

Then, the diagonal form of μrb
is obtained as, μrb

= 10−5diag[0.0358, 0.1257, 0.1725]. Also, k1 =
ω
√

μrbxx
ε0μ0 and λ1 = 2π/Re(k1) = 0.5617m, a = 0.25λ1, b = 0.18λ1, c = 0.1λ1 in Equation (31), and

α = 0.1λ1 in Equations (18) and (37).
The number of singular values of Aα is equal to the number of transmitting or receiving antennas,

but it is not necessary to consider all of them. It is enough to consider several of them that are bigger.
Because Aα is compacted it has limitedness of the degrees of freedom for scattered fields. Therefore,
it can affect the number of transmitting/receiving antennas. The number of transmitting/receiving
antennas must satisfy kΩ + 1 where Ω is the dimension of background and k = 2π

λ0
[26]. We assume

that the background is surrounded by a cube with side length 1 m. In this case, the background
dimension becomes Ω = 1.7321. Therefore for frequency range 1–29 GHz, we need n = 38–1053
transmitting/receiving antennas, so we choose n = 72 for 1GHz and n = 342 for 29 GHz.

To find locations of the ellipsoid inclusions, the parameters are chosen as β̂n = [1 ; 0 ; 0], ξ̂ = β̂T
n and

a = [1, 1, 1]. The results of simulations are for Aα which is polluted by Additive White Gaussian Noise,
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AWGN, with 5 dB Signal to Noise Ratios, SNR. In some radars, SNR varies from −25 to 15 dB [27] and
in DF (Direction Finding) is of order 5 dB [28], so we assume typical practical values S = −120 dBm,
bandwidth range from 1–200 kHz for thermal noise as N = kTB, k = 1.3810−23 J

K , T = 290 K; therefore,
the SNR range is 1–24 dB. We choose typical SNR = 5 dB. For real world application, the background
may be Cobalt Samarium alloys [29] and inclusions as impurities and AWGN as thermal noise of ambient.

In this work, as some examples, locations of 5 isotropic ellipsoid inclusions in the anisotropic
medium are found for five cases as follows:

Table 1. Assumed locations of inclusions for the above seven cases (λ0 = 0.3 (m)).

Locations→ z1 (m) z2 (m) z3 (m) z4 (m) z5 (m)

Case↓
1 [−0.4, 0, 0.4] [0.4,−0.4,−0.4] [0.1, 0.4, 0.16] [−0.1, 0.1, 0] [0.3,−0.3, 0]

2 [−0.4,−0.4,−0.4] [0.1, 0.2,−0.44] [−0.3, 0.3,−0.1] [0, 0, 0] [0.3,−0.1,−0.1]

3 [0.4,−0.4,−0.4] [0.1, 0.4, 0.16] [0.2, 0.4,−0.46] [−0.1,−0.3, 0.46] [−0.4,−0.2,−0.3]

4 [−0.1, 0.1, 0.44] [0.45,−0.4, 0.26] [0.2,−0.3,−0.28] [−0.2, 0.4,−0.48] [−0.45, 0,−0.4]

5 [0, 0.4, 0.26] [0.1,−0.3, 0] [0.2,−0.2,−0.26] [0.3, 0.1, 0.34] [−0.4,−0.4,−0.18]

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 2. The case 11. (a) to (f) The singular values of Aα in the noisy background with SNR = 5 dB,
f = [1, 10, 15, 20, 25, 29] GHz, and n = [72, 242, 242, 242, 242, 242], respectively. (g) & (h) Locating of
inclusions in f = 1 GHz and n = 72. (i) & (j) Locating of inclusions in f = 10 GHz and n = 202. (k) &
(l) Locating of inclusions in f = 15 GHz and n = 242. (m) & (n) Locating of inclusions in f = 20 GHz
and n = 272. (o) & (p) Locating of inclusions in f = 25 GHz and n = 312. (q) & (r) Locating of
inclusions in f = 29 GHz and n = 342.
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1. For dielectric inclusions (εj �= ε0 and μj = μ0).
Cases 11 to case 14 are seven examples for case 1 as Table 2.

2. For permeable inclusions (εj = ε0 and μj �= μ0).
3. For lossless electromagnetic inclusions (εj �= ε0 and μj �= μ0).
4. For lossy electromagnetic inclusions (εj �= ε0 and μj �= μ0).

Table 2. Several examples for the cases 1–5 of Table 2.

Case→ 11 12 13 14 2 3 4 5
Material↓

εr1 12 12 10 1.1 1 3 5 4
εr2 1.5 11 10 1.1 1 5 1.1i 1
εr3 2 2 10 1.1 1 7 2.5 + 3i 3
εr4 1.1 10 10 1.1 1 4 2.5i 5i
εr5 3 3 10 1.1 1 8 4i 1
μr1 1 1 1 1 1.1 3 3 + 2i 1
μr2 1 1 1 1 100 6 2i 1.1
μr3 1 1 1 1 4 7 7i 3
μr4 1 1 1 1 1.5 4 4 + i 3 + 2i
μr5 1 1 1 1 5 2 2i 5i

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 3. The case 4. (a) to (f) The singular values of Aα in the noisy background with SNR = 5 dB,
f = [1, 10, 15, 20, 25, 29] GHz, and n = [72, 242, 242, 242, 242, 242], respectively. (g) & (h) Locating of
inclusions in f = 1 GHz and n = 72. (i) & (j) Locating of inclusions in f = 10 GHz and n = 72. (k) &
(l) Locating of inclusions in f = 15 GHz and n = 72. (m) & (n) Locating of inclusions in f = 20 GHz
and n = 72. (o) & (p) Locating of inclusions in f = 25 GHz and n = 72. (q) & (r) Locating of inclusions
in f = 30 GHz and n = 242.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4. The case 4. (a) Random locations of inclusions in 3D. (b) The singular values of Aα in
a noise-free and a noisy background with n = 72, SNR = 5dB, and f = 1GHz. (c) The locations of
the lossy electromagnetic inclusions in a noise-free background in x-z plane for f = 1GHz. (d) The
locations of the lossy electromagnetic inclusions in a noise-free background in y-z plane for f = 1 GHz.
(e) The locations of the lossy electromagnetic inclusions in a noisy background with SNR = 5dB in x-z
plane for f = 1 GHz. (f) The locations of the lossy electromagnetic inclusions in a noisy background
with SNR = 5 dB in y-z plane for f = 1GHz. (g) The singular values of Aα in a noise-free and a noisy
background with n = 242, SNR = 5dB, and f = 15 GHz. (h) The locations of the lossy electromagnetic
inclusions in a noisy background with SNR = 5dB in x-z plane for f = 15 GHz. (i) The locations of the
lossy electromagnetic inclusions in a noisy background with SNR = 5dB in y-z plane for f = 15 GHz.

5. For some combinations of the previous cases.
The locations inclusions for different cases are assumed as in Table 1, and materials of inclusions

for different examples of cases are as considered in Table 2.
By increasing the frequency to 29 GHz, we simulate case 11 and case 4, and the results are shown

in Figures 2 and 3.
We have shown results of, case 11 in Figure 2, and case 4 with random locations in Figures 3 and

4.
At the end, we have investigated the proposed formulation for the extended targets. As shown in

Figure 5, two separate magnetic circles with μ = 2μ0, ε = ε0 are retrieved that are placed in plane
z = 0.2m and z = −0.2m. Each target is extended by 10 point scatterers. Two separate circles or two
extended targets, one times in a noise-free and the other time in a noisy background with SNR = 5 dB,
are shown in Figure 5.

Finally some cases are selected from Table 2 for simulation as in Table 3.
Description for Table 3: In all cases, the differences between singular values Aα for a noise-free

background are very considerable, and all of the inclusions are restored.
In these figures, for solving Eq. (38), we consider Eq. (38) S = 1, . . . ,m or 5m that means the

first m or 5m columns of U matrix are enough to be considered as columns of Pnoise in Equation (38).
These columns span the range Aα or signal subspace, and the remainder span null or noise subspace.
Singular values of Aα for signal subspace have larger values than null or noise subspace. It is observed
from Figure 2 that W(z) is a large number of order of magnitude 4 for a noise-free background, when
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 5. The extended targets for n = 112 and f = 4 GHz. (a) Locations of extended targets in 3D.
(b) Locations of extended targets in 2D. ( (c) The singular values of Aα in a noise-free background. (d),
(e), & (f) The locations of extended targets in a noise-free background. (f) The singular values of Aα

in a noisy background SNR = 5. (h), (i), & (j) The locations of extended targets in a noisy background
with SNR = 5dB.

Table 3. The results of simulation of all cases in Tables 2 and 3 are as following: (for f = 1 GHz,
m = 5 (number of inclusions), and n = 72 (number of transmitting/receiving antennas).

condition→ Difference between signal signal locating of
singular values Aα subspace subspace inclusions

case↓ for SNR = 5dB for nois-free for SNR = 5dB for SNR = 5dB

11 very low 5m(= 25) 1 just εj = 12
12 very low 5m(= 25) 3 just εj = [12, 11, 10]

13 & 14 considerable 5m(= 25) 5 all of them
2 very low 2m(= 20) 3 just μj = [100, 4, 5]
3 low 5m(= 25) 5 all of them
4 low 5m(= 25) 5 all of them
5 very low 19 3 electromagnetic and dielectric

the test locations coincide with the locations of the inclusions; however, for other locations, this number
is a very small order of magnitude equal to or less than 0.

In case 5, we have a combination of inclusions. In this case if we consider norm(Aαd)
norm(Aαp) ratio, as a

criterion of direction, where Aαd and Aαp are for dielectric and permeable inclusions, respectively, it
is equal to 20.65. Therefore, the ratio of norm(Aαp) to norm(Aαd) acts similarly to SNR, and thus



88 Shirmehenji, Zeidaabadi-Nezhad, and Firouzeh

permeable inclusion cannot be restored. Therefore for ε = [4, 1, 3, 5i, 1]ε0 and μ = [1, 1.1, 3, 3+2i, 5i]μ0 ,
the second and last inclusions are not restored.

By increasing the frequency to 29 GHz, the overall locating performance is improved.

8. CONCLUSION

In this paper, a new formulation for scattering matrix using MUSIC algorithm is presented to locate
dielectric, permeable, electromagnetic, lossy inclusions and combination of them in a noise-free and a
noisy biaxial anisotropic background. In this work, the locations of 5 isotropic ellipsoid inclusions in a
permeable anisotropic background are found. This issue is studied for five cases such as dielectric,
permeable, electromagnetic, lossy electromagnetic inclusions, and combination of them. Different
inclusions with small, big, and middle values of εj and μj are also investigated. In all the cases, in
a noise-free background the results are good. The cases with a noisy background are investigated. The
number of singular values of signal subspace of Aα for SNR = 5 dB is less than noise-free background.
Also, in a noise-free background all dielectric inclusions with big or small values of εj simultaneously,
but in a noisy background, the inclusions with higher values of εj , which is closer to real background,
are restored.

At the end, the proposed formulation for the extended targets is investigated, and the simulation
results show that this formulation is appropriate for extended targets.

Therefore, the new proposed formulation of an anisotropic permeable background for object locating
predicts the locations very well in a noise-free background and almost well in a noisy background for
point-like inclusions or extended. As frequency increases from 1 to 29 GHz, the results have become
better.
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