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An Efficient Numerical Technique to Calculate the High Frequency

Diffracted Fields from the Convex Scatterers
with the Fock-Type Integrals

Yang Yang1, Yu Mao Wu1, *, Ya-Qiu Jin1, Haijing Zhou2, Yang Liu2, and Jianli Wang3

Abstract—High frequency electromagnetic (EM) scattering analysis from the scatterers is important
to the computational electromagnetics community. Meanwhile, high frequency diffraction technique,
like the uniform geometrical theory of diffraction (UTD), is very important when the observation point
lies in the transition, shadow and deep shadow regions of the considered scatterer. Furthermore, the
diffracted fields arising from the scatterers via the UTD technique are usually highly oscillatory in
nature, which is named as the Fock type integrals with the Airy function and its derivative involved.
In this work, we propose a Fourier quadrature method to calculate the Pekeris integrals. Moreover,
we first adopt the Fourier quadrature technique to calculate the diffracted fields from the dielectric
convex cylinder with impedance boundary conditions, like the creeping wave fields and NU-diffracted
wave fields. On invoking the Fourier quadrature method, the results of total scattered fields at the fixed
observation points could achieve 1 dB relative errors. Moreover, numerical results demonstrate that the
computational efforts for the oscillatory Pekeris-integrals are independent of wave frequency with the
fixed sampling density and integration limit.

1. INTRODUCTION

In the computational electromagnetic (CEM) community, efficient methods on calculating the high
frequency scattered fields from the scatterers are very important. For instance, high frequency
approximation methods including geometrical optics (GO) and physical optics (PO) methods have
been widely used to calculate the EM scattered field. The classical GO method only takes effect in the
lit region of the considered scatterers. Hence, the diffraction technique is in great need. A geometrical
theory of diffraction (GTD) was developed in [1, 2], which accounts for the EM scattered field entering
into the shadow region where the GO method fails. Several canonical GTD problems about the edge
diffraction, corner or tip diffraction and surface diffracted rays were introduced in [1, 2]. Like the GO
method, Keller gave a similar description about diffracted rays and interpreted the phenomenon of
diffraction given in detail. Therefore, it could account for the field where geometrical rays cannot exist
to overcome the failure of GO field in the shadow region and improve the accuracy in the lit region [3, 4].
Moreover, outside the shadow boundary transition region, the fields via the UTD method automatically
are reduced to the fields via the GTD method, which are discussed in [12, 14, 16] for a smooth convex
surface with the perfectly conducting boundary condition. The scattering space could be divided into
six parts, as shown in Figure 1. It is demonstrated that there are incident and reflected fields in the
illuminated region, namely, region I and the lit part of region II. Rays from the lit region traveling
along the smooth surface contribute to the diffracted field in the deep shadow part as indicated in the
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Figure 1. Rays associated with the plane wave scattered by a smooth convex cylinder.

region III and the shadow part of transition region II, which are known as the Watson’s type creeping
wave. The subregions IV, V and VI are extremely close to the surface of the convex scatterer. They are
commonly referred to as the surface or caustic boundary layer regions. The Taylor series approximation
for the canonical Fock integral is available to describe the field in the close regions of the surface. Also, a
detailed discussion into the behavior and accuracy of UTD especially in the shadow region of a smooth
convex surface is given for a PEC scatterer in [6, 7]. The incremental length diffraction technique,
introduced by Shore and Yaghjian [8–10], also provides an efficient way to calculate the high frequency
diffracted wave fields.

It is noted that there are several canonical UTD solutions in [11, 13, 15] focusing on smooth convex
surfaces with an impedance boundary condition (IBC) which is more practical for predicting the EM
scattered fields. The research on the UTD method for electromagnetic fields scattered by a circular
cylinder with thin lossy coatings as well as the IBC is of great interest for the EM community. Transition
integrals in Pekeris-function form were originally defined by Fock [17]. This kind of integral is formally
the Fourier transform of a slowly varying factor comprising a quotient of terms containing Fock-type
Airy functions and their derivatives. They are also known as the Fock-type integrals that indicate the
mathematical representations of the integrals with the same general features as the Fock functions.
Computational application can use the data in tabular form for the case of the PEC. In the general
case, a heuristic mean for evaluating the Pekeris integral functions has been explored to represent
the Green’s function from a coated cylinder [11]. A uniform GTD treatment procedure of surface
diffraction of impedance and coated cylinder by using the residue series technique was introduced in [18]
which requires the knowledge of the pole locations. Also, the numerical steepest descent path (NSDP)
method [19–23] could be applied to compute the high-frequency PO scattered fields with frequency-
independent computational effort and error controllable accuracy.

The TMz/TEz Pekeris functions crossing the shadow boundary in the transition region of the
considered convex scatterer play an important role in the continuity of the scattered and diffracted
wave fields. The wave fields are highly oscillatory with increasing wave number k of the increasing
incident plane wave, so does the integrand of the Pekeris functions. Although the scattered fields of
the UTD solution were given by means of some particular techniques [11], the generalization of the
integral method for the Pekeris functions with the variation of the wave number remains in question.
The error of the scattered fields via the Fock type integral is another problem that should be taken
into account. This paper presents a general numerical procedure for computing the uniform GTD field
solution for electromagnetic scattering from a circular cylinder when it is illuminated by the normal
incident TMz/TEz plane wave with both perfectly conducting boundary condition and IBC. We use
Fourier quadrature technique [24] to efficiently compute the Pekeris functions. The numerical method
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of integrals in the UTD solution along the transition region provides a simple way for the EM scattering
of a circular cylinder for the special two dimensional (2-D) situation.

The main contribution of this work is that the efficient Fourier quadrature technique is adopted to
calculate the high frequency scattered fields from both the perfectly conducting and dielectric convex
scatterers. This paper is organized as follows. Section 2 gives a vivid depiction about the traveling of
rays and introduces the UTD solution in a scalar form. The situation for the electromagnetic scattered
by a PEC and impedance circular cylinder is illuminated by an incident plane wave [25] which contains
both TM and TE Pekeris functions. In Section 3, the quadrature scheme for these Pekeris functions and
the numerical results of the integrals are presented. Then, the UTD solution in Section 2 is computed
by using the quadrature scheme and compared with the exact eigenfunction solution in Section 4. The
final section summaries the UTD method and numerical procedure in this work. A time dependence of
ejωt is assumed and suppressed throughout the analysis.

2. THE DIFFRACTION PROBLEM FROM THE CONVEX SCATTERER

In this section, a canonical diffraction problem for the EM scattered from a circular cylinder with normal
incident plane wave is considered. As known in [26], the plane wave in a homogeneous medium could be
decomposed into its TE and TM components, respectively. To make the solution simpler, we consider
TMz and TEz incident plane waves where z is the axis of the cylinder. Suppose that an infinitely
long circular cylinder is placed at the origin point with the cylinder axis parallel to the z axis of the
coordinate system in the free space. The incident TMz/TEz plane waves could be described as

uinc = u0e
jkx = u0e

jkρ cos φ (1)

where the wave amplitude u0 is a complex constant with the cylindrical coordinates (ρ, φ) as shown in
Figure 2. When the EM wave is incident upon the perfectly conducting cylinder, it induces an electric
current on the surface of the cylinder, which radiates a secondary scattered field [27]. The superposition
of the incident field uinc and scattered field usca gives us the total field, namely, utot = uinc + usca. The
diffracted ray theory was developed based on GO to give a reasonable explanation about the contribution
of usca in the shadow region [1, 2]; however, it fails in the transition region. To remedy this limitation,
uniform asymptotic results that work well are given in both the shadow and lit parts of the transition
regions of the convex scatterer [5].
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Figure 2. Ray paths in the shadow regions of the
convex cylinder.
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2.1. Shadow Part of the Transition Region of the Considered Scatterer

For the observation point lying in the shadow region as shown in Figure 2, only surface diffracted field
exists while the incident rays vanish because of the circular conducting cylinder. In this situation, the
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incident plane wave gazes at Q1 and propagates along the surface ray path, which is known as the
geodesic curve. After reaching Q2, the rays detach the cylinder and propagate in the free space. The
scheme of the diffracted ray could be described in a simple way with the field at attachment point Q1

multiplying the diffraction coefficients, the spatial attenuation and the phase factor as follows [5]

u(Ps) ∼ −u(Q1)p

√
2
k
· e−jkt

{
e−j(π/4)

2ξ
√

π
[1 − F (kLã)] + P̃s,h(ξ)

}
e−jks (2)

where uinc(Q1) = u0, t = aθ, ξ = pθ ≥ 0, p = (ka/2)1/3 and s2 = ρ2 − a2. The wave number k in free
space is ω

√
μ0ε0, and the function F (X) is known as the Fresnel transition function, as discussed for

the edge diffraction analysis [28]. The asymptotic expressions are adopted to compute the transition
function F (X) for small (X < 0.3) and large (X > 5.5) parameters X, while a linear interpolation
scheme is used for the intermediate values (0.3 ≤ X ≤ 5.5) [28]. Figure 3 gives us the behaviors of
magnitude and phase of the transition function F (X) as a function of X.

The parameters of the Fresnel transition function in Eq. (2) are defined as follows:

L = s, ã = θ2/2 (3)

The Pekeris function P̃s,h(ξ) is the Fock-type integral defined by

P̃s,h(ξ) =
e−j(π/4)

√
π

∫ ∞

−∞

Q̃V (τ)

Q̃w2(τ)
e−jξτdτ =

[(
p∗(ξ)
q∗(ξ)

)
− 1

2
√

πξ

]
e−j(π/4) (4)

with

Q̃ =
{

1, for the TM case,
∂
∂τ , for the TE case. (5)

It is noted that the Pekeris functions in Eq. (4) are obtained under a circular conducting cylinder both
for the TMz (soft case) and TEz (hard case) normal incident plane waves with the subscripts s and h.
The above equation gives us uniform results around the shadow boundaries of the transition region.

2.2. Lit Part of the Transition Region

For the observation points lying in the lit region, the superposition of the incident field uinc and scattered
(reflected) field uref give the total field, namely, utot = uinc + uref , as shown in Figure 4. We could
use the usual geometrical optics (GO) field uGO to describe the scattered field in the deep lit region by
multiplying the field at QR with the reflection coefficient, spatial attenuation, and phase factor. The
Fresnel reflection coefficients of plane waves reflected from perfected conducting plane surfaces are ±1
which could be obtained by Snell’s law. However, it is noted that the GO representation fails at caustics

Figure 4. Reflected path in the lit region.
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as well as in the shadow region. The uniform solution which is valid within the lit region (including the
lit part of the transition region) was introduced as follows [5]:

u(PL)�uinc(PL)+uinc(QR)

{
−

√−4
ξ′

· e−j
(ξ′)3
12

[
e−j(π/4)

2ξ′
√

π

(
1−F

(
kL′ã′

))
+P̃s,h(ξ′)

]}√
ρ̃γ

ρ̃γ+l
e−jkl (6)

Here, the functions F (X) and P̃s,h(ξ′) are the Fresnel transition function and Pekeris function defined
in Equations (2) and (4), respectively. It is noted that the parameters in Equation (6) are different
from those in the shadow region distinguished with a superscript, and expressed as

ξ′ = −2p cos θi ≤ 0 (7)
where θi is the incident angle as well as the reflected angle as shown in Figure 4, and

L′ = l, ã′ =
(ξ′)2

2p2
= 2cos2θi, ρ̃γ =

a cos θi

2
(8)

It is observed that l is the distance of the reflected ray path from QR to PL, and ρ̃γ is the reflected
ray caustic distance. For the observation point r far away from the shadow boundary in the lit region,
F (kL′ã′) → 1 while ξ′ � 0. In this situation, P̃s,h(ξ′) could be expressed in an asymptotic approximation
form as

P̃s,h(ξ′) � ±
√

−ξ′

4
ej

(ξ′)3
12 , ξ′ � 0 (9)

Thus, the field in the deep lit region is reduced to

u(PL) � u′(PL) ∓ uinc(QR)

√
ρ̃γ

ρ̃γ + l
e−jkl = u′(PL) + uinc(QR)Rs,h

√
ρ̃γ

ρ̃γ + l
e−jkl (10)

where Rs,h = ∓1 is the surface reflection coefficient corresponding to the TMz/TEz cases. Moreover, the
uniform result will be reduced to the GO solution in the deep lit region. The second term contribution
is simple by multiplying the field at QR with the reflection coefficients, spatial attenuation and phase
factor to represent the field propagating along the reflected ray path from QR to PL.

2.3. The UTD Solution for the IBC Circular Cylinder

Meanwhile, the computation of EM scattering with the impedance boundary condition (IBC) is very
important. It is convenient to express the boundary condition of a UTD solution for the EM scattered
by a circular impedance cylinder illuminated by the normal incident plane wave as [29, 30]

∂Ez

∂r
− jkCTMEz = 0 (11)

for the TMz field and
∂Hz

∂r
− jkCTEHz = 0 (12)

for the TEz field, where CTE = Zs/η0, CTM = Zs/η0, and Zs is the surface impedance constant. Under
the new impedance boundary conditions, the total field could also be expressed as the UTD form [11].
Following the same procedure as given in Eqs. (2) and (6), P̃s,h(ξ) and P̃s,h(ξ′) could be replaced by

P (X, q) =
e−j(π/4)

√
π

∫ ∞

−∞

V ′(t) − qV (t)
W2

′(t) − qW2(t)
e−jXtdt (13)

where q depends on the impedance of the surface and the local radius of the curvature, with the
expression as

q =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−j

(
ka

2

)1/2 Zs

η0
, for the TE case,

−j

(
ka

2

)1/2 η0

Zs
, for the TM case.

(14)
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where Zs is the surface impedance and η0 =
√

μ0/ε0, namely as the characteristic impedance in the
free space. The index q is divided into TM and TE cases, respectively. The parameter X is associated
with the angular coordinate of the observation point corresponding to ξ in Eq. (2) or ξ′ in Eq. (6). The
point X = 0 defines the point along the shadow boundary. And the observation points with X < 0 and
X > 0 lie in the lit region and shadow region in Figure 1, respectively.

3. THE EFFICIENT NUMERICAL METHOD FOR CALCULATING THE
FOCK-TYPE INTEGRAL

The uniform results in Eqs. (2) and (6) for the circular cylinder could be readily computed except for
the Fock type integrals. The computation of the Fock-type is one of the main contributions in this
paper. These kinds of integrals were originally derived by Fock [17], which are associated with the field
diffracted by a locally cylindrical impedance surface. In this paper, W1,2(t) and W ′

1,2(t) in Eq. (13) are
the Fock-type Airy functions and their derivatives with respect to the argument t. V (t) and V ′(t) are
defined by

2jV (t) = W1(τ) − W2(t). (15)
It is noted that the Pekeris function in Eq. (13) with respect to the IBC cylinder is the general case.
Specifically, we consider the Pekeris function in Eq. (13). The integral P (X, q) is singular as X → 0.
One may extract the singular part by splitting the integration path in Eq. (13) into separate parts over
(−∞, 0) and (0,∞). After substituting Equation (15) into Equation (13), we can get

V ′(t) − qV (t)
W2

′(t) − qW2(t)
=

1
2j

{
W1

′(t) − qW1(t)
W2

′(t) − qW2(t)
− 1

}
(16)

Hence,

P (X, q)=
e−j(π/4)

√
π

{
− 1

2X
+

1
2j

·
∫ 0

∞e−j2π/3

W1
′(t)−qW1(t)

W2
′(t)−qW2(t)

e−jXtdt+
∫ ∞

0

V ′(t)−qV (t)
W2

′(t)−qW2(t)
e−jXtdt

}
(17)

It is indicated from the definition that the integrand of (17) decays as |t| → ∞ with arg(t) ∈ (−π,−2π/3)
so that the lower limit of the integration could be changed from −∞ to ∞e−j2π/3. Hence, the integration
path for the function in Eq. (17) is deformed along the path where the Airy function decays fastest, as
shown in Figure 5. The asymptotic behavior of the integrand appearing in Eq. (17) is easily viewed by
expressing the Fock-type Airy functions as the Miller-type Airy functions

P (X, q) =
e−j(π/4)

√
π

{
− 1

2X
+ P1(X, t) + P2(X, t)

}
(18)

Im(t)

Re(t)

-120o

Poles

Stokes' line

Figure 5. Integration path for the Pekeris integrals P (X, q) on the complex t plane.
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with

P1(X, q) =
e−j(π/6)

2
·
∫ ∞

0

(
e−j(π/6)Ai′(t) + qej(π/6)Ai(t)

)
e−jXrt

ej(π/6)Ai′(tej(2π/3)) + qe−j(π/6)Ai(tej(2π/3))
dt (19)

and

P2(X, q) = −1
2
·
∫ ∞

0

(Ai′(t) − qAi(t)) e−jXt

ej(π/6)Ai′(te−j(2π/3)) + qe−j(π/6)Ai
(
te−j(2π/3)

)dt (20)

The asymptotic approximation forms of the Airy function Ai(t) and its derivative Ai′(t) can be arrived
at

Ai(t) ∼ 1
2π1/2z1/4

e(−2z3/2)/3, (21)

and

Ai′(t) ∼ − z1/4

2π1/2
e(−2z3/2)/3, for |arg(t)| < π (22)

In the integral P1, after substituting the integration variable t with te−j2π/3 and applying
r = e−j2π/3 in the exponential function, we can transform the complex path integral with the path
parameter t ∈ [0,∞). However, this transformation makes the exponential have a parameter r and is
not a Fourier transform form. The properties of the transcend integrals depend on the Airy functions
and their derivatives involved in the denominator of the integrands. We could take the integration
path through the saddle point and leave it along the line of the increasing of the magnitude of the the
exponential part e(−2z3/2)/3 in Eqs. (21) and (22). The magnitude of the exponential part e(−2z3/2)/3

of Eqs. (21) and (22) increases while the phase of the exponential part remains constant as |t| → ∞
along the rays with arg(t) = ±2π/3. Hence, the Miller-type Airy function and its derivative decay
fast according to the asymptotic approximation form. The Airy functions are not oscillatory along
these extreme paths while the e−jXrt factor is seen to produce oscillations with respect to t, whose
rate depends on X. Fortunately, this kind of oscillations produced by the imaginary part of r will be
overridden by the decay factor involved in the Airy function. Hence, we can use a method like the
steepest descent path method according to the work in [24].

Now, we present a quadrature scheme for the integral formed as the following form

I(x) =
∫ NT

0
f(t)e−jXrtdt (23)

Equation (20) fits this form if r is replaced by unity in Eq. (23). The properties of the integrands in
Eqs. (19) and (20) ensure the existence of the associated integrals. The slowly varying function f(t) is
further approximated by a piecewise linear function

f(t) � f(0)Λ0
′(t) +

N∑
n=1

f(tn)Λn(t) (24)

where

Λn(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t − tn−1

T
, t ∈ (tn−1, tn)

tn+1 − t

T
, t ∈ (tn, tn+1)

0, otherwise

(25)

and

Λ0
′(t) =

{ t1 − t

T
, t ∈ (0, t1)

0, otherwise
(26)

with tn = nT . Because f(t) decays fast due to the choice of the integration path passing through the
saddle point, we can neglect the upper integrating range [NT,∞) and use a half triangle numerical
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integration here. After substituting Eq. (25) into Eq. (23), we express the integral in a approximation
form

I(X) � f(0)IΛ′
0(X) + IΛ0(X)

N∑
n=1

f(tn)e−jnXTr (27)

where

IΛ′
0(X) =

∫ T

0
Λ′

0(t)e
−jXtrdt =

1
jXr

− e−jXTr

T (Xr)2
+

1
T (Xr)2

∼ T

2
, as X → 0 (28)

and

IΛ0(X) =
∫ T

−T
Λ0(t)e−jXtrdt = T

sin2(XTr/2)
(XTr/2)2

(29)

We present the approximation results for the Pekeris function in Eq. (13) as parameter q varies.
Specifically, we vary the parameter q along the two paths arg(q) = −π/4 and arg(q) = −3π/4,
respectively. Figures 6(a)–6(b) display the Pekeris transition functions as |q| varies from 0 to 10 for
arg(q) = −π/4 and arg(q) = −3π/4, respectively. For convenience, we get rid of the singular term
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1/(2X) directly. Figures 7(a)–7(b) demonstrate Pekeris functions P̃s,h(ξ) of PEC cylinder in terms of
related functions.

This algorithm is convenient for engineering applications with two parameters for the evaluation
of a given integral: the sampling interval T and the upper limit NT . The influence of truncation could
be obtained by an analytical terms relative to the decay rate of the integrand. The influence of the
sampling interval could be obtained by numerical experiments which is relative to the variation rate of
the slowly varying function f(t). In this work, to reach an acceptable accuracy, a reasonable choice of
sampling density and upper limit T = 0.1 and NT = 18 are adopted.

4. NUMERICAL RESULTS AND DISCUSSIONS

Before evaluating the accuracy of the UTD solution in this paper, the diffracted ray fields in the lit
region are taken into consideration to improve the optical ray solutions. Actually, the diffracted rays
not only exist in the shadow region, but also have contributions in the lit region, as shown in Figure 8.

PL

REFLECTED RAY
PATH

DIFFRACTED
RAY PATH

ui

Figure 8. Reflected and clockwise diffracted paths for the lit region.
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Figure 9. Total scattered field surrounding the circular conducting cylinder of Figure 2 and Figure 4
excited by the (a) TMz and (b) TEz plane wave as a function of φ with φ′ = 0, the radius of the cylinder
is a = 1.59λ, ρ = 4.76λ.

It is noted that the creeping waves propagate along the surface of cylinder with a spatial attenuation
(spreading factor) and decay rapidly. Hence, the total field is actually utot = uinc +uref +udiff with udiff

as the higher order diffracted ray field contributions. A few numerical results of circular conducting
and impedance cylinder are given in Figures 9(a)–10(b). The reason of the scattered fields obtained by
the UTD method agreeing well with the eigenfunction solutions is that the high frequency diffracted
fields via the Pekeris integrals are considered in success. Furthermore, the proposed Fourier quadrature
technique can compute the Pekeris integral efficiently.

To assess the scattered fields of the UTD solution quantitatively and precisely, we simply fix the
observation point in Figure 9(a) with polar angle φ = 2π/3 lying in the transition region. The radius
of cylinder is a = 1.59λ. Figure 11 shows the total fields for both the exact eigenfunction solution
and the Fourier quadrature technique with wave number k ranging from 50 to 150. Relative errors are
also given between these two methods. It is observed that the results of total fields using the Fourier
quadrature technique can only have 1 dB relative error. Figure 12 demonstrates the consumed time
about the aforementioned computation process. It is shown that the Fourier quadrature technique is
frequency-independent because of the constant sampling density T and the integral upper limit NT .

In summary, in this work, a UTD results for the EM scattered fields by a perfect conducting and
impedance circular cylinder is discussed in Section 1. A quadrature scheme for the Pekeris function
is introduced in Section 2 for the engineering electromagnetic applications. Finally, the 2-D scattered
field solution by using the UTD method is adopted in this work. With only a limited quantity of the
Pekeris function to be computed, the expense of the computation time and memory is much less than
other exact method like the method of moment. Importantly, this uniform result is quite accurate and
resolves the discontinuity in the transition region as indicated in Figure 1. The total field in the lit
region given by Eq. (6) is valid from the lit transition region to the deep lit region based on the GO
method and is automatically reduced to the GO solution in the deep lit region. Also, in the shadow
region, it is noted that the original GTD solution fails near the shadow boundary. The UTD version
given by Eq. (2) is valid from the deep shadow region which is the same as the original GTD to the
shadow part transition region.
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Figure 10. Total scattered field surrounding the impedance circular cylinder of Figure 2 and Figure 4
excited by the (a) TMz and (b) TEz plane wave as a function of φ with φ′ = 0, the radius of cylinder
is a = 15λ, ρ = 25λ, the impedance have the values Zs/η0 = 1.5j.
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Figure 11. Total scattered field and relative
error between eigenfunction and the UTD solution
of an impedance circular cylinder excited by the
TMz plane wave as a function of wave number k
with φ = 2π/3, the radius of cylinder is fixed on
a = 1.59λ, ρ = 4.76λ, Zs/η0 = 0.25j.
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Figure 12. Comparison of CPU time with
eigenfunction solution as a function of wave
number k with observation point fixed on (φ, ρ) =
(2π/3, 4.76λ), the radius of cylinder is a = 1.59λ,
Zs/η0 = 0.25j.
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5. CONCLUSION

In this work, we have analyzed the high-frequency scattered fields from the convex cylinder. The UTD
method for computing the electromagnetic scattered fields of the perfect conducting and dielectric
cylinder can significantly improve the solutions of the GO and GTD methods in the shadow region.
Then, the Pekeris-integral which usually aries from the high frequency diffracted fields from the body
via the UTD technique is considered. We propose the Fourier quadrature technique to calculate these
Pekeris integrals which is usually difficult to calculate. Numerical results demonstrate that the Fourier
quadrature technique based UTD method can achieve the frequency-independent computation effort
and error controllable accuracy. These facts allow us to compute the scattered field from the objects.
Finally, the Fourier quadrature technique to calculate the high frequency scattered fields from the convex
scatterers is adopted in this work.
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