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Theory of a Strip Antenna Located at the Interface of an Isotropic
Medium and a Magnetoplasma

Alexander V. Kudrin1, *, Anna S. Zaitseva1,
Tatyana M. Zaboronkova1, 2, and Catherine Krafft3

Abstract—A study is made of the electrodynamic characteristics of an antenna having the form of
a perfectly conducting, infinitesimally thin, narrow strip located at a plane interface of an isotropic
medium and a cold collisionless magnetoplasma. The antenna is perpendicular to an external static
magnetic field superimposed on the plasma medium and is excited by a time-harmonic given voltage.
Singular integral equations for the antenna current are obtained in the case of an infinitely long strip
conductor. Based on the solution of these equations, the current distribution and input impedance of
the antenna are found for nonresonant and resonant frequency ranges of the magnetoplasma. The limits
of applicability of an approximate approach employing the transmission line theory for determining the
antenna characteristics are established. Within the framework of this approach, the results obtained
are generalized to the case of a finite-length strip antenna.

1. INTRODUCTION

Electrodynamic characteristics of metal antennas in a magnetoplasma have been studied in many
papers (see, e.g., [1–16] and references therein). The interest in the subject is stipulated by the
wide use of such transmitters in various experiments in laboratory and space plasmas [17–22], and
is stimulated continuously by the needs of practical applications such as diagnostics of plasma media,
space communication, etc. In earlier theoretical works, antennas with given currents in a homogeneous
magnetoplasma have been considered [1–7]. Such an approach is applicable to electrically small sources.
For antennas with arbitrary sizes, the problem of finding the actual electromagnetic characteristics
requires knowledge of the current distribution along the antenna wire. This problem, which turns out
to be very difficult even for the simplest antennas operated in magnetized plasmas, has been solved only
for some canonical antenna geometries [9–16]. Recently, increased attention has been paid to the features
of excitation and propagation of electromagnetic waves in the presence of cylindrical magnetized plasma
structures [23–26], and new results for loop antennas located on the surface of such structures have been
obtained using the integral equation method [27, 28]. In particular, the current distribution and input
impedance of a circular loop antenna located on the surface of an axially magnetized plasma column in
a homogeneous dielectric medium have been found. It has been shown that the presence of a plasma
column can lead to significant changes in the electrodynamic characteristics of the antenna compared
with the cases of its operation in a homogeneous dielectric or plasma medium with the corresponding
parameters.

Of no less interest is the problem of finding the characteristics of antennas located at a plane
interface of a magnetoplasma and an isotropic medium. In particular, this problem is especially
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topical for the development of plasma diagnostic methods that employ waves guided by planar dielectric
structures in a plasma medium [29, 30]. Although an attempt has recently been made towards the theory
of an antenna located at the interface of such media in [31], the analysis of that work is restricted to
the special case of a rather dense resonant magnetoplasma, and is inapplicable for arbitrary plasma
parameters. It is the purpose of this work to generalize the approach of [31] to the case where the
magnetoplasma on one side of the interface between two media may have arbitrary parameters.

In this article, using the integral equation method, we solve a model problem of the current
distribution and input impedance of a strip antenna that is perpendicular to an external static magnetic
field and located at a plane interface of an isotropic medium and a cold collisionless magnetoplasma.
We study the antenna characteristics in the cases of both a nonresonant and resonant magnetoplasma.
Recall that the magnetoplasma is nonresonant if the diagonal elements of its dielectric tensor have
identical signs, and is resonant otherwise [9–11]. As is known, the refractive index surfaces of the
propagating normal waves of a nonresonant magnetoplasma are closed. On the contrary, for a resonant
magnetoplasma, the refractive index of one of the normal waves goes to infinity at a certain angle
between the wave vector and the direction of the external magnetic field [11]. It will be shown in what
follows that the antenna characteristics are essentially different in these two cases.

Our article is organized as follows. In Section 2, we present the formulation of the problem.
In Section 3, we describe the salient steps of the derivation of integral equations for the antenna
current. Section 4 deals with the solution of these integral equations. In Section 5, we give analytical
and numerical results for the electrodynamic characteristics of an infinitely long antenna and discuss
generalization of these results to the case of a finite-length antenna. Section 6 presents conclusions
following from the performed analysis.

2. FORMULATION OF THE PROBLEM

Consider an infinitely long antenna, which is oriented along the x axis of a Cartesian coordinate system
and has the form of a perfectly conducting, infinitesimally thin, narrow strip of width 2d lying in the xz
plane (see Figure 1). It is assumed that this plane coincides with the interface of a magnetoplasma and
an isotropic medium. The external static magnetic field B0 is aligned with the z axis. The half-space
y < 0 is filled with a homogeneous cold collisionless magnetoplasma, whose dielectric permittivity tensor
has the form

ε = ε0

(
ε −ig 0
ig ε 0
0 0 η

)
, (1)

where ε0 is the permittivity of free space. Expressions for the elements of the tensor in Equation (1)
are given elsewhere [32].

Homogeneous medium in the half-space y > 0 is isotropic and has a dielectric permittivity ε̃a = ε0εa.
In the case where the medium in the region y > 0 is free space, one should put εa = 1.

The current of the antenna is excited by a time-harmonic (∼ exp(iωt)) given voltage that creates
an electric field with the component Eext

x , which is nonzero for y = 0 and |z| < d in a narrow gap
|x| ≤ Δ:

Eext
x (x, 0, z) =

V0

2Δ
[U(x + Δ) − U(x − Δ)] [U(z + d) − U(z − d)] . (2)

Here, V0 is the complex amplitude of the voltage applied to the gap, Δ is the gap half-width, and U is
a Heaviside function. The distribution of Eext

x for |z| < d can be represented by the Fourier integral

Eext
x (x, 0, z) =

k0

2π

∫ ∞

−∞
V (nx) exp(−ik0nxx)dnx, (3)

where
V (nx) = V0

sin(k0nxΔ)
k0nxΔ

(4)

and k0 is the wave number in free space.
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Figure 1. Geometry of the problem.

The density J of the electric current excited in the antenna by an external field that is given by
Equation (3) can be sought in the form

J = x0I(x, z)δ(y), (5)

where |z| < d and δ(y) is a Dirac function. The surface density I(x, z) of the current admits the
following representation:

I(x, z) =
k0

2π

∫ ∞

−∞
I(nx, z)exp(−ik0nxx)dnx. (6)

To find the distribution I(x, z), we express the tangential components Ex and Ez of the electric
field excited by current (5) via the Fourier transform I(nx, z) of the surface current density and take
into account boundary conditions for the field components at the interface y = 0. In addition, we make
use of boundary conditions for the tangential components of the electric field on the antenna surface
(y = 0 and |z| < d):

Ex + Eext
x = 0, (7)
Ez = 0. (8)

The above-described procedure yields integral equations for the unknown quantity I(nx, z) and thus
reduces the problem of determining the antenna current to the solution of the corresponding integral
equations.

3. INTEGRAL EQUATIONS FOR THE ANTENNA CURRENT

Since the procedure of the derivation of integral equations for the antenna current was discussed in earlier
work [31], we here describe only briefly the salient steps of this derivation and introduce notations that
will be used in the further analysis generalizing the results of that work. We represent the antenna-
excited field in the form[

E(x, y, z)
H(x, y, z)

]
=

k2
0

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
E(nx, y, nz)
H(nx, y, nz)

]
exp[−ik0(nxx + nzz)]dnxdnz. (9)
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It is a straightforward matter to show from the Maxwell equations that the quantities Ex,y(nx, y, nz)
and Hx,y(nx, y, nz) can be expressed via the components Ez(nx, y, nz) and Hz(nx, y, nz), which satisfy
the following system of equations in the region y < 0 [31]:

∂2Ez

∂y2
+ k2

0

(
η − n2

x − η

ε
n2

z

)
Ez = −ik2

0

g

ε
nzZ0Hz, (10)

∂2Hz

∂y2
+ k2

0

(
ε2 − g2

ε
− n2

x − n2
z

)
Hz = ik2

0

g

ε
ηnzZ

−1
0 Ez, (11)

where Z0 is the impedance of free space. For the region y > 0, one should put ε = η = εa and g = 0
in Equations (10) and (11). Solutions for the fields must satisfy the radiation condition at infinity
(|y| → ∞), as well as the following boundary conditions for the tangential field components at the
interface y = 0:

Ex(nx, y − 0, nz) = Ex(nx, y + 0, nz), Ez(nx, y − 0, nz) = Ez(nx, y + 0, nz),
Hx(nx, y − 0, nz) = Hx(nx, y + 0, nz), Hz(nx, y − 0, nz) = Hz(nx, y + 0, nz) − I(nx, nz),

(12)

where

I(nx, nz) =
∫ d

−d
I(nx, z

′) exp(ik0nzz
′)dz′. (13)

It is seen from Equations (12) and (13) that the field components Ex, Ez, and Hx are continuous at
the interface, whereas the component Hz is continuous at y = 0 for |z| > d and undergoes a jump
corresponding to surface current (6) for |z| < d.

Upon solution of Equations (10) and (11), the Fourier-transformed tangential field components are
written as

Ex(nx, y, nz) = i

2∑
k=1

Bk
αknx + iny,k

n2
⊥k

exp(ik0ny,ky),

Ez(nx, y, nz) = iη−1
2∑

k=1

Bknk exp(ik0ny,ky),

Hx(nx, y, nz) = Z−1
0

2∑
k=1

Bknk
βknx − iny,k

n2
⊥k

exp(ik0ny,ky),

Hz(nx, y, nz) = −Z−1
0

2∑
k=1

Bk exp(ik0ny,ky)

(14)

for y < 0, and as

Ex(nx, y, nz) = − 1
n2
⊥

(C1nxnz + C2ny) exp(−ik0nyy),

Ez(nx, y, nz) = C1 exp(−ik0nyy),

Hx(nx, y, nz) =
1

Z0n
2
⊥

(C1εany − C2nxnz) exp(−ik0nyy),

Hz(nx, y, nz) = Z−1
0 C2 exp(−ik0nyy)

(15)

for y > 0. Here, Bk and Ck are the coefficients determined using boundary conditions (12), while the
other quantities are given by the formulas

n2
⊥k = (2ε)−1

{
ε2 − g2 + εη − (η + ε)n2

z + (−1)k
[
(η − ε)2n4

z

+2(g2(η + ε) − ε(η − ε)2)n2
z + (ε2 − g2 − εη)2

]1/2
}

,
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nk = − ε

nzg

[
n2

z + n2
⊥k(nz) +

g2

ε
− ε

]
, ny,k =

[
n2
⊥k(nz) − n2

x

]1/2
,

αk =
[
n2

z + n2
⊥k(nz) − ε

]
g−1, βk = nzn

−1
k , k = 1, 2,

n2
⊥ = εa − n2

z, ny = (εa − n2
x − n2

z)
1/2.

(16)

In order to ensure the fulfillment of the radiation condition at infinity, i.e., at |y| → ∞, the branches of
the functions ny,k and ny in Equations (14) and (15) should be chosen so as to satisfy the inequalities
Im ny,k < 0 and Im ny < 0. If the left-hand side of either of these inequalities vanishes, one should
introduce a minor loss in the corresponding medium and, upon choosing the appropriate branch, go
over to the limiting case of a loss-free medium.

After some algebra, we arrive at the following expressions for the tangential electric-field
components Ex(x, y, z) and Ez(x, y, z) at the interface y = 0:

Ex(x, 0, z) =
k0

2π

∫ ∞

−∞
dnx

∫ d

−d
Kx(nx, z − z′)I(nx, z′) exp(−ik0nxx)dz′, (17)

Ez(x, 0, z) =
k0

2π

∫ ∞

−∞
dnx

∫ d

−d
Kz(nx, z − z′)I(nx, z′) exp(−ik0nxx)dz′. (18)

Here,

Kx(nx, ζ) =
iZ0k0

2π

∫ ∞

−∞

2∑
k=1

ekB̃k

D
exp(−ik0nz|ζ|)dnz, (19)

Kz(nx, ζ) = sgn ζ
iZ0k0

2πη

∫ ∞

−∞

2∑
k=1

nkB̃k

D
exp(−ik0nz|ζ|)dnz, (20)

where ζ = z − z′. The coefficients B̃1,2 and other quantities in Equations (19) and (20) are determined
by the expressions

B̃1 = − e2
η

εa

nxnz

n2
⊥

+ ih2
η

εa

n2ny

n2
⊥

− n2
εa − n2

x

εan2
⊥

,

B̃2 = e1
η

εa

nxnz

n2
⊥

− ih1
η

εa

n1ny

n2
⊥

+ n1
εa − n2

x

εan2
⊥

,

D = n2

[
η

εa
e1h2 +

iny

n2
⊥

(e1 +
η

εa
h2)
]
− n1

[
η

εa
e2h1 +

iny

n2
⊥

(e2 +
η

εa
h1)
]

− (n2 − n1)
εa − n2

x

εan2
⊥

+
η

εa

nxnz

n2
⊥

(e1 + h1 − e2 − h2),

ek =
αknx + iny,k

n2
⊥k

, hk = −βknx − iny,k

n2
⊥k

, k = 1, 2.

(21)

Since the tangential components of the electric field are continuous at the interface of a magnetoplasma
and an isotropic medium, either the coefficients Bk or the coefficients Ck can be used when deriving the
expressions for these field components at y = 0. In Equations (19) and (20), we took the coefficients
Bk and made use of the fact that Bk = Z0B̃kI(nx, nz)/D.

From boundary conditions in Equations (7) and (8) for the tangential components of the electric
field on the antenna surface with allowance for Equations (17)–(20), integral equations can be obtained
for the Fourier transform I(nx, z) of the surface current density. From Equation (7), we have∫ d

−d
Kx(z − z′)I(nx, z′)dz′ = −V (nx). (22)

The boundary condition in Equation (8) gives∫ d

−d
Kz(z − z′)I(nx, z′)dz′ = 0. (23)
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In integral Equations (22) and (23), it is assumed that |z| < d, and the integrals, which turn out to be
singular for z − z′ → 0, are understood in the sense of Cauchy’s principal value.

4. SOLUTION OF INTEGRAL EQUATIONS FOR THE ANTENNA CURRENT

The behavior of solutions of the integral equations for the antenna current is determined by the
properties of their kernels in Equations (19) and (20). In what follows, we show that in the case
of a fairly small antenna width 2d, where the inequalities

d � Δ, d � |η/ε|1/2Δ, (k0d)2 max {|εa|, |ε|, |g|, |η|} � 1 (24)

are fulfilled, the properties of these kernels allow one to obtain an approximate solution of Equations (22)
and (23) in closed form. To this end, we represent the kernels of these equations as the sums of singular
and regular terms:

Kx(nx, ζ) = K(s)
x (nx, ζ) + K(r)

x (nx, ζ),

Kz(nx, ζ) = K(s)
z (nx, ζ) + K(r)

z (nx, ζ),

where the quantities K
(s)
x (nx, ζ) and K

(s)
z (nx, ζ) comprise singular terms that tend to infinity at ζ → 0,

whereas the quantities K
(r)
x (nx, ζ) and K

(r)
z (nx, ζ) remain finite (regular) in this limit. It can be shown

that

K(s)
x (nx, ζ) =

iZ0k0

π

[(
βn2

xεa

ε2
a + |εη| +

(1 − β)n2
x

εa + |εη|1/2 sgn ε
− 1

2

)∫ ∞

0

cos(k0nz|ζ|)√
n2

z + n2
x

dnz

+
iβn2

x|εη|1/2

ε2
a + |εη|

∫ ∞

α|nx|

cos(k0nz|ζ|)√
n2

z − (αnx)2
dnz

]
, (25)

K(s)
z (nx, ζ) =

Z0k0nx

π

[(
βεa

ε2
a + |εη| +

1 − β

εa + |εη|1/2 sgn ε

)∫ ∞

0

nz sin(k0nz|ζ|)√
n2

z + n2
x

dnz

+
iβ|εη|1/2

ε2
a + |εη|

∫ ∞

α|nx|

nz sin(k0nz|ζ|)√
n2

z − (αnx)2
dnz

]
sgn ζ. (26)

Hereafter, β = 0 if sgn ε = sgn η, β = 1 if sgn ε �= sgn η, and α = |ε/η|1/2.
Formulas (25) and (26) can be derived by passing to the limit nz → ∞ in the integrands of

Equations (19) and (20), respectively, with allowance for the identity

lim
nz→∞

(√
n2

z + n2
x

nz
− nz√

n2
z + n2

x

)
= 0. (27)

It can be verified that in the case where the half-space y < 0 is filled with a resonant magnetoplasma,
for which sgn ε �= sgn η, Equations (25) and (26) are reduced to the results of [31] if the plasma is
sufficiently dense such that |εη| � ε2

a. In contrast to [31], the representations in Equations (25) and
(26) turn out to be valid for arbitrary plasma parameters, regardless of the signs and values of ε and η.

The regular parts K
(r)
x (nx, ζ) and K

(r)
z (nx, ζ) of the kernels are found by subtracting the limiting

quantities, which are obtained in the above-described way, from the corresponding integrands of
Equations (19) and (20). We do not present very cumbersome formulas for K

(r)
x (nx, ζ) and K

(r)
z (nx, ζ)

here, because they are derived straightforwardly using the above explanations. Note that in the case of a
narrow strip, i.e., under conditions in Equation (24), one can put ζ = 0 when calculating the quantities
K

(r)
x (nx, ζ) and K

(r)
z (nx, ζ) in view of their regularity. In this case, the properties of the function

K
(r)
z (nx, ζ) make it possible to write K

(r)
z (nx, 0) = 0 (see [27]). In turn, the quantity K

(r)
x (nx, 0) can

generally be calculated only numerically.
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The integrals in Equations (25) and (26) can be evaluated analytically [33, 34] as follows:∫ ∞

0

cos(k0nz|ζ|)√
n2

z + n2
x

dnz = K0(k0|nxζ|),
∫ ∞

α|nx|

cos(k0nz|ζ|)√
n2

z − (αnx)2
dnz = −π

2
Y0(k0α|nxζ|),

∫ ∞

0

nz sin(k0nz|ζ|)√
n2

z + n2
x

dnz = |nx|K1(k0|nxζ|),
∫ ∞

α|nx|
nz sin(k0nz|ζ|)√

n2
z − (αnx)2

dnz = −π

2
α|nx|Y1(k0α|nxζ|).

(28)

Here, Km and Ym are modified Bessel functions of the second kind and Bessel functions of the second
kind of order m, respectively, and the evaluation of the last integral in Equation (28) was performed
within the framework of the theory of tempered distributions. With allowance for the well-known
small-argument approximations of cylindrical functions, in the limit ζ → 0 we have

K(s)
x (nx, ζ) = − iZ0k0

2πχ

(
ln

k0|ζ|
2

+ ln |nx|+ γ + F

)
, (29)

K(s)
z (nx, ζ) =

Z0

2πεeff

nx

ζ
, (30)

where
χ =

εeff

n2
x − εeff

, (31)

γ = 0.5772 . . . is Euler’s constant, and the quantity F for sgn ε �= sgn η is defined as

F = iχ
n2

x|εη|1/2

ε2
a + |εη| ln

|ε|
|η| . (32)

In the opposite case where sgn ε = sgn η, one should put F = 0. The quantity εeff is determined by the
expression

εeff =
εp + εa

2
, (33)

where

εp =

{
(εη)1/2 sgn ε if sgn ε = sgn η,

−i|εη|1/2 if sgn ε �= sgn η.
(34)

It should be noted that rigorously speaking, approximate expressions (29) and (30) cease to be
valid for sufficiently large values of |nx|. However, as is evident from what follows, the |nx| values
significantly exceeding (k0Δ)−1 affect only slightly the results of calculating the antenna current.
Hence, the fulfillment of the first two inequalities in Equation (24) ensures the applicability of the
used approximations.

After the above algebra, integral Equations (22) and (23) are rewritten for |z| < d as∫ d

−d
I(nx, z

′) ln
k0|z − z′|

2
dz′ = − i2πχ

Z0k0
V (nx) − S(nx)

∫ d

−d
I(nx, z

′)dz′, (35)

∫ d

−d
nx

I(nx, z
′)

z − z′
dz′ = 0, (36)

where
S(nx) = i2πχ(Z0k0)−1K(r)

x (nx, 0) + ln |nx| + γ + F. (37)

It can be shown [13, 16] that the solutions of Equations (35) and (36) are the main terms of asymptotics
of the solutions of the initial integral Equations (22) and (23) when inequalities (24) are fulfilled. In
what follows, we restrict ourselves to analyzing only Equations (35) and (36).
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The solution of Equation (35) with a logarithmic kernel, which also satisfies Equation (36) with
Cauchy’s kernel [35], can be obtained in closed form as

I(nx, z) =
2i

Z0k0

√
d2 − z2

χV0

ln(4/k0d) − S(nx)
sin(k0nxΔ)

k0nxΔ
. (38)

Substituting Equation (38) into Equation (6), we arrive at the formula for the surface current density
I(x, z). Integrating I(x, z) over z from −d to d yields the total current IΣ(x) of the antenna in the cross
section x = const:

IΣ(x) =
iV0

Z0

∫ ∞

−∞

sin(k0nxΔ)
k0nxΔ

χ exp(−ik0nxx)
ln(4/k0d) − S(nx)

dnx. (39)

Note that the singularity of the function I(x, z) at |z| → d, which corresponds to the Meixner condition
at the edge [36], turns out to be integrable, so that the total current of the antenna is finite.

5. CURRENT DISTRIBUTION AND INPUT IMPEDANCE OF THE ANTENNA

The integral representation in Equation (39) admits only a numerical study in the general case.
However, if the condition ln(4/k0d) � |S(nx)| holds for the values |nx| < (k0Δ)−1, which give the
main contribution to the integral in Equation (39), this integral can be evaluated analytically and the
antenna current takes the following form for |x| > Δ:

IΣ(x) =
V0

Z0

k0εeff

h

π

ln(4/k0d)
exp(−ih|x|), (40)

where
h = k0ε

1/2
eff . (41)

In the case where the current-distribution constant h is complex-valued, it is assumed that Im h < 0.
An approximate representation of Equation (40) corresponds to the transmission line theory.

Accordingly, the conditions under which this representation was derived determine the limits of
applicability of this theory for a strip antenna located at the interface of the media considered. It is
evident that if the magnetoplasma on one side of the interface y = 0 is nonresonant, i.e., sgn ε = sgn η,
and (εη)1/2sgn ε+εa > 0, then the current behavior is the same as that for an antenna in a homogeneous
transparent medium with the dielectric permittivity εeff . However, in the case (εη)1/2sgn ε + εa < 0,
which is possible for the nonresonant magnetoplasma with ε < 0 and η < 0, the quantity h turns out
to be purely imaginary and the antenna current exponentially decays with distance from the excitation
gap. If the magnetoplasma is resonant such that sgn ε �= sgn η, the quantity εeff and hence the current-
distribution constant h are complex, so that the current shape is characterized by spatial oscillations
whose amplitude decays along the antenna conductor with distance from the antenna input.

Using the current distribution IΣ(x), we can find the input impedance Z of the antenna using the
formula Z = V0/IΣ(Δ). Within the framework of the approximation in Equation (40) for the current
under the additional condition |h|Δ � 1, we obtain

Z =
Z0

π

k0

h
ln
(

4
k0d

)
. (42)

It is important that the above results can be extended to the case of a finite-length antenna if we
represent it as a transmission line of length 2L. Following the standard approach [15], one can find the
current of such an antenna in the form

IΣ(x) =
I0

sin(hL)
sin [h(L − |x|)] , (43)

where |x| < L, I0 = IΣ(0) is the current at the antenna input, and h is determined by Equation (41).
The quantity I0 is found as I0 = V0/ZL, where ZL is the input impedance of the finite-length antenna.
For the known current shape IΣ(x)/I0, the impedance ZL can be calculated using the induced EMF
method [37]. In the case of an electrically short antenna where |h|L � 1, Equation (43) yields a
“triangular” distribution of current along the antenna conductor (|x| < L):

IΣ(x) = I0(1 − |x|/L). (44)
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Since detailed calculations of the antenna characteristics for all possible cases would take up much
space, we now dwell on the most interesting examples of the antenna-current behavior. Namely,
we will discuss the distribution of the antenna current if the quantity h is purely imaginary or
complex. We assume that the angular frequency ω is much higher than the lower hybrid frequency
of a magnetoplasma [23]. In this case, we can neglect contribution of the ion motion to the elements of
the plasma dielectric tensor in Equation (1) and represent them as follows [32]:

ε = 1 +
ω2

p

ω2
H − ω2

, g = − ω2
pωH

(ω2
H − ω2)ω

, η = 1 − ω2
p

ω2
, (45)

where ωH and ωp are the gyrofrequency and the plasma frequency of electrons, respectively. The
calculations were performed for the plasma parameters corresponding to the laboratory conditions:
ωH = 3.5×109 s−1 (external static magnetic field B0 = 200 G) and 4×1010 s−1 ≤ ωp ≤ 8×1010 s−1 (the
plasma density varies in the interval between 5× 1011 cm−3 and 2× 1012 cm−3). The isotropic medium
in the region y > 0 is free space, i.e., εa = 1.

First, we consider the frequency ω = 5×109 s−1 lying in the range ωH < ω < ωp, for which ε < 0 and
η < 0. In this case, the magnetoplasma in the half-space y < 0 is nonresonant and, moreover, εeff < 0.
Figure 2 shows the snapshots of the distributions of the antenna current, normalized to its value at x = 0,
along the infinitely long antenna at the indicated frequency for k0d = 1.67 × 10−3, Δ = 5d, and three
values of the plasma frequency ωp = 4 × 1010 s−1 (εeff = −43.75), ωp = 5.64 × 1010 s−1 (εeff = −88.5),
and ωp = 8 × 1010 s−1 (εeff = −178.1), which correspond to dashed curves 1, 2 and 3, respectively.
Note that for the chosen parameters, the results of calculations by Equation (39) and approximate
formula (40) coincide with graphical accuracy. This fact implies that the off-diagonal element g of the
plasma dielectric tensor affects the current distribution only slightly. Indeed, this element contributes
only to the regular parts of the kernels of integral equations for the antenna current. These parts are
not taken into account within the framework of the transmission line theory. Hence, the results yielded
by this theory can be obtained even easier, namely, by using the uniaxial tensor with g = 0 instead of
general tensor (1). The exponential decay of current with distance from the antenna input is explained
by the fact that the quantity h is purely imaginary in the case considered. The solid lines with respective
labels in Figure 2, which correspond to the chosen values of the plasma density ωp, present the results
of calculations by formula (43) for a finite antenna with the dimensionless half-length k0L = 0.33. This
value is marked by the vertical dash-dot line in the figure. Note that for solid curves 1, 2, and 3 in
Figure 2, |Im h|L = 2.2, |Im h|L = 3.14, and |Im h|L = 4.45, respectively.

Figure 3 shows the current distributions of the antenna in the case of a resonant magnetoplasma
where sgn ε �= sgn η at the frequency ω = 109 s−1. In this case, k0d = 3.33 × 10−4. We used the
previous value of ωH , but put k0L = 0.167 for a finite-length antenna. Curves 1, 2, and 3, which are
plotted for the same plasma frequencies as those in Figure 2, correspond to εeff = 0.5 − i2.37 × 102,
εeff = 0.5− i4.73×102, and εeff = 0.5− i9.45×102, respectively. Since the quantity εeff is now complex-
valued, the snapshots of the antenna current have oscillations that exponentially decay with distance
from the antenna input.

It is seen in Figures 2 and 3 that the current distribution of the infinitely long antenna satisfactorily
approximates the current behavior of the finite-length antenna for |Im h|L > 3, excepting small regions
near the ends z = ±L. In this case, the input impedance of an infinitely long antenna can be used as a
good approximation for the impedance ZL of the antenna of finite length. However, one should bear in
mind that in the case of a purely imaginary h, the impedance given by Equation (42) has a zero real
part. To determine ReZ, the regular part of kernel (19) must be taken into account. In contrast to this,
in the case of a resonant magnetoplasma where h is complex, Equation (42) yields both the real and
imaginary parts of the antenna impedance. This is due to the fact that the transmission line theory for
a resonant magnetoplasma accounts for the excitation of quasielectrostatic waves in the plasma, which
are known to predominantly determine the radiation resistance of a thin-wire antenna [3, 11, 16].

Finally, we note that the current distribution in Equation (43) goes over to Equation (40) in the
limit |Im h|L � 1. Hence, increasing the antenna length up to values much greater than the scale
|Im h|−1 of the current decay along the antenna wire is not expedient since this is no more accompanied
by a change in the antenna characteristics.
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Figure 2. Current distributions along the infinitely long antenna (dashed lines) and the finite-length
antenna (solid lines) for ω = 5 × 109 s−1 and ωH = 3.5 × 109 s−1 in the cases where ωp = 4 × 1010 s−1

and |Im h|L = 2.2 (curves 1), ωp = 5.64× 1010 s−1 and |Im h|L = 3.14 (curves 2), and ωp = 8× 1010 s−1

and |Im h|L = 4.45 (curves 3). The vertical dash-dot line indicates the k0L value on the horizontal axis.
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Figure 3. The same as in Figure 2 but for ω = 109 s−1 in the cases where ωp = 4 × 1010 s−1 and
|Im h|L = 1.81 (curves 1), ωp = 5.64 × 1010 s−1 and |Im h|L = 2.56 (curves 2), and ωp = 8 × 1010 s−1

and |Im h|L = 3.62 (curves 3).



Progress In Electromagnetics Research C, Vol. 84, 2018 265

6. CONCLUSION

In this work, through the use of the theory of singular integral equations, we have considered the problem
of finding the electrodynamic characteristics of a perfectly conducting, narrow strip antenna that is
perpendicular to the external static magnetic field and located at a plane interface of a magnetoplasma
and an isotropic medium. The cases of both a resonant and nonresonant plasma occupying the half-space
on one side of the interface have been analyzed. For an infinitely long strip, we have obtained the current
distribution and input impedance of such an antenna and established conditions under which these
characteristics admit relatively simple closed-form representations corresponding to the transmission
line theory. Within the framework of this theory, the current distribution and input impedance of the
antenna coincide with the corresponding characteristics of a certain equivalent transmission line. We
have also discussed the possibility to construct approximately the current distribution for a finite-length
antenna. In the cases where the imaginary part of the current-distribution constant is nonzero and the
antenna is not too short, the results obtained for an infinitely long antenna are shown to be applicable
for a finite antenna.

Another important implication of the performed analysis is that the current-distribution constant
derived within the framework of the transmission line theory turns out to be independent of the off-
diagonal element of the plasma dielectric tensor. This fact allows one to employ the uniaxial model
of a magnetoplasma when determining the antenna characteristics in a first approximation. A similar
approach can evidently be used for finding the characteristics of an antenna located at an interface of
more complex media described by permittivity or permeability tensors of arbitrary form.
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