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Outage Prediction during Intense Rainstorm Events Using Queuing
Theory and Markov Chains over Radio Links

Mary N. Ahuna1, *, Thomas J. Afullo1, and Akintunde A. Alonge2

Abstract—Satellite communication links operating at higher frequency bands suffer from signal outages
due to rain attenuation. Site diversity technique is one of the rain fade mitigation techniques that can be
employed over earth-satellite links to improve on system availability. In this study, we use 5-year rainfall
rate statistics and the queuing theory approach to investigate the attributes and behavior of intense
rain storms along an earth-space link over Durban, South Africa (29◦ 52’S, 30◦ 58’E), a sub-tropical
climate. Thereafter, a comparison is made with results obtained in a related study in Jimma, Ethiopia
(7.6667◦N, 36.8333◦ E), which is a tropical climatic region. Verification of the best fit distribution is
done through the application of the root mean square error (RMSE) and CHI squared statistics. Results
of these analysis tools confirm the suitability of the proposed distributions with RMSE error margin
in the range 0.0024 to 0.0128, and a χ2 statistics value of 0.4070. The spike service time for such
rain storms is found to follow Erlang-k distribution in both regions of South Africa and Ethiopia as
opposed to earlier determined exponential distribution. In addition, the analysis shows that there exists
a power law relationship between the rain spike maximum rain rate and its diameter. This relationship
is further utilized in the development of the rain cell sizing model that can be used for site diversity
fade mitigation. Furthermore, the Markov chain technique is employed to determine the occurrence
behavior of shower and storm rainfall regimes, and their contributions to rain attenuation over a slant
path radio link.

1. INTRODUCTION

Wireless communication over frequency bands above 10GHz brings along the much needed bandwidths
for fast and efficient communication via satellite and terrestrial communication links [1]. The current
tasks of 5G technologies entails benefits of faster speeds, higher bandwidths and lower latency. For these
benefits to suffice, wireless links need to experience close to zero link outages. However, in the presence
of heavy rain storms, wireless microwave links operating at 5GHz and above cannot be guaranteed to
provide such high efficiency service due to signal fading that results from wave absorption and scattering
by rain drops [2–4]; this eventually leads to signal attenuation. Strategies have to be implemented to
ensure that even in the presence of storms, the wireless link is at least available for 99.99% of the time
or better. Designers of radio links operating in Ku-bands and beyond are thus rightly concerned about
link availability even during a natural phenomenon like a rainfall event.

Accurate prediction of a rain storm and the corresponding magnitude of signal attenuation plays
a crucial role in mitigating link fades and outages. Predicting the duration and rate of occurrence of
these fades is also important to the link design engineer for deployment of counter-measures that will
eventually guarantee high link availabilities.
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Due to the rising of storms over the location of study, this paper explores the probability of
occurrence of storms of different magnitudes for efficient planning and mitigation of link outages due
to the rain occurrence. This paper is structured thus: Section 2 gives a brief summary of related work
that has been done on queueing theory approach to rain modelling, while Section 3, introduces the
model of a rain storm using a unified model language (UML) representation. Section 4 highlights the
data measurement campaign and processing, whereas Section 5 presents storm occurrence trends over
Durban. Results are presented and discussed in Section 6. Section 7 provides the conclusion of the
study.

2. RELATED WORK

The queuing theory concept develops information on the behavior of queuing systems, paving way for
informed decisions during problem-solving campaigns. Three main random variables used with queueing
theory problems being the inter-arrival time, the service time and the overlap time [5–8]. Alonge and
Afullo [7] pioneered research work in the use of queuing theory for rainfall modelling over Durban,
a subtropical climatic region. Using this approach, they proposed a non-Markovian distribution for
rainfall service time, tst, as [7]:

f (tst) =
kµ(kµtst)

k−1e−kµtst

Γ(k)
for tst > 0 (1)

where µ is the data service rate, and k is the Erlang-k number of stages. For the inter-arrival time
distribution, they proposed the exponential distribution that follows a Markovian process, given by:

f (tarr) = λe−λtarr for tarr > 0 (2)

where tarr is the inter-arrival time and λ is the data arrival rate.
Resulting from their studies, Alonge and Afullo [9] concluded that the steady state queue discipline

follows a semi-Markovian first come first served (FCFS), M/ER queue discipline, for tropical and sub-
tropical locations.

In 2016, Diba et al. [10] applied the same approach to the study of rainfall synthesis in Jimma,
Ethiopia. Furthermore, they characterized rainfall rate spikes over Jimma using Markov chain and
queuing models. The results of their study showed that rain spike service time follows the Erlang-k
probability distribution contrary to the common exponential distribution.

Figure 1 shows four attributes of a rain event, which were analyzed in this study. These attributes
are rain spike service time, (tst); spike inter-arrival time (tarr); spike overlap time (tov); and maximum
spike rainfall rate (Rm).
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Figure 1. A rainfall drizzle event of 16th August, 2016 at 18:41:30 hours.
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Figure 2. A rainfall shower event of 8th January, 2017 at 09:04:00 hours.

A typical rain event comprises rainfall spikes of varying heights and width over time as shown in
Figure 2. This variability of occurrence of rain spikes with varying magnitudes and width makes it hard
to predict the height or width of the next rain spike. At the onset of a rain event, a single rain spike
progressively builds up from near zero to a spike maximum rate, then the magnitudes start reducing
with time [9]. This is analogous to a birth-death process. From the queueing theory concept, a spike is
related to a single cloud with a maximum intensity at its center. Consequently, we visualize rain spikes,
similar to those displayed in Figure 2, as formed by a queue of clouds passing over a rain measurement
instrument one after the other in a first come first served (FCFS) discipline.

Begum and Otung [11] applied synthetic storm technique and rain rate time series to determine
the partial structure of the rain cells over Sparsholt, UK. Their results show that intense rain cells
have generally less than 10 km. In 2011, Akuon and Afullo [12] investigated rain cell sizes over different
climatic regions within South Africa using synthetic storm technique and derived 1-minute rainfall
distributions. Their results show that distances of up to 7.75 km are realized for rain rate threshold of
60mm/h.

3. RAIN STORM MODELLING USING THE UNIFIED MODEL LANGUAGE
CONCEPT

Relationships existing between elements of a rain storm can be modelled using the Unified Model
Language (UML) concept [13]. In this modelling, class diagrams are used to show how entities are
modelled within a system. A class represents an abstraction of an entity with common characteristics
whereas associations represent relationships between classes. Aside from describing the attributes and
operations of a class, the class diagram also shows constraints imposed on a class.

Using the class diagram model in Figure 3, we extended this model to a thunderstorm rain event as
illustrated in Figure 4. A rain storm entity is modelled as a UML class diagram, as shown in Figure 4,
with associations between the rain storm, storms and spikes. For instance, in Figure 4, the cardinality
of the rain spike in the storm-spike association is, given as ‘2. . . *’ implying that a storm can be made up
of 2 or more rain spikes. This constraint ensures that the three required rain spike attributes (queueing
parameters) namely service time, inter-arrival time and overlap time, can be extracted from the storm
event. At the storm end, the cardinality is given as ‘1. . . 1’, which means that a particular rain spike
can only belong to one and only one rain storm type. If, by chance, two spikes have similar rainfall
rates, deeper analysis will reveal that their drop size distributions will differ, hence their impact on the
signal will be different. Operations for the storm class are start and end, implying that every storm is
characterized by the starting and ending operations/actions. Similarly, the operations for the rain spike
are given as birth and death. This birth-death (BD) behavior of a typical rain spike was highlighted
in Alonge and afullo [9], where the death process starts after the spike has attained its maximum rain
rate, Rm. In Figure 4, all three classes are responsible for causing signal attenuation. This attenuation
could be harmless, like that caused by drizzle and widespread spikes, or severe, when caused by rain
spikes with very high magnitudes in Storm 2 and Storm 3 rain events (see clarification in Table 1 ).
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Figure 3. A typical class diagram.

Figure 4. Rain storm entity class diagram.

Table 1. Data extracted from shower and storms regimes.

Rain Rate Regime Max Peak Rain Rate [mm/h] Samples used %

Drizzle (D) R < 5 125 17.6

Widespread (W ) 5 ≤ R < 10 130 18.3

Shower (Sh) 10 ≤ R < 40 283 39.8

Storm 1 (S1) 40 ≤ R ≤ 100 135 19.0

Storm 2 (S2) 100 < R ≤ 150 20 2.8

Storm 3 (S3) R > 150 18 2.5

4. DATA COLLECTION AND PROCESSING

The data used in this study was measured by the Joss-Waldvögel (JW) RD-80 disdrometer instrument
installed on the rooftop of the Electrical North Building, Howard Campus, University of KwaZulu
Natal, Durban, South Africa. This instrument comprises of an outdoor unit with rain drops capturing
surface area measuring 0.005m2, and an indoor unit comprising of a processor and a computer. Data
sampling/integration time is 30 seconds. For full description and set-up, see [14, 15]. Data used in this
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study was retrieved from convective type of rain events in the shower and thunderstorms regimes due
to their higher contribution to signal attenuation over LOS radio communication links.

In this study, rainstorms over Durban are further subdivided into three groups following a sudden
experience of heavy rain storms in the years 2016 and 2017. This sudden turnaround of events generated
a considerable gap between the minimum and the maximum rainfall rates within the thunderstorm
regime. From previous measurements, the gap used to be about 40mm/h in the years 2015 and earlier.
But then, right from the onset of the year 2016, this gap rose to over 200mm/h and the same large
gap was still seen in 2017. Accordingly, data used in this work is categorized into the following regimes:
Drizzle (D), Widespread (W ), Shower (Sh), Storm 1 (S1), Storm 2 (S2) and Storm 3 (S3). For clarity,
the inclusion of drizzle and widespread rain spikes in our categories arises because a typical thunderstorm
rain event builds up starting from drizzle rainfall rates and progressively into widespread rain rate range
before moving into shower thunderstorm regime rain rates as shown in Figure 1 and Figure 2.

5. STORM OCCURRENCE PATTERN OVER DURBAN

Precipitation analysis of storm occurrence over Durban is done for a period of 57 consecutive months
(4.75 years) spanning from April 2013 to December 2017. This analysis is based on shower and storm
regimes with a rainfall rate 10 ≤ R < 40mm/h and R ≥ 40mm/h respectively. This is motivated by
the immense contribution of these higher rainfall rates in radio link outages during a rainfall event.
Further subdivision of these storms are as given in Table 1.

As observed in Figure 5 and Table 2, there were more rain storms in 2016 than other four years.
Nonetheless, in 2017, despite experiencing half the number of storms compared to the year 2016, it
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Figure 5. Storm occurrence pattern over Durban.

Table 2. Storm occurrence over Durban, South Africa.

Storm Type
Number of storm occurrences

2013 2014 2015 2016 2017 Total

S1 1 3 8 37 14 63

S2 0 0 0 4 1 5

S3 0 0 0 3 7 10

Total 1 3 8 44 22 78

Storm days 1 3 7 30 16
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experienced more S2 storms, almost double the number experienced in 2016. From Table 2, it is noticed
that 58.73% of S1 storms were experienced in 2016, and neither S2 nor S3 storms ever occurred in the
previous three years of 2013, 2014 and 2015.

6. ANALYSIS OF SHOWER AND STORM EVENTS

As mentioned earlier in Section 2, basic queuing parameters of interest in this study are spike service
time, spike inter-arrival time and spike overlap time. These parameters are extracted from rainfall
spikes constituted in shower and storm rain events and the results are summarized in Table 3.
Thereafter, probabilities of occurrence of varying magnitudes of these spikes and their contributions
to link attenuation are analyzed.

Table 3. Spike queuing parameters for shower and storm regimes.

Rainfall

regime

Average

time

[mins]

Best fit

Distribution
RMSE CHI

Service time,

tst,

cx,Sh = 0.7201 21.13 Erlang-k, k = 2 0.0059 0.0931

cx,St = 0.6712 13.00 Erlang-k, k = 3 0.0092 0.2390

Inter-arrival Time,

tarr

cx,Sh = 0.4807 16.28 Erlang-k, k = 2 0.0057 0. 2306

cx,St = 1.0996 8.47 Exponential 0.0092 0.1445

Overlap Time,

tov

cx,Sh = 0.8702 3.16 Erlang-k, k = 2 0.0128 0.4070

cx,St = 0.6067 2.79 Erlang-k, k = 3 0.0471 0.1563

Spike Max. Rain Rate,

Rm

cx,Sh = 0.7335 - Erlang-k, k = 2 0.0068 0.0352

cx,St = 0.8964 - Exponential 0.0024 0.0609

cx,Sh and cx,st are coefficients of variation for shower and storms regimes respectively

6.1. Spike Service Time Distributions

Figure 6 shows distribution fittings of the queue parameters generated. It is observed that rain spike
service time and spike overlap time for both shower and storm events follow the Erlang-k distribution
with k = 2 as the number of stages for shower regimes and k = 3 for storms over 40mm/h rainfall rate.
The Erlang-k distribution is given by [7, 16]:

f (x) = µ
(µx)k−1

(k − 1)!
e−µx (3)

where µ is the scale parameter and k is the shape parameter.
Figure 7 shows the number of rain spikes for which spike service time is exceeded. It is observed

that for the same spike service time, there are more than twice the number of shower spikes as there
are storm spikes. This indicates that the duration a spike takes to traverse a given area decreases
as the spike magnitude increases. For instance, in Table 3, it is shown that it takes an average of
21.13minutes for a shower spike to traverse a given region. On the other hand, a storm spike will take
only 13.00minutes for its traversal. This traversal time of 13.00minutes is comparable to 13.32minutes
obtained by Diba et al. [10] for storms spikes over Jimma, Ethiopia, as shown in Table 4. Results of
this table relates this current work with the previous work carried out by Diba et al. [10] over Jimma,
Ethiopia. From Table 4, analysis shows that average service times for shower spikes are 21.1336minutes
and 16.8390 minutes for Durban and Jimma respectively. This shows that a shower spike over Durban
takes approximately 4.2946minutes longer to traverse an observation point than its counterpart over
Jimma. For rain storm events, spike average service time is comparatively very close to values of 13.0028
minutes and 13.3237 minutes for Durban and Jimma respectively. Further analysis shows that service
time distributions at both sites can best be represented by Erlang-k distribution with the value of k in
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Figure 6. Service time distributions for (a) shower and (b) storm rainfall regimes.
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Figure 7. Rain spike duration exceedance [minutes].

the range 2 ≤ k ≤ 4. Also, coefficients of variation (CV) values are shown to be higher for rain storms
than shower storms. (See Table 4 ).

6.2. Spike Inter-Arrival Time Distributions

The inter-arrival time denotes arrival times of spikes over the point of observation. Inter-arrival times
are presented in Table 3 for shower and storms regimes, and the results show that for spikes in shower
regimes, the average inter-arrival time is 16.28 minutes, while for storms regimes, the average inter-
arrival time is 8.47 minutes. Inter-arrival distributions are shown in Figure 8, and it is observed that
while the inter-arrival time for the shower regime follows the Erlang-k distribution, with k = 2, the
inter-arrival time distribution for storms with maximum rainfall rates greater than 40mm/h follows the
exponential distribution similar to results by Alonge and Afullo [7].
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Table 4. Rain spike service time comparisons between Durban and Jimma.

Model Regime

Service

time

distribution

Average Spike

Service Time

(minutes)

CV

Diba et al. [8]

(Jimma)

Shower Ek, k = 4 16.8390 0.5357

Storms Ek, k = 4 13.3237 0.5862

Durban
Shower Ek, k = 2 21.1336 0.4807

Storms Ek, k = 3 13.0028 1.0486
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Figure 8. Inter-arrival time distributions for (a) shower and (b) rain storm regimes.

6.3. Spike Over-Lap Time Distributions

Rain spike cells are seen to overlap one another as shown in Figure 1 with a time, tov. This means that in
a typical rainfall event, before a cell has exited, another cell appears, hence the formation of the overlap
time. Table 3 shows that rain spikes in the shower events overlap with an average time of 3.16 minutes,
while those in storms overlap with an average of 2.79 minutes. Results by Alonge and Afullo [7] showed
a corresponding overlap time of 5.75minutes for storms regime, over Durban. Their higher results for
overlap time can be explained thus: their experimental data did not comprise of extreme storms (Storm
2 and Storm 3 types) referred to in this paper. It is to be noted that Storm 2 and Storm 3 types of
rainfall regimes only emerged in year 2016 as shown in Figure 5. In support of this lower overlap time,
higher magnitude storm spikes tend to rise and fall faster hence reduced overlap time. In addition, from
Section 6.4, it is shown that service time decreases with increase in maximum spike rain rate.

Figure 9 shows fitting distributions for the overlap time distributions for both shower and storm
regimes. It is seen that these distributions follow the Erlang-k distribution with k = 2 and k = 3 for
shower and storm, respectively, similar to their service times counterparts. These results are expected
because the overlap time parameter is a subset of the spike service time.

6.4. Correlation between Spike Maximum Rain Rate with Spike Diameter

Distributions of spike maximum rain rate are presented in Figure 10. It is observed that shower regimes
can be modeled by Erlang-k distribution whereas the storm events can be modelled using the exponential
distribution. Analysis of service time queuing parameters together with advection velocities of 6m/s and
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Figure 9. Overlap time distributions for (a) shower and (b) storm rainfall regimes.
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Figure 10. Spike maximum rainfall rate distributions for (a) shower and (b) thunderstorm rainfall
regimes.

10m/s for shower and storm events respectively were used to determine rain spike cell diameters [17, 18].
Relationships between spike diameters and spike maximum rainfall rates are shown in Figure 11; it

is apparent that the diameter of a storm spike is a function of the maximum rain rate within a rain event.
It is also observed that spikes with lower maximum rain rates have larger diameters than those spikes
with high rainfall rates. For instance, spikes with maximum rain rates below 10mm/h have averaged
diameters of about 8.5 km. On the hand, rain spikes with maximum rain rates between 90–100mm/h
range have an average cell diameter of 4.8 km.

From Figure 11 it is observed that the rain cell spike maximum rainfall rate, Rm, and the spike
diameter, Dsp, are related by the expression:

Dsp = c1R
c2
m [km] (4)

where Rm is the maximum spike rain rate in mm/h, and coefficients c1 and c2 are given as 12.842 and
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Figure 11. Spike diameter versus maximum spike rain rate for shower and storm rain events.

−0.212 respectively for Durban climatic region.
From the analysis of obtained queuing parameters, a rain event cell diameter, Dev, can be

approximated as:
Dev ≈ 4Dsp − 3Dov [km] (5)

where Dov is the overlap distance for two consecutive rain spikes, and Dsp is the rain spike diameter.
Analysis of rain events in this study showed that, on average, there are four rain spikes within a

rain event for both shower and storms regimes. Therefore, from Eqs. (4), (5) and Section 6.3, distance
coverage for any rain event can be determined. For example, for maximization of site diversity gain,
the minimum distance, Dev,min, between stations is approximated to be 22 km, calculated from the
minimum rain rate in the shower regime. For higher rainfall rates, cell diameters are less than Dev,min,
hence any two stations will not fall under the same rain event of intense rainfall.

6.5. Model Validation

Data and statistical distribution fitting was carried out using the root mean square error (RMSE) and
CHI squared (χ2) tools represented by Eqs. (6) and (7) respectively for different statistical distributions
with measured data. The two error fitting techniques are given by:

RMSE =

√√√√ 1

L

L∑
i=1

δ2 (6)

χ2 =
∑ 1

Oi
(Ei −Oi)

2 (7)

where δ is the error, L the number of samples, and Ei and Oi are the expected and actual outputs
respectively. Error values obtained from Eqs. (6) and (7) are satisfactory. For instance, the highest
values of 0.0128 and 0.4070 corresponding to RMSE and CHI squared statistics were obtained for the
overlap time in the shower regime. A significance level of 5% was chosen for χ2 statistics. With the
critical value of 18.305 and degree of freedom of 10, the chosen model (Erlang-k, with k = 2) for spike
overlap time (χ2 = 0.4070) is acceptable. This satisfaction criterion will apply to all other models
chosen for other parameters because they have higher values of df and lower values of χ2 values. Hence,
all models chosen are acceptable, indicating that 95% of model values satisfy measured values.
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6.6. Rain Spike Magnitude Prediction Using Markov Chain Approach

The knowledge of the probability of an incoming rain spike magnitude is important. This aids in
predicting anticipated rain attenuation and therefore putting forth the right fade mitigation tools to
ensure that the link fade does not fall below a given threshold. In this study, we have used the N-state
Markov chains approach to investigate the behavior of measured rain storm patterns over the location of
study for prediction of the magnitude of an incoming rain spike [19]. In this investigation, the number of
states, N , is 6, where ‘state’ represents a rain regime type. These six states are: drizzle (D), widespread
(W ), shower (Sh), storm 1 (S1), storm 2 (S2) and storm 3 (S3). This analysis was done using data in
the shower and thunderstorm regimes due to their high contribution to signal attenuation. The state
transition matrix for shower regime is a 3× 3 matrix as shown in (8):

Pij, (shower) =

 DD DW DSh

WD WW WSh

ShD ShW ShSh

 (8)

where DD is the state jump from one drizzle spike to another drizzle spike, WD is the state jump from
widespread spike to drizzle spike and so on. From measured data, the rain spike transition graph for
spikes in the shower regime are given in Figure 12, whereas the state transition matrix is given in (9):

Pij, (shower) =

 0.4609 0.2783 0.2609

0.2800 0.2000 0.5200

0.2483 0.3221 0.4295

 (9)

Figure 12. Spike transition graph for shower regime.

The initial probability matrix in Eq. (9) indicates that the highest number of state transitions
occurs during transitions from widespread state to shower state, with a probability of 52%. The least
probability of 20% is observed between two widespread states. For rain storm events, the transition
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Figure 13. Spike transition graph for storm regimes.

probability matrix is a 6× 6 matrix given as:

Pij, (Storms) =


DD DW DSh DS1 DS2 DS3

WD WW WSh WS1 WS2 WS3

ShD ShW ShSh ShS1 ShS2 ShS3

S1D S1W S1Sh S1S1 S1S2 S1S3

S2D S2W S2Sh S2S1 S2S2 S2S3

S3D S3W S3Sh S3S1 S3S2 S3S3

 (10)

From the measured data, the transition probability matrix in Eq. (10) is shown in the probability
transition graph of Figure 13 and the spike transition probability matrix is given in Eq. (11). From the
matrix in Eq. (11), it is observed that the highest transition probability occurs between two S3 spikes
with a probability of 80%.

Pij, (storms) =


0.0909 0.2727 0.2727 0.3636 0 0
0.0714 0.3214 0.3214 0.2500 0.0357 0
0.0301 0.0902 0.5714 0.2632 0.0301 0.0150
0.0148 0.0370 0.3111 0.5556 0.0519 0.0296

0 0 0.1071 0.5000 0.2857 0.1071
0 0 0 0.1000 0.1000 0.8000

 (11)

Chapman-Kolmogorov forward equations are utilized in determining the state probability k steps
into a chain and are given by [5]:

P (k+1) =
[
P (k)

]
× [P ] ; P

(k+1)
ij =

n∑
k=0

P k
ijPkj (12)

Πj =

N∑
i=1

ΠiPij ;

N∑
j=1

Πj = 1 (13)

The final state matrices for shower regimes were deduced from Eqs. (9) and (12) as:

ΠSh = [ PD PW PSh ] (14a)

ΠSh = [ 0.3264 0.2743 0.3993 ] (14b)
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where PD, PW and PSh denote the state probabilities for drizzle, widespread and shower rains. Similarly,
from Eqs. (11) and (12), final state probabilities for storms regimes are as given in Eq. (15b):

ΠSt = [ PD PW PSh PS1 PS2 PS3 ] (15a)

ΠSt = [ 0.0238 0.0769 0.3554 0.3682 0.0616 0.1142 ] (15b)

From Eq. (14b), it is observed that in a given shower rainfall event, shower spikes acquire the highest
probability of occurrence (39.93%) as time tends to infinity, followed by drizzle spikes with a probability
of 32.64%. Widespread spikes occur with the lowest probability of 27.43%. Likewise, from Eq. (15b), is
observed that steady state probabilities are obtained with storm 1 spikes having the highest probability
of occurrence of 36.82% followed by shower spikes at 35.54% probability occurrence. For storms, it is
evident that drizzle spikes occur with the lowest probability of 2.38% followed by Storm 2 spikes with
6.16%.

A comparison of steady state Markov Chain values obtained over Durban and Jimma is shown in
Table 5. Results of this comparison shows that the probability of occurrence of shower spikes is higher
at both sites with values of 39.93% and 51.26% for Jimma respectively. Similarly, rain storm spikes have
higher probabilities of occurrence than lower magnitude spikes at both sites with values of 36.82% and
49.90% over Durban and Jimma respectively. Further observation reveals that for rain storm regimes,
drizzle spikes have the lowest probability of occurrence at both sites of observation. Contrary, for shower
rainfall regimes, widespread spikes have the least probability of occurrence in Durban whereas in Jimma,
drizzle spikes have the probability of occurrence. More comprehensive results are expected in future as
data measurements are on-going in both Ethiopia and Butare, Rwanda.

Table 5. Markov Chain steady state values for Durban and Jimma.

Model Regime
Markovian Steady State values

PD PW Psh PS1

Diba et al. [10]

(Jimma)

Shower 0.1733 0.3140 0.5126 -

Storms 0.0515 0.1651 0.3344 0.4990

Durban
Shower 0.3264 0.2743 0.3993 -

Storms 0.0238 0.0769 0.3554 0.3682

7. CONCLUSION

In this study, it is shown that the service time and its subset, the spike overlap time, follow an Erlang-k
distribution, whereas the inter-arrival time follows the exponential distribution. It is also noted that
there is an exponential rise in the magnitude of a storms’ maximum rain rate, which clearly indicates that
earth-satellite links in this region will experience higher outages than before, and it is a good premise for
designers to design links and use dynamic fade mitigation techniques that are able to cope with the rise
in the resultant signal attenuation. Additionally, it has been demonstrated that there is a power-law
relationship between the spike’s maximum rain rate and its diameter. This information is important
in the determination of cell sizes and more so, in the application of site diversity technique as a fade
mitigation measure. Also, this study investigates the frequency of occurrence of various magnitudes of
rainfall spikes within thunderstorms rainfall regimes. The results show that rain spikes with maximum
rain rates from 10mm/h to 100mm/h are dominant within thunderstorms in the location of study. The
knowledge of the probability of occurrence of a given magnitude of a rain spike, and eventually fade
magnitude and duration, is important in systems that use dynamic fade mitigation techniques.
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