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Channel Estimation Method for Subarray Based Hybrid
Beamforming Systems Employing Sparse Arrays
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Abstract—Hybrid beamforming systems are a cost and energy efficient architectural approach for
large-scale antenna arrays operating at millimetre-wave frequencies. The separation of the beamforming
process into an analogue beamforming network and a digital precoding part enables the reduction of
digital channels while preserving a precise beam steering capability. Especially subarray-based hybrid
beamforming systems distinguish them due to a low complex analogue beamforming network. However,
to determine the ideal analogue and digital precoding matrices the channel state information has to be
estimated. This estimation process is hampered by the electrical interconnection of different antenna
elements within the analogue beamforming network. Hence, a separation of the antenna elements of the
subarrays in the digital domain is not possible. Furthermore, actual channel estimation methods for
hybrid beamforming systems are based on beam training techniques, which suffer from long estimation
times. To overcome these problems we developed a two-stage channel estimation method for subarray-
based hybrid beamforming systems using sparse array estimations. In the first stage, only one antenna
element of each subarray at the transmitter is active during the channel estimation, resulting in a sparse
array estimation. To distinguish the transmitters at the receiver side the transmitters are separated
in the frequency domain using different orthogonal frequency division multiplexing subcarriers. For
recovering the full-dimensional channel matrix we present two algorithms. The first algorithm is
based on a two-dimensional interpolation of the channel matrix, while the second algorithm uses
multiple subsequent channel measurements. The presented estimation method enables thereby a direct
determination of the channel matrix with only one or a few measurements.

1. INTRODUCTION

To encounter the increasing demand for higher data rates in mobile communication networks, multiple
input multiple output (MIMO) systems operating at millimetre-wave frequencies are investigated
intensively [1, 2]. In July 2016, the Federal Communications Commission of the United States of
America released the spectrum for flexible, mobile and fixed wireless broadband from 27.5GHz to
28.35GHz (0.85GHz bandwidth) and 37GHz to 40GHz (3GHz bandwidth) [3]. Due to the high carrier
frequencies Large-Scale Antenna (LSA) Systems, also known as Massive MIMO systems, can be realized
in a compact form, allowing high spectral efficiencies, while at the same time offering a high antenna
directivity [4–6]. This high directivity is important to overcome the significant path loss at millimetre-
wave frequencies [7, 8]. Nevertheless, the high number of digital channels or RF-chains of those Massive
MIMO systems including Digital-to-Analog/Analog-to-Digital converters, mixers, amplifiers and filters
to control every antenna element, lead to complex and cost-intensive systems [9, 10]. It should be noted
that Analog-to-Digital converters are one of the largest power consumers in RF frontends [11].
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Hybrid beamforming systems are one possibility to reduce the complexity, energy consumption and
costs of Massive MIMO systems [12–14]. Within those systems, the beamforming process is divided into
an analogue beamforming network and a digital precoding with a reduced number of digital channels.
For the analogue beamforming network, electronically controlled phase shifters are needed before each
antenna element and have to be included within the beamforming process. Note that in general, no
amplitude weighting is done within the analogue beamforming network, which would require additional
variable gain amplifiers in front of each antenna. Furthermore, the limited resolution of the analogue
phase shifters has to be considered in the performance evaluation. The hybrid beamforming principle
and its application scenario are illustrated in Fig. 1. The scenario shows a typical urban small cell
scenario between a mobile radio base station comprising a hybrid beamforming system and a full digital
receiver on the user side. Hence, besides the hybrid beamforming approach other efficient solutions for
MIMO systems are also under investigation as for example smart antenna systems with reconfigurable
radiation patterns [15].
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Figure 1. Prospective application scenario for the hybrid beamforming communication architecture.
Here, a mobile radio base station is mounted on the wall of a building (shown on the top right) operating
within an urban scenario. The mobile radio base station comprises a hybrid beamforming transmitter
with an analogue beamforming network FRF and digital precoder FBB. The cell phone user (shown on
the bottom left) is equipped with a full digital receiver with a digital precoder W.

Current research focuses on three hybrid beamforming architectures, which differ in their analogue
circuitry and thereby in their precoding algorithms [12]. The fully-connected hybrid beamforming
architecture connects each antenna element with each digital channel. Simulation results reveal that
the fully-connected approach enables the same performance as a full digital system if the number of
formed beams is half of or less than the number of digital channels available in the hybrid beamforming
system [16]. Considering low-cost base stations for urban small cells for the next generation of mobile
communication and beyond the subarray-based hybrid beamforming architecture seems promising. In
a subarray-based or sub-connected hybrid beamforming architecture, each digital channel is connected
to a separate group of antenna elements, which means to an own antenna subarray [17]. Therefore,
the complexity of the analogue beamforming network is reduced drastically. A fully-connected hybrid
beamforming architecture, consisting of a Nant = 16×16 antenna array with Ndig = 4×4 digital channels
for example, would require Np,fully = 16 × 16 × Ndig − 1 = 4095 phase shifter. For a subarray-based
hybrid beamforming architecture only Np,sub = 16× 16− 1 = 255 phase shifter would be needed. The
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array dimensions of such a planar 16× 16 antenna array operating at a carrier frequency of 28GHz are
only 8.6 cm×8.6 cm considering an antenna element spacing of half a wavelength. However, it should be
pointed out that due to the separation into subarrays, the performance compared to the fully connected
hybrid beamforming system is decreased due to a reduction of degrees of freedom in the analogue
beamforming network [12, 18]. Roh et al. demonstrated in [7] the practical feasibility of such a subarray-
based hybrid beamforming system. The published system operates at 27.925GHz and comprises two
digital channels with a subarray size of eight antennas at the transmitter and receiver. For the sake
of completeness, there are also so-called overlap subarray-based hybrid beamforming systems under
investigation [19]. Within this architecture adjacent subarrays are overlapped to increase the degrees
of freedom and thereby spectral efficiency. The performance of such systems depends on the degree of
overlap and lies between the subarray-based and fully-connected hybrid beamforming approach.

In our following investigations, we will focus on subarray-based hybrid beamforming systems to
target the challenges of the channel estimation occurring due to the division in separate subarrays.
The condition for an ideal beamforming is the permanent knowledge of the channel state information.
Hence, the channel state information is the input information for the digital and analogue precoding
algorithm. A misinformation about the channel states therefore impairs the overall performance of the
communication system. To gather the channel information, we present a channel estimation algorithm
for subarray-based hybrid beamforming communication systems based on sparse array estimations.
This allows us a direct estimation of the channel coefficients by using a low number of training symbols.
Furthermore, the estimation time can be adjusted to the coherence time of the channel, which may
reduce the estimation time and increase the net data rate of the communication.

The presented work is structured as follows. Section 2 describes the ongoing research regarding
channel estimation of hybrid beamforming systems and highlights the main contributions within this
work. Section 3 describes the considered mobile communication scenario and the resulting system model.
Moreover, the construction of the channel matrix is defined using a path based MIMO channel model.
Subsequently, the channel estimation algorithm is described in detail in Section 4. Within this section
the sparse array estimation principle is explained, and two channel recovery algorithms are introduced.
Finally, in Section 5, the estimated channel matrix is compared with the unbiased channel matrix in
numerical simulations. To visualize the performance of the estimation methods the estimated channel
matrix is used within a mobile communication downlink scenario for capacity estimation.

2. RELATED WORK

Actual research on channel estimation for hybrid beamforming communication systems focuses on
beam training methods. Those techniques try to estimate the Angles of Arrival (AoAs) and Angles of
Departure (AoDs) of the instantaneous propagation paths. The estimated AoAs and AoDs may serve
as input for the hybrid beamforming algorithms or as a first step to reconstruct the channel matrix. A
simple method to estimate the AoAs and AoDs are exhaustive search algorithms [20]. Those algorithms
form a directive beam at the transmitter and receiver and try all angular permutation between the
transmitter and receiver to extract the desired number of pairs of AoAs and AoDs. The main drawback
of this method is the high number of measurements needed, leading to high estimation times which
lower the net data rate of the communication system. An improvement in time consumption can be
achieved by using hierarchical codebooks [21–24]. Within the hierarchical beam training process, the
angular range in azimuth and elevation is divided into spatial segments. The half-power beamwidth is
then selected depending on the segment size. Starting with a few segments the segments are narrowed
at each hierarchical level. It means that in the first step, wide sectors are used to identify a rough
path direction. Further stages of the hierarchical codebook reduce the sector size in azimuth and
elevation until the required or maximum resolution is reached. Input parameters of the algorithms are,
among others, the number of hierarchy levels, the start sector size as well as the required resolution.
Moreover, a detection threshold has to be defined for the maximum number of pairs. The resolution is
limited to the smallest possible beamwidth but might be larger if the estimation time has to be limited.
Alkhateeb et al. presented in [22] an adaptive channel estimation algorithm for multi-path channels.
The estimation algorithm is based on a multi-resolution codebook to construct training beamforming
vectors with different beamwidths. A further possibility to reduce the estimation time is the use of
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overlapped beam patterns in the estimation process as proposed by Kokshoorn et al. in [24]. Another
approach is introduced by Zhao et al. in [25] using unique frequency tones for all users in the uplink
to estimate the strongest AoAs at the mobile radio base station. Nevertheless, the investigations by
Zhao et al. focus only on mobile users with a single digital channel and therefore multiple propagation
scenarios.

The so far proposed channel estimation techniques suffer from a long estimation time resulting
in a reduced net data rate. In addition, the resolution is limited and coupled to the estimation time.
Another crucial problem is that many proposed hybrid beamforming algorithms require an estimated
channel matrix for digital and analogue precoding matrix calculation [26–29]. This requires not only
the estimation of the AoAs and AoDs, but also the reconstruction of the losses and phase shifts of each
path and the influences of the hardware.

To overcome these constraints, we present a channel estimation method for subarray-based hybrid
beamforming systems, which enables a direct estimation of a reduced channel matrix. Due to the
direct estimation of the channel coefficients, the process can be performed using only a few training
symbols in front of each data frame. Furthermore, we present two different methods to reconstruct the
full-dimensional channel matrix.

3. SYSTEM AND CHANNEL MODEL

We consider a single-user mobile communication downlink scenario between a small cell base station
and a mobile device as shown in Fig. 2. At the transmitter (TX) the base station consists of a subarray
based hybrid beamforming architecture with Mant antenna elements and Mdig digital channels or RF
chains. At the receiver (RX) the mobile device is designed as a full digital system, meaning that the
number of antennas is equal to the number of digital channels Nant = Ndig.
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Figure 2. Downlink communication scenario between a mobile radio base station comprising a hybrid
beamforming architecture and a mobile user.

As mentioned above the precoding matrix of the subarray-based hybrid beamforming system
F = FRF · FBB is divided into a digital precoding matrix FBB ∈ CMdig×Mbf and an analogue precoding
matrix FRF ∈ CMant×Mdig . To satisfy the overall power constraint, the Frobenius norm of the combined
precoding matrix must satisfy ||FRF · FBB||2F ≤ Mbf with Mbf ∈ N representing the number of parallel
transmitted data streams, which can be adjusted within the precoding. The precoding at the receiver
is represented by W ∈ CNant×Nant . For a transmitted signal vector in baseband x = [x1, x2, . . . , xMbf

]
the received signal vector y = [y1, y2, . . . , yNant ] can be written as

y = WH ·H · FRFFBB · x+WH · n (1)



Progress In Electromagnetics Research C, Vol. 87, 2018 29

where n represents an additive white Gaussian noise vector n = [n1, n2, . . . , nNant ], whose entries follow
an independent and identical distribution CN (0, σ2n) [26].

To evaluate the performance of the channel estimation algorithms the reference or input channel
matrix H ∈ CNant×Mant needs to be constructed. Therefore, a path based MIMO channel model is
used, which we presented in [18, 30]. The model includes the antenna array geometry and element
characteristic in form of an antenna position matrix AT and element radiation pattern matrix ET (Ω)
at the TX as well as at the RX AR and ER(Ω), respectively. The multipath channel consists of Np

propagation paths. The p-th path between the antenna array centres is described by an attenuation
factor αp and an arbitrary uniform distributed phase φp. The MIMO channel matrix [18, 30]

H =

Np∑
p=1

ER (ΩR,p) · ej·k·AR·s⃗(ΩR,p) · αp · ej·φp ·
(
ej·k·AT ·s⃗(ΩT,p)

)T
·ET (ΩT,p) (2)

is the sum over the Np propagation paths, where (·)T denotes the transpose, and k = 2π
λ is the

wavenumber. The AoDs ΩT,p and AoAs ΩR,p of the p-th propagation path merge the elevation angle θ
and azimuth angle ψ and can be written in form of cartesian direction vectors s⃗(ΩT,p) at the TX and
s⃗(ΩR,p) at the RX, respectively. The path based MIMO channel model is depicted in Fig. 3. As shown
in Fig. 3 the beamforming matrix

Hbf = WH ·H · FRFFBB (3)

can be defined by multiplying the precoding matrices at the TX and RX onto the channel matrix. The
dimensions are then reduced depending on the number of input data streams to Hbf =∈ CMbf×Mbf . The
channel signal-to-noise ratio in dB

SNR = 10 · log10
{

Ptx

Mant · σ2n
||H||2F

}
(4)

is calculated from the total transmit power Ptx divided by the number of transmit antennas Mant and
the noise power σ2n multiplied by the channel attenuation which results from the squared Frobenius
norm of the channel matrix.
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Figure 3. Path based MIMO channel model according to [18].

To compare the performance of the approximated channel matrix with the reference channel matrix
the channel capacity or spectral efficiency [27]

C = log2

{∣∣∣∣(INant +
Ptx

Mbf · σ2n
WHHFFHHHW

)∣∣∣∣} (5)
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is used, where INant is the identity matrix of dimension Nant. This spectral efficiency expression includes
the hybrid beamforming matrix at the transmitter F and the beamforming matrix of the full digital
architecture at the receiver W.

The hybrid beamforming matrices FBB and FRF are calculated after the successive interference
cancellation (SIC) based hybrid precoding algorithm presented by Gao et al. in [26]. The algorithm
requires the full channel matrix as input and tries to optimize the spectral efficiency expression similar
to the one shown in Equation (5). Within the algorithm, the optimization problem is decomposed into
a series of sub-rate optimization problems in which each subarray is optimized independently. For each
subarray, a precoding vector close to the unconstrained optimal solution is searched, which can be gained
from singular value decomposition (SVD) of the channel matrix as described in MIMO theory [31]. The
SIC-based approach is finally used to replace the CPU-intensive calculation of the SVD and matrix
inversion with an approximation expression.

4. CHANNEL ESTIMATION APPROACH FOR SUBARRAY BASED HYBRID
BEAMFORMING SYSTEMS

In the following section, the developed channel estimation approach for subarray-based hybrid
beamforming systems is presented. At first, the subarray separation is explained resulting in a sparse
antenna array estimation. Subsequently, two dimension recovery methods are presented to reconstruct
the full channel matrix.

4.1. Subarray Separation

To estimate the channel at the receiver side predefined training symbols (preamble) are transmitted,
as it is common in wireless communications like Long Term Evolution (LTE) Release 14 [32] or the
IEEE 802.11ad standard [33]. Moreover, these training symbols may be used for frame detection,
time and frequency synchronization as well as for channel equalization. The transmitted symbols are
modulated using orthogonal frequency division multiplexing (OFDM). To be able to distinguish the
signals sent from each transmit antenna at the receiver side, the transmitted signals of each antenna
have to differ. This can be done by separating the transmit antennas in the frequency domain by using
different subcarriers within the OFDM frame. It means that each transmit antenna only sends data
on particular subcarriers as presented in [34]. However, in the subarray-based hybrid beamforming
architecture, multiple antenna elements are connected to one digital channel as shown in Fig. 2. Due
to the superposition within the analogue beamforming network, not all antennas can be separated by
using different subcarriers.

For channel estimation with the subarray-based hybrid beamforming architecture, we only use one
antenna of each subarray at a time. Hence, an electronic switch off functionality has to be present,
which enables to flexibly activate and deactivate each antenna. This functionality is usually provided
by the power amplifiers in form of a standby mode to increase the energy efficiency of the communication
system [35]. Alternatively, additional switches have to be considered within the frontend circuit design.
The deactivation functionality allows us to resolve the ambiguities between the subarray antenna
elements but in return reduces the available array gain. The remaining active antennas construct a
sparse antenna array, which will be used for channel estimation. The separation of the digital channels
is done as described above using different interleaved subcarriers within the OFDM training data.
Hence, the channel is assumed to be frequency flat between two training subcarriers of the same digital
channel. Due to the deactivation of Nsub − 1 antenna elements, the estimated channel matrix reduces

its dimensions to H̃ ∈ CMdig,vert×Mdig,horz , where Mdig,vert and Mdig,horz represent the numbers of digital
channels in vertical and horizontal directions of the TX antenna array, respectively. To recover the full-
dimensional channel matrix we present in the following subsection two dimension recovery algorithms.
Concerning the loss in array gain within this estimation method, other techniques on the signal level
are necessary to balance the loss in the link budget. One possibility is signal spreading methods for
OFDM as for example presented by Blumenstein et al. in [36]. In [36] Hadamard sequences are used
to separate the training sequences in the code domain without increasing the signal bandwidth. The
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results show an improved data throughput compared to classical estimation procedures at low SNRs of
−10 dB to 10 dB.

4.2. Sparse Array Channel Estimation Method

The recovery of the full-dimensional channel matrix can be done either by two-dimensional interpolation
between the estimated antenna elements or by using multiple sparse array estimations sequentially in
time.

4.2.1. Dimension Recovery by Sparse Array Interpolation

Starting from the sparse array channel estimation the missing coefficients of the channel matrix can
be interpolated. It should be pointed out that to perform the interpolation, the neighbouring channel
coefficients have to show a spatial correlation. The larger the spatial correlation is, the better can the
full channel matrix be reconstructed.

The proposed algorithm uses a priori knowledge of the TX antenna array constellation and evaluates
the channel matrix for each receive antenna independently. For each receive antenna, the appropriate
row of the channel matrix Hi = [hi,1, hi,2, . . . , hi,Mant ] with i ∈ [1, 2, . . . , Nant] is estimated containing
Mdig values. The missing Mmiss = Mant −Mdig values can be interpolated after reshaping the matrix
following the antenna element position matrix at the transmitter. Fig. 4 visualizes the two-dimensional
interpolation principal using a subarray-based hybrid beamforming architecture with a 16× 16 antenna
array and 4 × 4 digital channels. Each square represents a single antenna element and each circle a
digital channel, while the active antennas are illustrated as shaded squares. The subarrays are framed
by dashed lines.

Figure 4. Schematic representation of the two-dimensional interpolation principal using a subarray
based hybrid beamforming architecture with a 16× 16 antenna array and 4× 4 digital channels. In this
example, 16 antenna elements (depicted as squares) are connected to one digital channel (depicted as a
circle) forming a subarray (framed by a dashed line). The shaded squares represent the active elements
used for the first step of the channel estimation.

In Table 1 the interpolation algorithm is described in pseudocode. The algorithm starts with
the full-dimensional unbiased channel matrix H as a reference, which is created with Equation (2).
Furthermore, a truncation matrix T ∈ {0, 1} with dimension Mant,vert×Mant,horz is introduced to select
the active elements for sparse array channel estimation. Thereby Mant,vert represents the number of
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Table 1. Sparse array interpolation algorithm.

1: Input: (1) Channel matrix H ∈ CNant×Mant

2: (2) Truncation matrix T

3: FOR i = 1 to Nant

4: Hi = [hi,1, hi,2, . . . , hi,Mant ]

5: Reshape matrix to Hi ∈ CMant,vert×Mant,horz

6: Hi,red = Hi ◦T
7: Construct H̃i by interpolating Hi,red

8: Reshape matrix to H̃i ∈ C1×Mant

9: END

10: Output: Estimated channel matrix H̃ ∈ CNant×Mant

antennas in vertical and Mant,horz the number of antennas in horizontal direction of the TX antenna
array. The truncation matrix has exactly Mdig non-zero elements. The truncation and interpolation
process is done for each receive antenna independently to make use of the known antenna element

positions at the transmitter. The estimated channel matrix H̃ can then be used to calculate the
beamforming matrices at the transmitter and receiver. ◦ denotes the Hadamard product.

4.2.2. Dimension Recovery by Multiple Sparse Array Measurements

In the case of a highly diverse channel, the coefficients will vary very strongly within the spatial domain.
In this case, the sparse array interpolation approach might not achieve the desired estimation accuracy.
To overcome this problem the channel matrix estimation can be reconstructed out of Msub sparse array
measurements sequentially in time. It means that the reconstruction of the channel matrix can be split
into Msub measurements with different sparse array constellations. In each measurement time step the
active antenna element of each subarray is changed as shown in Fig. 5 as an example. Afterwards,
the full channel matrix can be reconstructed. After each measurement, the algorithm updates the
corresponding columns of the estimated channel matrix. The different measurements of each subarray
configuration can be performed in time domain over different training symbols. The symbols thereby
do not necessarily have to be contiguously following each other, but also can be spread over up to Msub

frames. Consider an OFDM frame with ND data symbols and NT training symbols, and the update
rate of the channel estimation is given by

Tu = (ND +NT ) · Ts · (Msub/NT ) (6)

where Ts stands for the OFDM symbol duration. The number of training symbols needed depends on
the coherence time Tcoh of the channel. Note that Tu ≪ Tcoh should hold for a good estimation result
of the channel coefficients. Furthermore, the number of training symbols can be adaptively adjusted
during the run-time depending on the channel coherence time. It should be pointed out that the number
of training symbols also depends on the applied channel equalization and synchronization techniques
and thereby maybe underlies additional constraints.

In Table 2 the algorithm is described in pseudocode for Nrel channel realizations. First, the desired
number of full-dimensional channel matrices H is generated as mentioned above. Furthermore, the
algorithm needs Msub truncation matrices Sm ∈ {0, 1} with dimension Mant,vert ×Mant,horz as input.
The truncation matrices select at each time step t the Mdig active transmit antennas, identical to
Subsection 4.2.1. For the Msub truncation matrices

Msub∑
m=1

Sm = 1Mant,vert×Mant,horz
(7)

holds. At each time step t the active antennas change cyclically by changing the truncation matrix
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ttt tk k + 1 k + 2 k + 3 k + 4t      = tk

Figure 5. Example of a time sequence of active antenna constellations for a 4× 4 antenna array with
2× 2 digital channels.

Table 2. Multiple sparse array combination algorithm.

1: Input: (1) Channel matrix Ht ∈ CNant×Mant for each time step t

2: (2) Truncation matrices Sm with m = 1, 2, . . . ,Msub

3: FOR t = 1 to Nrel

4: m = modulo (t,Msub) + 1

5: FOR i = 1 to Nant

6: Hi(t) = [hi,1(t), hi,2(t), . . . , hi,Mant(t)]

7: Reshape matrix to Hi(t) ∈ CMant,vert×Mant,horz

8: Truncation: Hs,i(t) = Hi(t) ◦ Sm(t)

9: END

10: Reconstruct the truncated channel matrix Hs(t) by sorting the rows Hs,i(t)

11: H̃(t) =
∑t

τ=t−(Msub−1)Hs(τ)

12: END

13: Output: Estimated channel matrix H̃(t) for each time step t

index m of Sm, and the algorithm updates the estimated channel matrix H̃(t). The truncation matrix
index m is calculated depending on the time step t with m = modulo(t,Msub) + 1.

Finally, it should be noted that the two dimension recovery methods can also be combined. The
number of sparse array measurements can be chosen smaller than the number of antennas per subarray,
and the remaining channel matrix coefficients can be interpolated as mentioned above.

The presented estimation methods can easily be expanded if on both the transmitter and receiver
sides, and a subarray-based hybrid beamforming architecture is used. Hence, the number of necessary
measurements increases to Msub · Nsub, where Nsub stands for the subarray size of the receiver. Also
here the interpolation approach can be utilized.

5. NUMERICAL RESULTS

In the following section, the presented dimension recovery methods are evaluated within the mobile
communication downlink scenario presented in Section 3. On the transmitter side, we consider a
subarray-based hybrid beamforming system with a uniform planar array consisting of Mant = 16×16 =
256 antenna elements. On the receiver side, a full digital system with Mant = 4 × 4 = 16 antenna
elements is used. The antenna element spacing is set on both sides to λ/2, where λ stands for the
wavelength. The number of digital channels of the hybrid beamforming system is varied to compare
different architectures. Electronically controllable phase shifters with 5 bit resolution are integrated into
the simulations to take account of the inaccuracy of the analogue beamforming network. The range of the
AoDs is limited in azimuth direction to 120◦ and 45◦ in the elevation direction, respectively. As element
characteristic, the radiation pattern of a patch antenna is used. At the receiver, an isotropic element
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characteristic is assumed considering a cellphone. The AoDs and AoAs are uniformly distributed with
the predefined angular range. To enhance comparability, within the following simulations the number
of beams or number of parallel transmitted data streams is held constant to Mbf = 4.

The 10% outage capacity at different average channel signal-to noise ratios (SNR) serves as
performance parameter to compare the different algorithms. The average channel SNR in dB

SNR = 10 · log10

{
1

Nrel

Nrel−1∑
n=0

Ptx

Mant · σ2n
||H(n)||2F

}
(8)

over Nrel channel realizations is defined following Equation (4). For each channel SNR the 10% outage
capacity is estimated from the cumulative distribution function of the capacity over Nrel = 40, 000
arbitrary channel realizations, which are obtained from Monte Carlo simulations.

At first, the dimension recovery algorithm by sparse array interpolation is evaluated. To optimize
the processing time, linear two-dimensional interpolation is performed. Moreover, we use, in the
following simulations, truncation matrices similar to the one shown in Fig. 4. The algorithm is evaluated
for different coherence lengths Lcoh. This coherence length can be increased by two-dimensional average
filtering of the channel matrix realizations. Because higher coherence lengths reduce the 10% outage
capacity of our Reference [37], the capacity difference

Cdiff = C10%(H)− C10%(H̃) (9)

between the results of the proposed algorithm C10%(H̃) and the reference C10%(H) is calculated. Fig. 6
shows the difference in 10% outage capacity between the unbiased channel matrix and the truncated
and interpolated channel matrix after applying the subarray-based hybrid beamforming algorithm. The
simulations are performed for a subarray size of 16 antennas in Fig. 6(a) and 4 antennas in Fig. 6(b).
The number of digital channels is given by Mdig = 4× 4 = 16 and Mdig = 8× 8 = 64, respectively. The
results show that for higher spatial correlations the performance increases as expected. Furthermore, the
higher number of digital channels in Fig. 6(b) is superior to Fig. 6(a) due to the smaller spatial distance
between the active antenna elements and thereby a reduced number of to be estimated values. At low
SNRs the channel is of sparse nature and possesses little spatial variations. This leads to good recovery
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Figure 6. Difference in 10% outage capacity between the unbiased channel matrix and the truncated
and interpolated channel matrix using the dimension recovery sparse array interpolation algorithm.
The algorithm is evaluated for different coherence lengths Lcoh, which are varied by two-dimensional
average filtering of the channel matrix realizations. (a) Hybrid beamforming transmitter with 4 × 4
digital channels resulting to 16 antennas per subarray. (b) Hybrid beamforming transmitter with 8× 8
digital channels resulting to 4 antennas per subarray.
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results, seen in the small performance difference. For higher SNRs the channel gets more diverse. As a
result, the performance difference increases especially for low spatially correlated channels. In summary,
the performance of the presented dimension recovery algorithm by sparse array interpolation strongly
depends on the spatial correlation within the channel, which can be used as the main criteria of its
selection. For both subarray sizes the capacity loss can be kept below 1 bps/Hz, if the coherence length
is larger than four times the spacing of the active antenna elements during sparse array estimation. It
should be pointed out that for the presented approach only one single measurement is needed, which
results in fast channel estimation time.

In the next step, the dimension recovery algorithm using multiple sparse array measurements is
evaluated. To introduce a temporal correlation between subsequent channel realizations the AoAs and
AoDs, as well as the path attenuation factors and phases, are low pass filtered in time, using a Gaussian
window function. Thereby the coherence time can be adjusted by varying the filter length. Fig. 7 shows
the 10% outage capacity over SNR for a subarray size of 16 antennas in Fig. 7(a) and 4 antennas in
Fig. 7(b). The number of digital channels is given by 4 × 4 and 8 × 8, respectively. As reference, the
full digital system and the subarray-based hybrid beamforming are used, as they stay constant during
all simulations. The results show that for increasing coherence times the algorithm can reconstruct
the original channel matrix, and the capacity nearly approaches the reference. Moreover, due to the
reduced number of measurements needed in Fig. 7(b), the capacity of the reference can be reached for
shorter coherence times. The result in Fig. 7(b) show, for example, that with a channel coherence time
Tcoh = 46 · Ts and a channel SNR of 15 dB the algorithm shows a loss below 1 bps/Hz. It should be
noted that in scenarios with very low coherence times the communication will also be harmed, and no
spatial multiplexing can be used.
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Figure 7. Comparison of the 10% outage capacity over SNR for different subarray sizes and coherence
times Tcoh using the dimension recovery by multiple sparse array measurements algorithm. The
coherence time is varied by Gaussian filtering the AoAs and AoDs as well as the path attenuation
factors and phases of the subsequent channel realizations. (a) Hybrid beamforming transmitter with
4× 4 digital channels resulting to 16 antennas per subarray. (b) Hybrid beamforming transmitter with
8× 8 digital channels resulting to 4 antennas per subarray.

6. CONCLUSION

Within this work, we present a channel estimation approach for subarray-based hybrid beamforming
systems based on sparse array estimations. The channel estimation method only needs one or a few
measurements to reconstruct the channel matrix, which leads to low processing overheads. The sparse
array channel estimations are done with only one active antenna per subarray, and the transmitters are
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separated in the frequency domain using different subcarriers within an OFDM frame. Furthermore,
two dimension recovery methods are proposed and analyzed by their performances. The dimension
recovery by sparse array interpolation method is able to reconstruct the full-dimensional channel matrix
sufficiently if the coherence length is larger than four times the spacing of the active antenna elements.
Furthermore, the results show that for low SNRs the unbiased reference is reached due to the low
channel diversity. The dimension recovery based on multiple sparse array measurements reaches the
performance of the reference system for coherence times larger than Tcoh ≥ 199 · Ts in the case of
a 16 element subarray and Tcoh ≥ 46 · Ts in the case of a 4 element subarray, respectively. These
coherence times seem reasonable considering an urban mobile communication scenario where no high
relative velocities of communication users have to be expected. For both methods, the estimation quality
improves if the subarray size is reduced.
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