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Engineering Laser-Based Diagnostic in a Hot Wind Tunnel Jet:
Measurement of the Temperature Structure Coefficient

by Using an Optimization Technique

Maurice Lamara1, Elisabeth Ngo Nyobe2, and Elkana Pemha1, *

Abstract—This paper is devoted to an engineering laser-based diagnostic technique which is able to
extract the value of the temperature structure coefficient in a hot turbulent wind tunnel jet, by using
a thin laser beam which is sent into the jet. Some experimental investigations are carried out to
characterize the jet under study and the probabilities of the positions of the laser beam impact on a
photocell are measured. The theoretical values of the same probabilities are computed by assuming
that the laser beam direction is a Markov random process. By means of an optimization technique with
constraints, based on the Golden Section algorithm, the temperature structure coefficient of the jet is
determined. The validity of the result obtained is proved by a good agreement which is observed in the
comparison between another parameter computed from that result and the previously published data.

1. INTRODUCTION

Because of their various applications in industry and in environment, turbulent flows continue to be of
great interest and are increasingly studied. The fundamental study of turbulence [1] shows the great
complexity of turbulent flows. Turbulence is a longstanding problem for which there is no analytical or
numerical solution, except for few cases in which models are required [2] to be introduced in theoretical
calculations or in numerical simulations for completed results. In many cases, experimentation is needed
to confirm the results [2].

This paper is devoted to the measurement of a key parameter called temperature structure
coefficient and denoted as C2

T . The knowledge of C2
T enables the determination of the thermal turbulence

intensity in any heated turbulent medium such as flames, hot jets, combustion chambers of engines,
atmospheric boundary layers, and industrial boundary layers. To measure that coefficient, two types
of experimental techniques are usually applied: the first type contains techniques for which probes are
required to be placed inside turbulent flows [3]. The measurement technique presented in this paper
belongs to the second type of techniques called diagnostic techniques or noninvasive techniques because
no measuring sensor is introduced into the flow studied [2]. So, a thin laser beam is sent into the hot jet
under study, perpendicularly to the flow direction. The temperature structure coefficient is measured
from the examination of the luminous trace produced by that laser beam on a photocell placed outside
the jet.

Experimental investigations carried out in the jet demonstrate that the laser beam path considered
behaves as a direction of homogeneity for C2

T . Also, this work represents a necessary preliminary step for
a subsequent research in which the result obtained in this paper and the measurement technique applied
in it will be extended to determine variable C2

T parameters. To validate the measurement technique, it
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is proved that another parameter, called structure coefficient of refractive index C2
n and computed from

the result obtained, is close to the previously published data [4].

2. THEORETICAL FOUNDATIONS

For any heated turbulent medium, parameter C2
T is defined by Tatarskii [5] as:

C2
T = α2(σ̄)−1/3Q̄ (1)

where α2 is a positive dimensionless proportionality constant, σ̄ the viscous dissipation, and Q̄ the
amount of temperature inhomogeneities disappeared per unit time because of the molecular diffusion in
the medium. C2

T has a great importance in the study of any thermal turbulence. First, C2
T is needed to

evaluate the well-known temperature structure function St [5] defined from the temperature fluctuations
t by the following relation:

St = (t(x + r) − t(x))2 (2)
for any positions vectors (x) and (x + r). Second, C2

T is required for the determination of the Karman
model of the temperature turbulence spectrum, which is well known to be the more realistic and complete
model, and is written as [6]:

ψt(K) = 0.033C2
T

(
K2 +K2

0

)−11/6 exp
(−K2

/
K2

m

)
(3)

whereK0 andKm are the lower and upper limits of the inertial zone of turbulence defined as: K0 = 1/L0

and Km = 5.92/Li, L0 and Li being the outer and inner scales of turbulence.
For any heated medium in which the unique cause of the refractive index fluctuations is the

temperature fluctuations, C2
T plays an important role and is connected [4–7] to the parameters C2

n
and Dn characterizing the optical turbulence and respectively called the structure coefficient of the
refractive index [5] and the diffusion coefficient of the jet [7]:

C2
T =

(
T 2

mean

aP0

)2

C2
n (4)

C2
T = A2

(
T 2

mean

aP0

)2

K−1/3
m Dn (5)

The above relations hold if the air of the jet is considered as a perfect gas. A2 = 1.641 is a positive
constant whose value can be found in our previous works [4]; Tmean represents the mean temperature
in the medium; a = 79 × 10−6 K ·mb−1 is the Dale-Gladstone constant corresponding to the incident
wavelength (η = 6328 Å) of the laser beam radiation; P0 is the mean pressure in the jet air assumed to
be equal to the atmospheric pressure.

As suggested by Chernov [7], we assume that the direction of the laser beam is a Markov process
in which the length path of the laser beam plays the role of time. So, the probability P (θ, φ, z) for the
laser beam, to have the direction (θ, φ) (θ, φ are azimuthal and polar angles) after having traversed a
distance z is given by the following equation [7]:(

1

λK
1/3
m

)
∂P

∂z
=

C2
T

sin θ
∂

∂θ

(
sin θ

∂P
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)
+

C2
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∂2P

∂φ2
(6)

where λ is a constant defined as: λ =
(
aP0

/
T 2

mean

)2/
A2. In the contribution by Chernov [7], the above

equation is expressed in terms of Dn. It can be written in terms of C2
T by means of formula (5) found

in our previous works [4].

3. MEASUREMENTS

3.1. Measurement of the Dynamical and Thermal Properties of the Jet

The hot turbulent jet of air is issued from a rectangular nozzle aperture (200 mm × 5mm) of a wind
tunnel shown in Fig. 1. Three perpendicular Cartesian axes (x, y, z) are defined on the nozzle aperture,
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Figure 1. Wind tunnel: (1) Ventilating fan; (2) Vertical displacement; (3) Heating resistances; (4) Box
for flow homogeneity; (5) Filter against turbulence; (6) Nozzle; (7) Thermocouple.
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   Hot Turbulent Jet
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Figure 2. Cartesian coordinates defined on the nozzle aperture of the wind tunnel.

as shown in Fig. 2. To obtain stable experimental results, all measurements are done when the jet is fully
developed. By means of a thermocouple, measurements of the mean temperature are performed. The
rms of the temperature fluctuations are measured by applying the cold-wire anemometer technique [2, 3]
in which we have used a wire whose diameter and length are respectively equal to 1µm and 0.4 mm,
with a current intensity I0 = 0.16 mA. To measure the mean velocity U , we use a moving graduated
drum which rotates around a vertical axis and causes the vertical displacement of a cursor situated on
a graduated ruler, such that 1 tower of the drum corresponds to 1 mm on the ruler. The drum helps to
bring back a meniscus in order to measure the difference in level h between its position, which depends
on U , and the initial level. That meniscus is illuminated, and its displacement can be exactly detected
by using a sight objective. By means of a Pitot’s tube, the mean velocity is then measured from the
following relation [2]:

U = (2(Pd − P0)/ρ)
1/2 = 4

√
h (7)

where ρ is the air specific mass, and Pd and P0 are the dynamic and static pressure, respectively.
Since the direction of propagation of the unperturbed laser beam is along the z-axis, it is necessary

to describe the jet behaviour by measuring the dynamical and thermal properties of the jet along
that direction. So, along the jet straight line (x = 300 mm, y = 0, z variable) parallel to the z
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Figure 3. Mean velocity as function of z along
the z axis, at the distance x = 300 mm from the
plane of the nozzle aperture, that is along the
mean path of the laser beam.
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Figure 4. Mean temperature as function of z at
the distance x = 300 mm from the plane of the
nozzle aperture, that is, along the mean path of
the laser beam.
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Figure 5. Rms of temperature fluctuation and as function of z along the z axis, at the distance
x = 300 mm from the plane of the nozzle aperture, that is along the mean path of the laser beam.

axis, measurements of mean velocity, mean temperature, rms of temperature fluctuations, and rms of
refractive index fluctuations are carried out. The measured values plotted as function of z in Figs. 3, 4,
5 remain constant and are respectively equal to 7.5 m/sec, 46.5◦C, 2.50◦C, and 2.0 × 10−6, except in a
short area at both borders of the jet. This demonstrates that the jet under study is plane; in addition,
the mean-velocity curve shows that the jet width is Z ≈ 300 mm, at the distance x = 300 mm, along
the z axis.
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3.2. Measurement of the Probabilities of the Positions of the Laser Beam Impact on a
Photocell Placed outside the Jet

3.2.1. Experimental Setup

The experimental setup is shown schematically in Fig. 6. A red light beam (wavelength = 6328 Å),
having initial diameter e = 0.8 mm, is created from a 1 mW He-Ne laser. The laser beam is passed
through the path (x = 300 mm, y = 0, z variable) already considered in Section 3.1. After having
traversed the jet, the laser beam reaches a photoelectric cell placed outside the jet on the plane (x, y),
at a distance D = 500 mm from the outlet jet border. To keep the position of the laser source unchanged
when seeking the desired incident direction of the laser beam, we need to use a plane mirror which is
placed between the turbulent jet and the laser source. The electrical signal transmitted by the photocell
is displayed by a storage oscilloscope connected to an interface which provides information to a computer
for statistical calculations. The photocell transmits two voltages whose amplitudes are proportional to
the coordinates (x, y) of the laser beam impact position on the photocell plane. Since these amplitudes
are very weak, it is necessary to use an amplifier which gives information to the interface. The refractive
index fluctuations created at least by the thermal fluctuations in the jet cause directional fluctuations of
the laser beam, amplitude fluctuations of the laser wave, and phase fluctuations of the laser wave front
which induce intensity fluctuations of light wave by diffraction process. The laser beam then produces
a luminous trace on the photocell.

Amplifier

Interface

Computer

 Oscilloscope 

Plane Mirror

Laser beam
(along the z axis) 

Laser source

Heated turbulent jet

Photocell    
(x-y plane) 

Figure 6. Experimental set-up with all devices used.

3.2.2. Preliminary Investigations Before Measuring the Probabilities

From the physical point of view, the concept of probability of the direction of the laser beam defined
in a turbulent jet has no sense if the laser beam undergoes large diffraction effects due to turbulence.
So, it is mandatory to verify the applicability of the geometrical optics approximation in the case of
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the problem studied. We then need to evaluate the importance of the diffraction effects undergone by
the laser beam in the jet. For that, we have measured the diameter of the laser beam footprint on
the photocell plane, and the value we have obtained is 0.85 mm, which corresponds to an increasing
equals to 6.25% of the initial diameter of the laser beam. This leads to a conclusion that the laser
beam studied remains sufficiently narrow such that diffraction effects may be negligible compared to
refraction effects, along the whole laser beam path, i.e., the geometrical optics approximation may be
applied. This occurs if the following conditions are met [2, 4].

- The incident wavelength η of the unperturbed laser beam radiation must be very small, compared
to the inner scale Li of the turbulent inhomogeneities in the hot jet (Li = 1mm [2]).

- The whole path distance Z traversed by the laser beam must be very great, compared to the outer
scale L0 of the turbulent inhomogeneities (L0 = 10 mm [8]).

- The size of the first Fresnel zone
√
ηZ must be smaller than the inner scale Li.

- The laser beam intensity fluctuations are neglected.

Under the above conditions, the applicability of the geometrical optics approximation is allowed.
So, the random propagation of the laser beam may be approximated as a random walk process in which
the laser beam is regarded as a laser ray, as in Refs. [9] and [10].

The room medium is at rest before experiments, and we observe that the laser impact on the
photocell remains nearly unchanged before heating the jet. Hence, the effects of pressure fluctuations
may be negligible in the jet, and the temperature fluctuations are the unique cause of the refractive
index fluctuations, as expected in theory predictions explained in Section 2.

3.2.3. Method of Measurement of the Probabilities

To measure the probabilities of the positions of the laser beam impacts on the photocell, an initial
measuring square is built in the photocell plane after some samples, and this square is the zone defined as:
[−0.40 cm, 0.40 cm] × [−0.40 cm, 0.40 cm]. After having eliminated the points which do not correspond
to any impact of the laser beam on the photocell, we suitably reduce the surface of this initial square,
and the final measuring area needed for the measurements of the probabilities of the laser beam impact
positions is the square [−0.20 cm, 0.20 cm] × [−0.20 cm, 0.20 cm]. Hence, the diameter (0.85 mm) of
the laser beam footprint represents 21.25% of the size of the final measuring square, and the footprint
surface represents 3.5% of the surface of this square. The final measuring square is cross-ruled in 1600

Figure 7. The measured experimental probabil-
ities of the position of the laser beam impacts on
the photocell plane.

Figure 8. The experimental luminous trace
produced by the laser beam in the photocell cell
plane.
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small squares of the same size c = 0.01 cm, defined by the following discretized points:

x(l) = −0.20 + l · c, l = 0, 1, . . . , lmax, (lmax = 40) (8a)
y(m) = −0.20 +m · c, m = 0, 1, . . . ,mmax, (mmax = 40) (8b)

The quantity Q(l,m) denotes the probability for the centre of the laser beam impact to be situated
within the square [x(l), x(l + 1)[×[y(m), y(m + 1)[. The interface is able to store 2 × (25 × 25) = 2048
impacts of the laser beam in approximately 20 seconds. The measured values Q(l,m) are plotted in
Fig. 7, and the corresponding luminous trace produced by the laser beam on the photocell is presented in
Fig. 8. One observes a regular image of the luminous trace which shows that probabilities are maximal
in the central zone of the final measuring square and are nearly equal to zero at the boundaries of that
square.

4. NUMERICAL STRATEGY TO COMPUTE THE SAME PROBABILITIES

The computed values of the same probabilities are obtained by solving Eq. (6). The z distances are
approximated as a set of discretized values numbered by the integer n as:

z ≈ z(n) = zn (9a)
z′ ≈ z(n+ 1) = zn+1 (9b)
z(0) = 0 and z(n + 1) − z(n) = Δz, for n = 0, 1, . . . , nmax − 1 (9c)
z(nmax) = zmax = Z (9d)

The suitable value of the distance z′ − z = Δz is dictated by the convergence requirements of the
numerical procedure which compute the probabilities and can be regarded as the dimension of the
turbulent structures in which the propagation of light in the jet is considered rectilinear.

To discretize the angles (θ, φ), we notice that the laser beam deviates very slightly from its initial
incident direction Oz. So, for any point M of its trajectory corresponding to the straight distance
r = OM (O is the entry point of the laser beam), we are allowed to make the approximation which
considers that the direction of the position vector OM and the direction of laser beam are nearly
identical. Therefore, the coordinates (x, y, z) of M can be connected to the angles (θ, φ) of the laser
beam direction at the same point, by the following relations:

z = r sin θ cosφ (10a)
x = r sin θ sinφ (10b)
y = r cos θ (10c)

The laser beam does not undergo change in direction from the outlet jet-border to the photocell plane.
Also, if the photocell is placed at a distance D from the outlet jet-border, and if (x, y) are the coordinates
of the laser beam impact on the photocell corresponding to the direction-of-arrival (θ, φ) of the laser
beam, we found from Eq. (10):

x = (Z +D) tan φ (11a)

y = (Z +D)
cot θ
cosφ

(11b)

Since the cell plane (x, y) is cross-ruled as shown in Eq. (8), the experimental values (x(l), y(m)), which
then characterize the predicted possible positions of the laser beam impact, define the discretized values
(φ(l), θ(m)) of the angles (φ, θ) according to Eq. (11). This gives:

φ(l) = tan−1

(
x(l)
Z +D

)
l = 0, 1, 2, . . . , lmax (12a)

θ(l,m) = cot−1

(
y(m)√

x(l)2 + (Z +D)2

)
l = 0, 1, 2, . . . , lmax and m = 0, 1, 2, . . . ,mmax (12b)
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Hence, the probabilities P (φ, θ, z) are approximated as the quantities P (φ(l), θ(m), z(n)) written as:
Pn(l,m). We then apply a two-steps explicit discretization scheme with alternating directions, which
is able to compute Pn(l,m) according to the successive formulas:

Pn+1/2(l,m) = RPn(l,m− 1) + SPn(l,m) + TPn(l,m+ 1) (13a)

Pn+1(l,m) = UPn+1/2(l − 1,m) + V Pn+1/2(l,m) +WPn+1/2(l + 1,m) (13b)

with:

Rl,m = C2
Tβ(Δz) (2 − hm cot θ(l,m)) /(h2

m−1 + hm−1hm) (14a)

Sl,m = 1 + C2
Tβ(Δz)((hm − hm−1) cot θ(l,m) − 2)/hmhm−1 (14b)

Tl,m = C2
Tβ(Δz)(2 + hm−1 cot θ(l,m))/(hm−1hm + h2

m) (14c)

Ul,m = 2C2
Tβ(Δz)(1 + cot2 θ(l,m))/(g2

l−1 + gl−1gl) (14d)

Vl,m = 1 − 2C2
Tβ(Δz)(1 + cot2 θ(l,m))/glgl−1 (14e)

Wl,m = 2C2
Tβ(Δz)(1 + cot2 θ(l,m))/(gl−1gl + g2

l ) (14f)

gl = φ(l + 1) − φ(l) for l = 0, 1, . . . , lmax − 1 (14g)

hm = θ(l,m+ 1) − θ(l,m) for m = 0, 1, . . . ,mmax − 1 (14h)

β = λK1/3
m (14i)

The initial condition is stated for z = 0 and is given in terms of Dirac δ as follows:

P (θ, φ, z = 0) = δ(θ − π/2)δ(φ) (15)

The values (θ0 = π/2, φ0 = 0) used in the above condition characterize the direction of the z axis, that
is, the direction of the laser beam before entering the jet. This direction corresponds to the impact of
the laser beam which is constructed as the centre of the final measuring square in the photocell plane
and is then identified by the integers (l = 20, m = 20). So, the numerical form of the initial condition
can be written in terms of Kronecker delta as:

Pn=0(l,m) = δl,20δm,20 (16)

About the boundary conditions, we notice that the probability for the laser beam to have an impact
situated on the boundaries of the final measuring square or on the boundaries of any observation plane
is equal to zero. Hence, we assume the zero Dirichlet boundary condition:

Pn(l, 0) = Pn(l,mmax) = 0 for l = 0, 1, . . . , lmax (17a)

Pn+1/2(0,m) = Pn+1/2(lmax,m) = 0 for m = 0, 1, . . . ,mmax (17b)

5. CONSTRAINED OPTIMIZATION TECHNIQUE TO COMPUTE C2
T

To determine the probabilities from Eq. (6), the value of C2
T is required. To compute it, we apply an

optimization procedure which compares the experimental results Q(l,m) = Ql,m to the corresponding
numerical results Pn(l,m) = Pn

l,m(C2
T ). We then define a cost function J(C2

T ) which measures the
quadratic difference between the two sets of results:

J(C2
T ) =

lmax∑
l=0

mmax∑
m=0

(Pn=nmax
l,m (C2

T ) −Ql,m)2 (18)

In the definition given in Eq. (18), C2
T becomes a parameter which permits one to adjust the numerical

solution so that its difference with respect to the experimental results can be as small as possible.
Therefore, the temperature structure coefficient of the jet under study can be regarded as the value of
the parameter C2

T for which the J function is reduced to the minimum. With a view to minimizing J ,
we have applied the well-known Golden Section (GS) algorithm [11] whose schematization is given in
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Fig. 9. This algorithm is strongly recommended to minimize any cost function which depends on a single
variable, even if differentiation cannot be assumed in the connection link. In this work, we encounter
an additional difficulty coming from the fact that the computation of the cost function considered
requires solving a partial differential equation with constraints. Since the solutions are probabilities,
those constraints impose that the values obtained must be situated between 0 and 1. The optimization
problem solved in this work is well known as a constrained inverse problem of the parameter estimation
type [12]. The result that we have obtained is:

C2
T = (3.75 ± 0.01) × 102 K2m−2/3 (19)

From Eq. (4), one can compute the corresponding value for the structure coefficient of the refractive
index of the jet studied; we then obtain: C2

n = 2.30 × 10−10 m−2/3. This value is close to the result
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Figure 9. Schematization of the GS Algorithm applied.
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Figure 10. The computed probabilities of the
position of the laser beam impact on the photocell
plane.

Figure 11. The computed luminous trace
produced by the laser beam on the photocell
plane.

C2
n = 1.93×10−10 m−2/3 previously published by our research team for another hot turbulent wind tunnel

jet [4]. For a strong indoor turbulence, Consortini et al. [13] have obtained: C2
n = 2.96 × 10−11 m−2/3.

In our previous paper [14], we have obtained the following value: C2
n = 3.27×10−8 m−2/3 for a turbulent

premixed butane — air flame by means of a laser based interferometer technique. For the measured
temperature structure coefficient C2

T = 3.75×102 K2m−2/3, we have computed the probabilities Pn=nmax
l,m

of the positions of the laser beam impact on the photocell plane. The obtained values are plotted in
Fig. 10, and the corresponding predicted luminous trace produced by the laser beam on the photocell
is presented in Fig. 11. Both figures must be compared to the experimental values plotted in Fig. 7
and to the experimental luminous trace presented in Fig. 8. A good agreement is observed from that
comparison.

6. CONCLUSION

In this paper, we have proposed a technique to measure the temperature structure coefficient C2
T for

a hot turbulent wind tunnel jet without introducing any probe in the jet. A laser ray is sent into
the jet along a direction of homogeneity of C2

T and produces a luminous trace on a photocell placed
outside the jet. The probabilities Q(x, y) of the positions (x, y) of the laser ray impact on the photocell
are measured. From the Markov process model for the laser beam direction, those probabilities are
computed by means of a numerical procedure.

To extract the value of C2
T , we have applied a numerical optimization technique in which a cost

function J(C2
T ) measuring the quadratic difference between results P (x, y,C2

T ) and Q(x, y) is reduced
to the minimum by means of the Golden Section algorithm. Therefore, the temperature structure
coefficient of the jet can be regarded as the value of the parameter C2

T for which the J function is
reduced to the minimum.

In subsequent research, the result obtained in this paper and the measurement technique applied
in it will be used to determine the variable temperature structure coefficient.
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