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Design of Dodecagon Unit Cell Shape Based Three Layered
Frequency Selective Surfaces for X Band Reflection

Vahida Shaik* and Krishnan Shambavi

Abstract—A three layered low profile dodecagon shaped band stop frequency selective surface (FSS) is
presented in this paper for X band rejection applications. The three layers are placed in a manner which
is complement to each other. The low profile three layered FSS with unit cell dimensions on the order of
0.2λ0 × 0.2λ0 (at lower center frequency of 8.2 GHz) with overall thickness of three layers including air
gap of 5.2 mm is presented. For experimental verification, a three layered FSS has been fabricated and
measured. Simulation results show that the designed three layered FSS can provide a stopband from
8GHz to 12.5 GHz with two transmission zeros of 8.2 GHz and 10.5 GHz with a fractional bandwidth of
45%. The complete design and equivalent circuit model (ECM) of the three layered FSS are presented
in this paper.

1. INTRODUCTION

It is generally known that the frequency selective surfaces are microwave spatial filters for specific
frequencies to pass or reflect applications. FSSs are widely preferred for all wireless communication
applications due to thier frequency selectivity and their polarization and angle of incidence
independence. FSSs are widely used in the applications of antenna reflectors, absorbers, radoms, spatial
filtering, polarizers and for reducing radar cross section, etc. [1, 2]. Most of the readings have done
with two-dimensional arrangement design methods [4, 5]. Currently three-dimensional FSSs are also
presented in literature [3]. Also frequency selective surfaces are used as superstrate and reflectors to the
antennas to increase the gain, bandwidth and for reducing spatial decoupling between antennas [4–6].
FSSs are presented in the literature as single layer, multi-layer, single sided, double sided ones and for
miniaturization with lumped elements [7]. But with lumped components the cost of the design is more,
and it requires precise design method. The literature related to band stop FSS also includes single band
stop (8, 9, 10), dual band stop (11, 12, 13), multi band stop (14, 15, 16), and reconfigurable band stop
(17, 18).

The multi-layer design is simple, which not only increases gain and bandwidth of antennas, but
also increases the broad band features of the required frequency range. Several articles presented multi-
layer designs with variable patches and dual band for broad band operation [19, 20]. The designs were
also proposed with non-resonating element structures [21] and for specific phase variation of circular
polarization [22], with antennas [23], and for dual band operation [24] purpose with X and K band
reflections. Recently a new class of 3D FSSs are proposed with a multi-layer structure with split
ring and uniform impedance resonators to get tri-band operation and thin substrate based on loop
resonators [25, 26].

These days the miniaturization is the foremost prerequisite for all wireless communications FSS
sheets used with antennas which are larger in size compared to antenna dimensions. To get high gain
there are should be more unit cells, but they will occupy large space. So the need arises to reduce the
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FSS’s sheet size with more unit cells in a limited space. So, we propose a three-layer band stop FSS for
X band shielding applications with 30 × 30 cells of 225mm × 225 mm dimensions with unit cell size of
7.5mm × 7.5 mm.

The uniqueness of the proposed unit cell in this research article is its compactness. In addition,
the layers are arranged in such a manner that they are complement to each other to attain the requisite
frequency range. The air gap between the layers is only 0.067λ0 with the substrate thickness of 0.4 mm
which is very thin. It should be noted that this structure is based on the design proposed in [27]. The
overall thickness of the proposed stopband FSS array is only 5.2 mm. The proposed FSS array is well
suited for RF shielding applications, as reflector to the antennas for wide bandwidth applications. The
importance of this paper is wide bandwidth frequency selective surface with multi-layer whose overall
height (which is only 5.2 mm) is miniaturized compared to previous proposed methods. Even though it
has multi-layer the wide stopband characteristics aew obtained within 5.2 mm height with three layers
with a very thin commercially available FR4 substrate which costs less. Nowadays, miniaturization is
a crucial goal of communications, and this multi-layer design is useful for miniaturized multilayer wide
stopband (i.e., X band) applications.

In the next sections the unit cell design configuration, parameters extraction using equivalent circuit
model are presented explicitly. Then results for various angles of incidence and experimental verification
are presented, and finally the research article postulates the findings in the inference.

2. UNIT CELL DESIGN CONFIGURATION

The proposed FSS is composed of one single sided patch layer, one strip layer and one double sided
patch and strip layer. The shape of the design selects dodecagon which is a 12-segment polygon. The
layers are arranged in such a manner, which are complement to each other. The proposed design also
satisfies the condition of P < λ0

(1+sin θ) where λ0 is the wave length of the proposed design, and P is the
periodic unit cell dimension of the design [1]. The geometry of the proposed unit cell of three layered
FSS is shown in Figure 1. The perspective view of single unit cell FSS design is shown in Figure 2.

Figure 1. Unit cell design of three layered FSS design.

The dimensions of the unit cell are P = 7.5 mm, r0 (outer radius) = 3.4 mm (diameter of 6.8 mm),
r1 (inner radius) = 3 mm (diameter of 6 mm), spacing between layers s = 0.7 mm, w = 0.4 mm,
h = 2 mm. The three layer dodecagon FSS uses a T = 0.4 mm thick FR4 dielectric substrate with
permittivity of 4.4 and loss tangent of 0.02. The air gap between layers is selected as h = 2 mm. To
analyze the unit cell structure periodic boundary conditions are used in X-Y axis, while in Z axis it
is set for floquet port excitation. At the TE (vertical) and TM (horizontal) polarizations, the FSS
exhibits two transmission zeros at 8.2 GHz and 10.5 GHz with a stop bandwidth ranging from 8GHz to
12.5 GHz, respectively.
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Figure 2. Perspective view of multi-layer unit cell FSS design.

Figure 3. Equivalent circuit model of three layered FSS design.

3. EQUIVALENT CIRCUIT MODEL OF UNIT CELL FSS LAYER

An equivalent circuit model for the unit cell of the three layer FSS is shown in Figure 3. The
series combination of inductor L1 and capacitor C1, L3 and C3 represents patch layers. The parallel
combination of Inductor L2 and capacitor C2, L4 and C4 represents strip layers. All the three layers of
FSS are modeled as series and parallel LC resonators. The three layers are placed complement to each
other which gives sharp band stop characteristics. The air gap between the FSS layers is represented
as transmission lines as TL1 and TL2 with a free space characteristic impedance of Z0 of 377 Ω. The
values of LT1 = LT2 = LT3 and CT1 = CT2 = CT3 can be calculated from Telegrapher’s model [20]
using TEM transmission line equations which are

LT1 = LT2 = LT3 = μ0μrT (1)
CT1 = CT2 = CT3 = ε0εrT (2)

In the above equations ‘T ’ is the substrate thickness of 0.4 mm for all the three layers and
μ0 (free space permeability) = 4π × 10−7 H/m, where ε0 (free space permittivity) = 8.85 × 10−12 F/m.

The equivalent circuit parameter values for inductance and capacitance are obtained by using
equations [28],

L = μ0μeff
P cos θ

2π
ln

1

sin
πw

2P

(3)
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C = 4ε0εeff
P cos θ

2π
ln

1

sin
πs

2P

(4)

where μ0 (free space permeability) = 4π × 10−7 H/m, μeff (effective permeability) = (μr + 1)/2 = 1,
‘P ’ is the unit cell dimension of the frequency selective surface, ‘w’ the width of the unit cell,
and ‘s’ the spacing between the unit cell, whereas ε0 (free space permittivity) = 8.85 × 10−12 F/m,
εeff (effective permittivity) = (εr + 1)/2 = 2.7. The above parameters require to estimate LC values.
The top layer is the patch layer which acts as a band stop filter whose equivalent circuit is the
combination of series L and C values, whereas the strip is the parallel combination of L and C values.
But there is height variation between the bottom and top layers. The same L and C values for both
double side layers are applied. Due to height variations in between the layers obtaining similar notches
is difficult due to inductance and capacitance effects. To get an output similar to simulated HFSS result,
the potential ranges of the inductor and capacitance are obtained as 6.8 nH ≤ L = 9.8 nH and 0.023 pF
≤ C ≤ 0.07 pF. The series inductors LT1, LT2, LT3 and shunt capacitors of CT1, CT2, CT3 are used
for transmission line representation of substrate in the circuit. The characteristic impedance of the
transmission line section of substrate is calculated using Z0/

√
εr, where εr is the relative permittivity

of the dielectric, and Z0 is free space wave impedance. Both ends of the FSS layers are modeled here
with a characteristic impedance of free space which is 377 Ω [20, 26].

The LC circuit parameters after being optimized using AWR software for different layers are
L1 = 3.6 nH, C1 = 0.06 pF, L2 = 7.7 nH, C2 = 0.06 pF, L3 = 7.7 nH, C3 = 0.06 pF, L4 = 7.7 nH,
C4 = 0.03 pF, and the values obtained using Eqs. (1) and (2) for transmission line are LT1 = LT2 =
LT3 = 0.5 nH and CT1 = CT2 = CT3 = 15.5 fF and Zo = 377Ω, respectively. The agreement between
the above full wave simulation (HFSS) in Figure 4 and equivalent circuit model results is within the range
and worthy for the three layered FSS design. There is height variation between the layers, considering
that the height variation in the equivalent circuit model is difficult because there will be only slight
variation in the bandwidth, transmission zero and transmission coefficient values obtained.

Figure 4. Comparision of simulated and ECM output.

4. RESULTS AND DISCUSSION

The proposed three layer FSS is described, and equivalent circuit model is presented above. In this
section, the full wave simulation results and verification are provided. Inference is by using equivalent
circuit model, and we obtain LC values for the center frequency and −10 dB stopband from 8 to
12.5 GHz. There is a variation in the output of ECM with HFSS output because of air gap height
difference between layers, and modeling of ECM is difficult which accounts for a slight variation in
transmission response compared to HFSS simulation. The three layer band stop FSS is simulated with
various oblique angles of incidence for both TE and TM polarizations. There is a fine agreement between
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(a)

(b)

Figure 5. (a) TE polarization of FSS at oblique incidence angles. (b) TM polarization of FSS at
oblique incidence angles.

the two polarizations for oblique angles of incidence up to 45◦. The various oblique angles of incidences
of both TE and TM are shown in Figure 5(a) and Figure 5(b).

The simulation is also carried out for various other air spacing differences of 2.5 mm and 5 mm.
The air gap separation of various heights comparison is shown in Figure 6. Better results obtained for
h = 2 mm are proposed. The overall thickness of proposed design is only 5.2 mm which is very compact
compared to previous structures. The proposed design shows better angular stability for both TE and
TM till 45◦, and in terms of spacing between layers it is a low profile design compared to [20, 22]. The
resonance mechanism is understood by surface current distribution across dodecagon FSS patch and
strip at various frequencies. The surface current distribution across center frequency of 10.25 GHz is
plotted in Figure 7. It is clear from surface distribution that 8.2 GHz frequency is with the dodecagon
patch and 10.5 GHz with the dodecagon strip design. The middle layer of double side patch and strip of
dodecagon design is associated with one pass and one stop band frequency. The overall surface current



108 Shaik and Shambavi

Figure 6. Comparison of air gap separation between layers of FSS design.

Figure 7. Surface current distribution in the layers at center frequency range.

distribution observed near the bands of 8.2 GHz and 10.5 GHz is more. The compact thin three layer
design is suitable for the reflection of the entire X band ranging from 8 to 12.5 GHz.

The comparisons of previous references and the proposed designs are presented in Table 1.

Table 1. Comparison with the previous multilayer FSS designs offered in the literature.

Parameter Ref. [20] Ref. [22] Proposed
Unit cell (mm) 11mm × 11 mm 5mm × 5 mm 7.5mm × 7.5 mm

Frequency band (GHz) 4–7 26–40 8–12.5
Layers 2 4 3

Spacing between layers 4 mm 2.5 mm 2 mm
Angular stability 60◦ 25◦ 45◦

Method Cascading Cascading cascading
Fractional Bandwidth 60% NA 45%

Dielectric substrate, thickness of substrate 4.4, 1.2 mm 2.2, 0.127 mm 4.4, 0.4 mm
Overall thickness of the layers 6.4 mm 8.008 mm 5.2 mm
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5. EXPERIMENTAL VALIDATION

To verify the validity of the proposed design, a prototype with 30 × 30 unit cells array is fabricated.
The dimensions of the dodecagon FSS array are 225×225 mm2. The fabricated designs of three layered
dodecagon FSS patch array and strip array are shown in Figures 8(a) and 8(b). The prototype of the

(a) (b)

(c)

Figure 8. (a) Fabricated 30 × 30 cells patch array. (b) Fabricated 30 × 30 cells strip array. (c) Three
layer 30 × 30 cells FSS array with air gap separation of 2 mm.

(a) (b)

Figure 9. (a) Measurement setup. (b) Comparison of simulated and measured results.
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fabricated three layered FSS is shown in Figure 8(c).
The measurement has been carried out in a microwave anechoic chamber using two horn antennas.

Initially calibration has been done for S21 measurement without FSS array. After calibration the
dodecagon FSS array is placed between two horns antennas. The distance between the two horn
antennas is 1.5 meters, and FSS is placed in middle of two horn antennas. The normal incidence wave
is impinging on the FSS array using transmitting antenna and the receiving antenna reflecting the
X band. The measurement setup and the comparison of measured and simulation results are shown
in Figures 9(a) and 9(b). There is a small inconsistency in the measured output due to fabrication
tolerances.

6. CONCLUSION

In this paper a low profile band stop dodecagon FSS array based on multilayer concept is designed,
analyzed using equivalent circuit model, fabricated and measured for X band applications. The three
layer wide band stop FSS in the frequency range from 8 GHz to 12.5 GHz is presented with center
frequency of 10.25 GHz with air gap of 0.067λ0. The novelty of this design compared with the previous
FSS researches is the overall thickness of the design and miniaturized unit cell dimensions. This is not
refined compared to previous designs, but it is suitable for miniaturized multi-layer frequency selective
surface for X band applications. The equivalent circuit model of three layer FSS is presented in order
to obtain equivalent LC parameters. The three layer FSS is insensitive to oblique angles of incidences
up to 45◦ for both polarizations. At the same time the fractional bandwidth obtained is greater than
40% with respect to center frequency. Measured results and equivalent circuit results are confirmed
with simulation results in this communication. It is suitable for the applications of X band reflection
and for enhancing directivity and gain of compact antennas when being used as reflectors.
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