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Multi-Physics Parametric Modeling of Microwave Passive
Components Using Artificial Neural Networks
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Abstract—In this paper, a novel multi-physics parametric modeling approach using artificial neural
networks (ANNs) for microwave passive components is proposed. In the proposed approach, the
ANN is used to learn the nonlinear relationships between electromagnetic (EM) behaviors and multi-
physics design variables. The trained model can accurately represent the EM responses of the passive
components with respect to the multi-physics input parameters. Therefore, the proposed model can
provide accurate and fast prediction of EM responses using low computational cost and little time
for multi-physics design. The advantage of the proposed model is demonstrated by two microwave
examples: the proposed model can save about 98% computational cost compared with the EM model,
and the CPU time of the proposed model is less than 0.1 s while that of the EM model needs many
minutes.

1. INTRODUCTION

Parametric modeling of electromagnetic (EM) behavior has become important for EM design of
microwave passive components [1, 2]. For high performance RF/microwave component and system
design, we often require considerations of the operation in a real-world multi-physics environment which
includes other physics domains besides the EM domain [3]. EM centric multi-physics design, which
involves EM analysis coupled with the effects of multi-physics areas such as thermal and structural
mechanics, is time consuming because it usually requires repetitive EM simulations with multi-physics
parameters as design variables. Multi-physics parametric modeling becomes essential, which can develop
parametric models to represent the EM responses as functions of multi-physics parameters [4].

Researches have been focused on multi-physics parametric modeling for microwave passive
components. In [5], a multi-physics model has been constructed with finite element methods (FEMs) for
Light Emitting Diode which works in different temperature and humidity environments. The authors
in [6] have presented a multi-physics model of through-silicon vias with an equivalent-circuit approach.
Most of the researches have used circuit methods and FEMs for multi-physics modeling of microwave
passive components [7–9]. However, recently, the structure of microwave passive components has become
more complex. Although the existing methods are suitable for modeling existing components, they are
often time-consuming and computationally expensive for new components. New multi-physics modeling
methods with high efficiency and low cost are needed urgently.

Artificial neural networks (ANNs) can be trained to learn any arbitrary nonlinear input-output
relationships from corresponding data, which lead to ANNs being applied to many fields, especially
in modeling area [10–12]. Recently, ANNs have been recognized as an effective vehicle for EM-based
modeling and optimization in microwave area. Through an automatic training process, ANN can
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learn the relationship between EM responses and geometrical parameters. The trained model provides
accurate and fast prediction for the EM behavior of microwave components with geometrical parameters
as variables and can be subsequently implemented in circuit and system designs [13, 14]. However, how
to develop multi-physics parametric models using ANN techniques remains an open topic.

In this paper, we propose a new multi-physics parametric modeling method using ANN for
microwave passive components. In the proposed method, ANN is trained to learn the relationships
between the EM behaviors and multi-physics design parameters. The trained ANN can provide an
effective and fast prediction of EM responses with respect to multi-physics design parameters. The
proposed multi-physics parametric model using ANN can achieve high accuracy of the EM responses
using low computational cost and little time. A tunable evanescent mode cavity filter example and a
four-pole waveguide filter example are used to illustrate the feasibility of the proposed multi-physics
parametric modeling approach.

2. PROPOSED MULTI-PHYSICS MODEL

In this paper, we propose to create a multi-physics parametric model using ANN to learn the EM
response of microwave passive components with respect to multi-physics design parameters. The
proposed multi-physics model which learns the behavior of the components is developed through the
process illustrated using the flowchart in Figure 1. Design of experiments (DOE) method [15] is used
as the sampling method. The data for modeling are generated using FEM simulations. All EM data
are divided into two groups: one is the training data used for training the ANN model; the other is the
test data used for verifying the ANN model. In order to improve the modeling accuracy, the scaling
method is used for training data [16]. The trained multi-physics parametric model can be used for fast
and accurate EM centric multi-physics analysis.

We propose to use ANN as the multi-physics parametric model structure because ANN can learn the
highly nonlinear relationship between input and output, and the trained ANN model is able to provide
fast output solutions to the problems that they have learned. The three-layer multilayer perceptron
(MLP) as one of the ANN structures, which can get the nonlinear relationship effectively and accurately,
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Figure 1. Flowchart demonstrating the multi-physics model development.
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Figure 2. The proposed multi-physics parametric model using ANN.

is proposed to be used in this paper. For ANN modeling, let x be a set including all the input variables of
a given passive component, which is divided into geometrical parameters xg, multi-physics parameters
xm and frequency xf . Let y be a set including all the output responses of the given passive component,
which represents the EM behavior of the multi-physics problem. The ANN structure of the proposed
multi-physics parametric model is illustrated in Figure 2. Layer 1 is the input layer (x), which receives
the external inputs including xg,xm and xf by the input neurons. Layer 2 is a hidden layer of the
neural network, which handles xg,xm and xf according to activation functions. Based on the neural
network model in Figure 2, we propose to use the sigmoid function as the activation function for the
hidden neurons, which is a smooth switch function and can be defined as

σ(γ) =
1

1 + e−γ
, (1)

Layer 3 is the output layer (y), which represents the output responses of the proposed model. In
Figure 2, p and q represent the numbers of input and output neurons, respectively. l and k represent
the numbers of xg and xm, respectively, i.e., l + k = p− 1. n represents the number of hidden neurons,
which is determined during the ANN training.

For the sake of perspicuity, the calculation of the proposed model is formulated as
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where w
(1)
hi , w

(1)
ri and w

(1)
pi are the weight parameters between the respective (hth, rth or pth) input

neuron and the ith hidden neuron, while w
(2)
ij is the weight parameters between the ith neuron in the

hidden layer and the jth neuron in the output layer. w
(1)
0i and w

(2)
0j denote bias values of the ith hidden

neuron and the jth output neuron, respectively. Those weight parameters determine the nonlinear
relationship between input and output variables.

The proposed ANN model cannot predict EM behaviors of the components accurately until it is
well trained using the EM data. Therefore, the ANN training is a significant step during the proposed
model development. In the training process, the weight parameters and the number of hidden neurons
in the ANN model are optimized and adjusted so that the outputs of the ANN model can fit the EM
data accurately. In general, the initial number of hidden neurons is chosen based on the experiences, and
the appropriate number of the hidden neurons can be obtained through trial-and-error processes. The
weight parameters are changed to make the error between neural network prediction and the training
sample as small as possible with Quasi-Newton training method [16]. For training purposes, we use the
training error to measure the learning performance of the ANN model and the test error to measure the
predictive ability of the ANN model. The training process is performed until both the training error
calculated with the training data and the test error calculated with the test data meet the accuracy
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requirements. The same error function is defined as [17]

E(w) =
1
2

T∑
t=1

q∑
j=1

∥∥yt
j(x,w) − yt

jD(x)
∥∥2, (3)

where yt
j(x,w) and yt

jD(w) are the EM response of the proposed model and the FEM simulations data,
respectively. The subscript t is the training or test data index, and T is the total number of the training
or test data. The training and test processes of the proposed multi-physics model are completed using
the flowchart in Figure 3.
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Figure 3. The training and testing process of the proposed multi-physics model.

3. EXAMPLES

3.1. Tunable Evanescent Mode Cavity Filter

A tunable evanescent mode cavity filter [18] is used as the first example, whose structure is illustrated
in Figure 4. In this example, the displacement and deformation of piezo actuator can change the
magnitude of a small air gap which offers the tunability of the resonant frequency. There are 3
geometrical parameters for the filter: length (L), width (W ) of the tuning post, and the gap (H)
between the top of the post and the bottom side of the piezo actuator, i.e., xg = [L W H]T . It has one
multi-physics variable: bias voltage (V ), which is applied on the piezo actuator, causes the deformation
and displacement, i.e., xm = [V ]. There is an additional input: frequency (xf ), with the range from
3GHz to 3.06 GHz. The input parameters of the proposed model for this example are defined as:
x = [L W H V f ]T . The model has one output: the magnitude in decibels of S11 of the filter response,
i.e., y = [S11].

In this example, the training data and testing data are generated using COMSOL Multiphysics.
The range of input variables of the proposed method is shown in Table 1. The same 2025 training
samples and 1600 testing samples which are sampled by DOE are used to finish the modeling process.
The process of training and testing is completed using NEUROMODELERPLUS.

Table 2 gives the training and test errors under different hidden neurons. According to Table 2,
the proposed model with 45 hidden neurons has both the smallest training error 0.72% and the smallest
test error 1.40%. Therefore, the ANN structure with 45 hidden neurons is chosen in the neural model
by comparing all the errors. To show the detailed results, Figure 5 gives the S11 comparison between
the COMSOL Multiphysics data and the output responses of the proposed model with respect to two
different sets of input variables. From Figure 5, the proposed model has a good agreement with the EM
data.



Progress In Electromagnetics Research M, Vol. 72, 2018 83

Figure 4. Structure of the tunable evanescent mode cavity filter.

Table 1. Definition of training and testing data.

Input variables
Training data Test data

Min Max Step Min Max Step
L (mm) 12 18.4 0.8 12.4 18 0.8
W (mm) 10 16.4 0.8 10.4 16 0.8
H (um) 100 148 6 103 145 6
V (V) −200 200 50 −175 175 50

Table 2. Training and test errors under different hidden neurons.

Hidden neurons Training error (%) Test error (%)
35 1.19 1.91
40 0.93 1.60
45 0.72 1.40
50 0.80 1.60
55 0.78 1.67

The comparison of modeling time between the FEM simulations and the proposed approach is shown
in the first column of Table 3. The total modeling CPU time is 2.75 h in the COMSOL Multiphysics,
while it is only about 0.35 h in the proposed method. By this comparison, it is clear that the cost in the
proposed method is insignificant with a similar accuracy requirement. In other words, it is so highly
efficient that the proposed approach constructs the model if the data are prepared.

After building the model, we apply a new set of input to evaluate the performances of two models.
The performance comparison of two models in practical application is illustrated in the second and third
columns of Table 3. The FEM simulations model gets the corresponding output which costs the CPU
time and computational memory about 2.5 minutes and 2.83 GB, respectively. However, the proposed
model only costs 0.031 s and 40 MB with a similar accuracy. The proposed approach can save about
98.6% computational memory compared with the FEM simulations. We can see that the proposed
model provides effective and fast prediction of EM responses for component design in multi-physics
environment. Once the proposed multi-physics model is constructed, it is used over and over again so
that the benefit accumulates continuously during this process.
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Figure 5. Comparison of the magnitude in decibels of S11 between the proposed model and the
COMSOL Multiphysics data.

Table 3. Comparison of the cost and time between two modeling approaches for the tunable evanescent
mode cavity filter.

Modeling Method
Modeling
time(h)

CPU time
Computational

memory
Memory

saving (%)
FEM simulations 2.75 2.5 minutes 2.83 GB

98.6%
Proposed 2.75 + 0.3 0.031 s 40 MB

3.2. Four-Pole Waveguide Filter

A four-pole waveguide filter [19] is used as the second example, whose structure is illustrated in Figure 6.
In this example, the displacement and deformation of four piezo actuators can change the magnitude
of the small air gap which offers the tunability of the resonant frequency. There are 4 geometrical
parameters for the filter: height (H1) and height (H2) of the tuning posts in the coupling windows, and
height (H3) and height (H4) of the square cross section, i.e., xg = [H1 H2 H3 H4]T . It has 2 multi-
physics variables: bias voltage (V1, V2), which is applied across the piezo actuator, i.e., xm = [V1 V2]T ,
and there is an additional input: frequency (xf ), with the range from 10 GHz to 11 GHz. The input
parameters of the model for this example are defined as: x = [H1 H2 H3 H4 V1 V2 f ]T . The model has
one output: the magnitude in decibels of S11 of the filter response, i.e., y = [S11].

In this example, the training data and testing data are generated using COMSOL Multiphysics.
The range of input variables of the proposed method is shown in Table 4. The same 8181 training
samples and 1919 testing samples which are sampled by DOE are used to finish the modeling process.
The process of training and testing is completed using NEUROMODELERPLUS.

Table 5 gives the training and test errors under different hidden neurons. According to Table 5,
the proposed model with 55 hidden neurons has both smallest training error 1.68% and smallest test
error 1.89%. Therefore, the ANN structure with 55 hidden neurons is chosen in the neural model by
comparing all the errors. To show the detailed results, Figure 7 gives the S11 comparison between the
COMSOL Multiphysics data and the output responses of the proposed model with respect to one set
input variable. From Figure 7, the proposed model has a good agreement with the EM data.

The comparison of modeling time between the FEM simulations and the proposed approach is shown
in the first column of Table 6. The total modeling CPU time is 41.75 h in the COMSOL Multiphysics
while it is only about 1.2 h in the proposed method. By this comparison, it is clear that the cost in the
proposed method is insignificant with a similar accuracy requirement. In other words, it is so highly
efficient that the proposed approach constructs the model if the data are prepared.

After building the model, we apply a new set of input to evaluate the performances of two models.
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Figure 6. Structure of the four-pole waveguide filter.

Table 4. Definition of training and testing data.

Input variables
Training data Test data

Min Max Step Min Max Step
H1 (mm) 3.04 3.44 0.05 3.065 3.415 0.05
H2 (mm) 3.10 3.50 0.05 3.125 3.475 0.05
H3 (mm) 3.52 3.84 0.04 3.54 3.82 0.04
H4 (mm) 3.28 3.52 0.03 3.295 3.505 0.03
V1 (V) −120 120 30 −105 105 30
V2 (V) −120 120 30 −105 105 30

Table 5. Training and test errors under different hidden neurons.

Hidden neurons Training error (%) Test error (%)
45 2.27 3.10
50 2.24 2.77
55 1.68 1.89
60 2.14 3.01
70 2.22 3.17

Table 6. Comparison of the cost and time between two modeling approaches for the four-pole waveguide
filter.

Modeling Method
Modeling
time(h)

CPU time
Computational

memory
Memory

saving (%)
FEM simulations 41.75 23.5 minutes 2.8 GB

98.2%
Proposed 41.75 + 1.2 0.058 s 52 MB
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Figure 7. Comparison of the magnitude in decibels of S11 between the proposed model and the
COMSOL Multiphysics data with the test sample: x = [3.115 3.125 3.58 3.325 − 75 − 75]T .

The performance comparison of two models in practical application is illustrated in the second and third
columns of Table 6. The FEM simulations model gets the corresponding output which costs the time
and computational memory about 23 minutes and 2.8 GB, respectively. However, the proposed model
only costs 0.058 s and 52 MB with a similar accuracy. The proposed approach can save about 98.2%
computational memory compared with the FEM simulations. We can see that the proposed model
provides effective and fast prediction of EM responses for passive component design in multi-physics
environment. Once the proposed multi-physics model is constructed, it is used over and over again so
that the benefit accumulates continuously during this process.

4. CONCLUSIONS

In this paper, an effective multi-physics parametric modeling approach using ANN for microwave passive
components has been proposed. Compared with FEM simulations, the proposed approach achieves
similar accuracy using less computational cost and time. The two examples results show that the more
complex the component structure is, the more obvious the advantage of the proposed method is in
saving calculation time and cost. The trained model can accurately represent the EM responses of the
microwave passive components with respect to the multi-physics input parameters. The proposed model
can be used to provide accurate and fast prediction of EM responses for multi-physics design process,
which can further shorten the design cycle.

In the future, we will try to use various advanced modeling methods to construct the multi-physics
model of microwave passive components. Support vector machine (SVM), space mapping (SM), and
radial basis function neural network (RBF) could be useful future directions.
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